
Ordinal Conditional Functions for
Abstract Argumentation

Kenneth SKIBA and Matthias THIMM
Artificial Intelligence Group, University of Hagen, Germany

Abstract. We interpret and formalise ordinal conditional functions (OCFs) in ab-
stract argumentation frameworks based on ideas and concepts defined for condi-
tional logics. There, these functions are used to rank interpretations, and we adapt
them to rank extensions instead. Using conflict-freeness and admissibility as two
essential principles to define the semantics of OCFs, we obtain a framework that
allows to rank sets of arguments wrt. their plausibility. We analyse the properties
of this framework in-depth, and in doing so we establish a formal bridge between
the approaches of abstract argumentation and conditional logics.
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1. Introduction

Abstract argumentation frameworks (AF) [1] have gathered research interest as a model
for rational decision-making in presence of conflicting information. Using AFs, argu-
ments and attacks can be represented as nodes and edges, respectively, of a directed
graph. In order to reason over AFs extension semantics were defined, which are functions
such that a set of arguments can be considered jointly acceptable. Recently Skiba et al.
[2] generalised this reasoning process to rank sets of arguments based on their plausibil-
ity. Another used reasoning formalism is conditional logic, which studies conditionals
like “if A then B” written as (B | A). So given the information that A is true it is more
“believable” that B is true, than B being not true. In order to define a value of believabil-
ity, ordinal conditional functions (OCF) (also known as ranking functions) were defined
[3]. These functions can be used to rank possible worlds according to their plausibility.
One example of an OCF is the System Z ranking function [4], which exhibits particularly
good reasoning properties.

In recent years, the relationship between argumentation and conditional logic was
investigated in [5,6,7,8] and by Weydert [9,10]. While abstract argumentation usually
only provides a criterion to determine whether a set of arguments is jointly accepted or
not, OCFs on the other hand can rank possible worlds according to their plausibility.
In this paper, we want to use these ideas from conditional logic to reason in abstract
argumentation. Our goal is to rank sets of arguments according to their plausibility, i. e.,
we can state not only whether a set of arguments is accepted or not, but also state that a
set is more plausible than another one. In particular, we can rank sets of arguments, which
are not jointly acceptable w.r.t. extension semantics, for example, we can say that out of
two conflicting sets one of them is more plausible. One potential application of such a
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ranking is decision-making in presence of constraints, where a solution (represented as a
set of arguments) satisfies constraints that cannot be satisfied by a set of arguments under
extension semantics. One possible way to still make a decision would be to select the
most plausible sets of arguments, which are satisfying the constraints.

To achieve such a ranking of sets of arguments, we will use the guiding principles
of admissible reasoning for abstract argumentation frameworks namely conflict-freeness
and admissibility to develop ordinal conditional functions for abstract argumentation. In
order to connect abstract argumentation and conditional logics we interpret the set of
attacks as a set conditionals. Since there can be a number of functions satisfying the
defined principles, we develop a model-based reasoning technique inspired by System
Z. This System Z ranking function allows us to model plausibility values for each set of
arguments I being in while a different set O is out. These plausibility values can be used
to rank sets of arguments, and therefore continue recent work about extension-ranking
semantics started in [2].

This paper is structured as follows. We recall all necessary preliminaries about ab-
stract argumentation and conditional logics in Section 2. Section 3 introduces OCFs for
abstract argumentation. In Section 4, we look at OCFs based on System Z. A extension-
ranking semantics is introduced in Section 5 as well as an in-depth investigation of the
properties of that semantics is presented. We conclude this paper in Section 6 with a
discussion about related work.

2. Preliminaries

In this section, we recall all necessary definitions of abstract argumentation and condi-
tional logics.

2.1. Abstract Argumentation

Argumentation frameworks [1] are a formalism that allows the representation of conflicts
between pieces of information using arguments and attacks between arguments.

Definition 1. An abstract argumentation framework (AF) is a directed graph AF =
(A,R) where A is a finite set of arguments and R is an attack relation R⊆ A×A.

An argument a is said to attack an argument b if (a,b) ∈ R. We say that an argument
a is defended by a set S ⊆ A if every argument b ∈ A that attacks a is attacked by some
c ∈ S. For a ∈ A define a− = {b | (b,a) ∈ R} and a+ = {b | (a,b) ∈ R}, so the set of
attackers of a and the set of arguments attacked by a. For a set of arguments S ⊆ A we
extend these definitions to S+ and S− via S+ =

⋃
a∈S a+ and S− =

⋃
a∈S a−, respectively.

For two graphs AF= (A,R) and AF′ = (A′,R′), we define AF∪AF′ = (A∪A′,R∪R′).
To reason with abstract argumentation frameworks a number of different semantical

notions have been developed, like the extension-based or the labelling-based approaches,
for an overview see [11]. Both these approaches are handling sets of arguments, which
can be considered jointly acceptable. The extension-based semantics are relying on two
basic concepts: conflict-freeness and defence.

Definition 2. Given AF= (A,R), a set E ⊆ A is:
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Figure 1. Abstract argumentation framework AF from Example 1.

• conflict-free iff ∀a,b ∈ E, (a,b) �∈ R;
• admissible iff it is conflict-free, and it defends its elements.

We use cf(AF) and ad(AF) for denoting the sets of conflict-free and admissible sets
of an argumentation framework AF, respectively. The semantics proposed by Dung [1]
are then defined as follows.

Definition 3. Given AF= (A,R), an admissible set E ⊆A is a complete extension (co) iff
it contains every argument that it defends; a preferred extension (pr) iff it is a ⊆-maximal
complete extension; the unique grounded extension (gr) iff it is the ⊆-minimal complete
extension; a stable extension (st) iff E+ = A\E.

The sets of extensions of an argumentation framework AF, for these four semantics,
are denoted (respectively) co(AF), pr(AF), gr(AF) and st(AF). Based on these seman-
tics, we can define the status of any (set of) argument(s), namely skeptically accepted
(belonging to each σ -extension), credulously accepted (belonging to some σ -extension)
and rejected (belonging to no σ -extension). Given an argumentation framework AF and
an extension semantics σ , we use (respectively) skσ (AF), crσ (AF) and rejσ (AF) to de-
note these sets of arguments.

Example 1. Consider the argumentation framework AF= (A,R) depicted as a directed
graph in Figure 1, with the nodes corresponding to the arguments A= {a,b,c,d}, and the
edges corresponding to the attacks R= {(a,b),(b,c),(c,d),(d,c)}. The sets {a}, {a,c}
and {a,d} are complete extensions of AF, while only {a,c} and {a,d} are stable.

For more details about these semantics (and other ones defined in the literature), we
refer the interested reader to [1,11].

2.2. Conditional Logics

In order to define the usual propositional language L (At) over At we use a set of atoms
At and connectives ∧ (and), ∨ (or) and ¬ (negation). The function ω : At → {T,F}
defines an interpretation (or possible world) ω for L (At). Ω(At) denotes the set of all
interpretations. An interpretation ω satisfies an atom a ∈ At (ω |= a), iff ω(a) = T . As a
conditional we consider structures like (ψ | φ), which can be read as “if φ then (usually)
ψ”. Informally speaking, an interpretation ω verifies a conditional (ψ | φ) iff it satisfies
both antecedent (φ ) and conclusion (ψ) ((ψ | φ)(ω) = 1); it falsifies iff it satisfies the
antecedent but not the conclusion ((ψ | φ)(ω) = 0); otherwise the conditional is not
applicable. A conditional is satisfied by ω if it does not falsify it.

We use ordinal conditional functions (OCFs) (also called ranking functions) [3],
κ : Ω(At)→N∪{∞} to denote a plausibility degree of interpretations and define κ(φ) :=
min{κ(ω) | ω |= φ}. An OCF κ satisfies a set Δ of conditionals, if for each (ψ | φ) ∈ Δ,
κ(φ ∧ψ) < κ(φ ∧¬ψ), i. e., verifying a conditional is more plausible than falsifying
it. Since the set of all satisfying OCFs may be difficult to handle, one usually relies
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on model-based inference for reasoning. In this paper, we will focus on the System Z
ranking function [4] as an example for model-based inference.

Definition 4. A conditional (ψ | φ) is tolerated by a finite set of conditionals Δ if there
is a possible world ω , which verifies (ψ | φ) and does not falsify any conditional (ψ ′ |
φ ′) ∈ Δ. The Z-Partitioning (Δ0, ...,Δn) of Δ is defined as:

• Δ0 = {δ ∈ Δ | Δ tolerates δ}
• Δ1, ...,Δn is the Z-Partitioning of Δ\Δ0

For δ ∈ Δ : ZΔ(δ ) = i iff δ ∈ Δi and (δ0, ...,δn) is the Z-Partitioning of Δ. We define a
ranking function κZ

Δ via κZ
Δ (ω) = max{ZΔ(δ ) | δ (ω) = 0,δ ∈ Δ}+1, with max /0 =−1.

Example 2 ([4]). Consider the following set of conditionals Δ about the flying ability of
penguins.

δ1: “birds fly” ( f | b) δ2: “penguins are birds” (b | p)
δ3: “penguins do not fly” (¬ f | p)

The Z-Partitioning of Δ is Δ0 = {δ1} and Δ1 = {δ2,δ3}, because Δ0 can be toler-
ated by all conditionals, while δ2 and δ3 cannot be tolerated by Δ. We can calculate the
plausibility value of interpretations ω . For example, a flying penguin (ω(p) = ω(b) =
ω( f ) = T ) receives a value of κZ

Δ (ω) = 1.

3. Ordinal Conditional Functions for Abstract Argumentation

In this section we define OCFs for abstract argumentation. We define a function κ with
two parameters (I and O) to calculate a numerical plausibility value. These parameter are
sets of arguments where the first set I is considered in, and the second set is considered
out. So κ(I,O) = 0 means that the set I being in and the set O being out is not surprising.
Note that our OCF need two parameters instead of only one, like in conditional logics,
since abstract argumentation is missing the notion of negation.

Definition 5. Let AF= (A,R) be an AF. A OCF for AF is a function κ : 2A → N∪{∞}
with κ−1(0) �= /0.

For sets I,O ⊆ A we abbreviate

κ(I,O) = min{κ(S)|I ⊆ S,S∩O = /0}
κ(I,O) = ∞ if I ∩O �= /0

Example 3. Consider AF2 = ({a,b},{(a,b)}). One exemplary OCF κC(I,O) returns the
number of conflicts in I, i. e., for {a,b} κC({a,b}, /0) = 1. For any other set S ⊂ {a,b}
like S = {a} we have κC(S, /0) = κC(S,{b}) = 0 and κC(S,S) = ∞.

The following definitions are inspired by OCFs in conditional logic. However, while
conditional logic semantics follow a single principle regarding conditional acceptance
(“a conditional is accepted if its verification is more plausible than its violation”), for
admissible reasoning in abstract argumentation we have two guiding principles:

• An argument should not be accepted if one of its attackers is accepted.
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i κ−1(i)

3 ({a,b}, /0)
2 ( /0,{a}), ( /0,{b}), ( /0,{a,b})
1 ( /0, /0), ({b},{a}), ({b}, /0)
0 ({a}, /0), ({a},{b})

Table 1. Example OCF for Example 4. Note κ is only partially defined.

• An argument should be accepted if all its attackers are not accepted.

The first principle is also called conflict-freeness, i. e., a set does not contain two ar-
guments, which share an attack. So conflicting sets are less plausible than conflict-free
sets. The second principle is admissibility, so a set, which defends itself from all possi-
ble attackers, is at least as plausible as set not defending itself. Implementing these two
principles for OCFs gives us:

Definition 6. Let AF= (A,R) be an AF and a,b ∈ A.

• An OCF κ accepts an attack (a,b) with a �= b if κ({a},{b})< κ({a,b}, /0).
• An OCF κ possibly reinstates an argument a ∈ A if κ(S∪{a},a−) ≤ κ(S,{a}∪

a−) for all S ⊆ A with S∩ (a− ∪a+) = /0.

Intuitively, for an OCF to accept an attack (a,b) means that it is more plausible that
argument a is in and b is out, than both a and b being in at the same time. For an OCF to
possibly reinstate an argument a means that if all attackers of a are out, then it is at least
as plausible that a is in than out.

Next we want to denote when an AF is satisfied by an OCF, i.e. when we can define
an OCF satisfying all principles defined above for an AF.

Definition 7. An OCF κ satisfies an argumentation framework AF= (A,R) if it accepts
all attacks in R and possibly reinstates all arguments in A.

Example 4. Consider AF2 = ({a,b},{(a,b)}). So the following statements have to
hold:

1. κ({a},{b})< κ({a,b}, /0)
2. κ({a}, /0)≤ κ( /0,{a})
3. κ({b},{a})≤ κ( /0,{a,b})

Table 1 depicts an OCF that satisfies AF2.

Note that if an AF contains a self-attacking argument a, then there is no OCF that
satisfies it. Because to accept attack (a,a) it has to hold that κ({a},{a}) < κ({a}, /0),
which is impossible, since κ({a},{a}) = ∞.

4. The System Z Ranking Function for Abstract Argumentation

In this section, we want to define an OCF inspired by System Z. The basic idea of System
Z is that a conditional (B | A) is tolerated by a set of conditionals, if it is confirmed by
a world ω and no other conditional is refuted. In our setting of abstract argumentation
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we interpret an attack from argument a to argument b as the conditional relationship
“if a is acceptable then b should not be acceptable”. So the whole attack relation can
be interpreted as a set of conditionals. To tolerate an attack, we have to find a set of
arguments, which verifies an attack while not violating any other attack. In addition, we
use a similar idea to the admissible semantics from Dung. Recall, a set is admissible iff
all arguments contained in the set are defended by the set. We add another condition for
a set S to tolerate an attack, namely attack admissibility, which states that if all attackers
of an argument are not in S, then this argument should be included in S.

We begin with defining, when an attack is satisfied by a set S.

Definition 8. Let AF= (A,R) be an argumentation framework.

• A set S ⊆ A verifies an attack (a,b) iff a ∈ S and b /∈ S.
• A set S ⊆ A violates an attack (a,b) iff a ∈ S and b ∈ S.
• A set S ⊆ A satisfies an attack (a,b) iff it does not violate it.

Intuitively speaking, a set satisfies an attack if this set does not contain any two
conflicting arguments. So for an AF AF3 = ({a,b,c},{(a,b),(b,c)}), we can observe,
that the set S1 = {a} verifies the attack (a,b) and does not violate the attack (b,c), while
the set S2 = {a,b} verifies the attack (b,c), however S2 violates attack (a,b).

To satisfy attack admissibility of an argument, we know that, if all the attackers of
the argument are out, then the argument itself should be in.

Definition 9. Let AF= (A,R) be an argumentation framework.

• A set S ⊆ A verifies attack admissibility of a ∈ A iff a ∈ S and b /∈ S for all b ∈ a−.
• A set S ⊆A violates attack admissibility of a ∈A iff a /∈ S and b /∈ S for all b ∈ a−.
• A set S ⊆ A satisfies attack admissibility of a ∈ A iff it does not violate it.

We recall AF3 = ({a,b,c},{(a,b),(b,c)}), we see that the set S3 = {a,c} verifies
attack admissibility of argument c, because the only attacker of c, b is not part of S3 and
one of b’s attackers is contained in S3.

Now we combine both these definitions and define when an attack can be tolerated.

Definition 10. Let AF = (A,R) be an argumentation framework. A set P ⊆ R tolerates
an attack (a,b) iff there is a set S ⊆ A that

1. verifies (a,b),
2. satisfies each attack in P, and
3. satisfies attack admissibility of each c ∈ A

So in order to tolerate an attack, we need to find a set of arguments S s.t. S is
conflict-free and every argument contained in S has to be defended. Recall AF3 =
({a,b,c},{(a,b),(b,c)}), then the attack (b,c) is not tolerated by {(a,b),(b,c)}. Be-
cause, for (b,c) to be verified for any set S, it has to hold that b ∈ S. Then to not violate
(a,b) a is not allowed to be contained in S. However, then we have the problem that S
does not contain any attackers of a, meaning that attack admissibility of a is violated.

With these definitions, we can define the OCF κZ for an AF AF.

Definition 11. Let AF = (A,R) be an argumentation framework. Then the Z-attack-
Partitioning (R0, . . . ,Rn) with R0 ∪ . . .∪Rn ⊆ R is defined as
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i κ−1(i)

2 ({b,c},X),({a,b,c},X),({b,c,d},X),({a,b,c,d},X)

1 ({a,b},X),({c,d},X),({a,b,d},X),({a,c,d},X)

0 ( /0,X),({a},X),({b},X),({c},X),({d},X),({a,c},X),({b,d},X),({a,d},X)

Table 2. The OCF κZ , where for every pair (I,X) X ⊆ A is any set s.t. I ∩X = /0.

• R0 = {r ∈ R | R tolerates r}
• (R1, . . . ,Rn) is the Z-attack-Partitioning of R\R0

For r ∈ R define ZR(r) = i if r ∈ Ri and

κZ(S,X) = max{Z(r) | S violates r}+1

where X ⊆ A is any set s.t. S∩X = /0.

So all attacks in R0 are tolerated by the set of attacks of AF, while attacks in R1
are only tolerated if we remove all attacks from R0. Now we can state when a set of
arguments is more plausible than another one, i. e., if the first set violates either no attacks
or only attacks which are in lower levels. In a sense these levels represent the impact of
each attack in an AF. Hence, it is more important to satisfy a single highly ranked attack
than to satisfy multiple lowly ranked attacks.

Example 5. Consider Example 1 again. The Z-attack-Partitioning of R is (R0,R1) with

R0 = {(a,b),(c,d),(d,c)}
R1 = {(b,c)}

Table 2 depicts κZ
AF for AF from Example 1.

Next, we want to prove, that the function κZ satisfies an AF if κZ is defined.

Theorem 1. If κZ is defined, then κZ satisfies AF.

Proof. Let AF = (A,R) be an AF. In order to show that κZ satisfies AF, we need to
prove, that κZ satisfies both principles of an OCF, i. e. acceptance of attacks and possibly
reinstating an argument.

Case: accept attack. Let (a,b) ∈ R with a �= b an attack, it has to hold that
κZ({a},{b}) < κZ({a,b}, /0). We know that κZ({a},{b}) = 0, because {a} can only
violate the attack (a,a), which can not exist. Hence, it is enough to show, that
κZ({a,b}, /0)> 0. Since, (a,b) exists, we know that {a,b} violates this attack, and there-
fore κZ({a,b}, /0)> 0.

Case: argument possibly reinstated. Let a ∈ A be an argument. Assume κZ(S ∪
a,a−) > κZ(S,a∪ a−) for some S ⊆ A with S∩ (a− ∪ a+) = /0. This is only possible,
if S∪{a} violates an attack r ∈ R and S does not violate r. So, there is one argument
b ∈ S s.t. r = (a,b) or r = (b,a) and a �= b. Hence, b ∈ a− ∪ a+. However, because of
S∩(a−∪a+)= /0 we know that, there can not be such an argument b∈ S with b∈ a−∪a+.
Therefore κZ(S∪a,a−)> κZ(S,a∪a−) is impossible.

K. Skiba and M. Thimm / Ordinal Conditional Functions for Abstract Argumentation314



Besides being undefined for AF with self-attacks, κZ is also undefined for AFs with-
out a stable extension. Let AF4 = ({a,b,c},{(a,b),(b,c),(c,a)}) be an AF. If we try to
tolerate (a,b) by {(a,b),(b,c),(c,a)}, then we know that, we need to verify (a,b) so
a ∈ S. However, this also means that b,c /∈ S, which entails that attack admissibility of c
is violated. Similar we can show, that (b,c) and (c,a) cannot be tolerated either. So, we
cannot define a Z-attack-Partitioning for AF4. Next, we show that in general it holds that
if an AF does not have a stable extension, then κZ is undefined.

Theorem 2. κZ is undefined for AF if st(AF) = /0.

Proof. Let AF = (A,R) be an AF. We will show the contraposition, so if κZ is defined
for AF, then st(AF) �= /0. Let κZ be defined. So we can find a Z-attack-Partitioning
(R0, ...,Rn). For every attack r in R0 we know that there is a set S s.t. r is verified, every
attack is satisfied and attack admissibility of every argument a ∈ A is satisfied. We show
that S is stable. First, S has to be conflict-free, otherwise there is an attack, which is vio-
lated. Next we show that S∪S+ = A, so we need to show, that every argument not in S is
attacked by S. Let b /∈ S, then because attack admissibility of b is satisfied we know that
there is an argument c ∈ b− with c ∈ S, hence we have found an attacker of b which is
part of S.

Looking at the levels of a Z-attack-Partitioning in detail, we observe, that if an attack
(a,b) is in R0, then a is credulously admissible accepted in AF.

Theorem 3. For any AF AF = (A,R) and Z-attack-Partitioning (R0, ...,Rn). If (a,b) ∈
R0, then a is credulous accepted wrt. admissible semantics.

Proof. Let AF=(A,R) be an AF, (R0, ...,Rn) a Z-attack-Partitioning of R and (a,b)∈R0,
then (a,b) is tolerated by R, meaning that there is an S ⊆ A s.t. (a,b) is verified, each
attack in R is satisfied by S and attack admissibility of each argument c ∈ A is satisfied.
In order to verify (a,b), we know that a ∈ S and b /∈ S. Also it has to hold for all c ∈ a−
that c /∈ S. So all attackers of a are out. Next, we will show that S is admissible. S is
conflict-free, otherwise, one attack would be violated. We know for every d ∈ S that no
attacker of d is in S. In order to not violate attack admissibility, we know for every e /∈ S
that at least one attacker of e has to be in S, meaning that S attacks every argument not
contained in S. Hence, for every attacker b of an argument a ∈ S we have an argument
d ∈ S s.t. d attacks b. So S is admissible, and therefore a is part of some admissible
extension of AF making a credulous accepted w.r.t. admissible semantics.

5. Extension-ranking Semantics based on System Z

First, we recall the definitions from [2] for extension-ranking semantics.

5.1. Extension-Ranking Semantics

Extension-ranking semantics defined in [2] are a generalisation of extension-based se-
mantics. Using them, we can state not only that a set of arguments is jointly accepted or
not, but also we can say whether a set E1 is more plausible than a set E2.
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/0 ∼=κZ

AF {a} ∼=κZ

AF {b} ∼=κZ

AF {c} ∼=κZ

AF {d} ∼=κZ

AF {a,c} ∼=κZ

AF {b,d} ∼=κZ

AF {a,d}
�κZ

AF {a,b} ∼=κZ

AF {c,d} ∼=κZ

AF {a,b,d} ∼=κZ

AF {a,c,d}
�κZ

AF {b,c} ∼=κZ

AF {a,b,c} ∼=κZ

AF {b,c,d} ∼=κZ

AF {a,b,c,d}
Table 3. The ranking for AF based on �κZ

AF.

Definition 12. An extension ranking on AF is a preorder1 over the powerset of arguments
2A. An extension-ranking semantics τ is a function that maps each AF to an extension
ranking �τ

AF on AF.

For an extension-ranking semantics τ , an extension ranking �τ
AF, E,E ′ ⊆ A, and for

E �τ
AF E ′ we say that E is at least as plausible as E ′ by τ in AF.
Using the OCF κZ , we can define an extension-ranking semantics. So we can state

that a set of arguments E is more plausible than another one E ′, if the OCF κZ returns a
lower value for E than for E ′.

Definition 13. Let AF= (A,R) be an AF and E,E ′ ⊆ A. Define the System Z extension-
ranking semantics �κZ

AF via

E �κZ

AF E ′ iff κZ(E,A\E)≤ κZ(E ′,A\E ′)

So E is at least as plausible as E ′, if E being considered in and all arguments not in
E being out, is more plausible than E ′ being considered in and all arguments not in E ′
being out.

Example 6. Consider again AF from Example 1. Then Table 3 depicts the ranking cor-
responding to �κZ

AF. We see, that all conflict-free sets are part of the most plausible sets,
while sets with conflicts are ranked worse. Also, the number of conflicts is not as impor-
tant as for the approaches of [2]. In their approaches, it always holds that {b,c} is ranked
strictly better than {b,c,d}. While for κZ these two sets are ranked equally.

5.2. Study of the System Z Extension-ranking Semantics

Next, we want to evaluate �κZ

AF based on principles defined by [2].
We begin with σ -generalisation, which states that sets of arguments, which satisfies

extension semantics σ should also be ranked best by an extension-ranking semantics
and every set not satisfying σ should be ranked worse. In Example 6, we can see that
�κZ

AF violates σ -generalisation for σ ∈ {ad,co,pr,gr,st}, because the set {b,d} is not
admissible, however, it is ranked as a most plausible set. Therefore �κZ

AF cannot satisfy
σ -generalisation for any admissible based semantics σ .

The next properties (composition and decomposition) states that unconnected argu-
ments should not influence a ranking.

Theorem 4. �κZ

AF satisfies composition. Where τ satisfies composition if for every AF
such that AF= (A1,R1)∪ (A2,R2) and E,E ′ ⊆ A1 ∪A2:

1A preorder is a (binary) relation that is reflexive (E � E for all E) and transitive (E1 � E2 and E2 � E3
implies E1 � E3)
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if
{

E ∩A1 �τ
AF1

E ′ ∩A1

E ∩A2 �τ
AF2

E ′ ∩A2

}
then E �τ

AF E ′.

Proof. Let AF= (A1,R1)∪ (A2,R2) be an AF and E,E ′ ⊆ A1 ∪A2. For composition we
need to show that, if κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′) and κZ(E ∩A2,A2 \E)≤
κZ(E ′ ∩A2,A2\E ′) then κZ(E,A\E)≤ κZ(E ′,A\E ′). By definition of κZ we know that
κZ(E,A \E) is the maximal value between κZ(E ∩A1,A1 \E) and κZ(E ∩A2,A2 \E),
because if an attack r1 is violated by E, then r1 is also violated by either E∩A1 or E∩A2.
Similar holds for κZ(E ′,A\E ′). So we have to check four possible cases for max(κZ(E∩
A1,A1 \E),κZ(E ∩A2,A2 \E))≤ max(κZ(E ′ ∩A1,A1 \E ′),κZ(E ′ ∩A2,A2 \E ′)).

1. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′)
2. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
3. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
4. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A1,A1 \E ′)

Case 1 and 2 are clear via definition. For case 3 we know that κZ(E ∩A1,A1 \E) ≥
κZ(E ∩A2,A2 \E) and κZ(E ′ ∩A1,A1 \E ′) ≤ κZ(E ′ ∩A2,A2 \E ′), but we also know
that κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′), which proves case 3. Case 4 is similar to
case 3.

For decomposition, we see that �κZ

AF violates it. Recall that τ satisfies decomposition
if for every AF such that AF= (A1,R1)∪ (A2,R2) and E,E ′ ⊆ A1 ∪A2:

if E �τ
AF E ′ then

{
E ∩A1 �τ

AF1
E ′ ∩A1

E ∩A2 �τ
AF2

E ′ ∩A2

}
.

Example 7. Let AF5 = ({a,b,c,d,e},{(a,b),(b,c),(d,e)}) be an AF. This AF can be
split into two disjoint AFs AF5.1 =({a,b,c},{(a,b),(b,c)}) and AF5.2 =({d,e},{(d,e)}).
The Z-attack-Partitioning of R5 is R5 0 = {(a,b),(d,e)} and R5 1 = {(b,c)}. Let
E = {a,b,d,e} and E ′ = {b,c,d}, then κZ(E,A5 \E) = 1 and κZ(E ′,A5 \E ′) = 2. How-
ever, we have κZ(E ∩A5.2,A5.2 \E) = 1 and κZ(E ′ ∩A5.2,A5.2 \E ′) = 0. This shows,
that decomposition is violated.

Decomposition is violated, because �κZ

AF focuses on a global view. Violating (b,c)
is worse, than violating any other attack. However, �κZ

AF satisfies a weak version of de-
composition, where instead of satisfying E ∩A1 �τ

AF1
E ′ ∩A1 for both disjoint AFs, it is

enough if κZ
AF satisfy this for one AF.

Definition 14 (Weak Decomposition). Let τ be an extension-ranking semantics. τ sat-
isfies weak decomposition if for every AF such that AF = (A1,R1) ∪ (A2,R2) and
E,E ′ ⊆ A1 ∪A2: if E �τ

AF E ′ then E ∩A1 �τ
AF1

E ′ ∩A1 or E ∩A2 �τ
AF2

E ′ ∩A2.

Theorem 5. �κZ

AF satisfies weak decomposition.

Proof. Let AF = (A1,R1)∪ (A2,R2) be an AF and E,E ′ ⊆ A1 ∪A2. In order to prove
weak decomposition we have to show, that if κZ(E,A\E)≤ κZ(E ′,A\E ′) then κZ(E ∩
A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′) or κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′). By def-
inition we know that κZ(E,A \E) = max(κZ(E ∩A1,A1 \E),κZ(E ∩A2,A2 \E)) and
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similar for E ′. So, we have max(κZ(E ∩A1,A1 \E),κZ(E ∩A2,A2 \E))≤ max(κZ(E ′ ∩
A1,A1 \E ′),κZ(E ′ ∩A2,A2 \E ′)). Hence, we have four cases to check.

1. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A1,A1 \E ′)
2. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
3. κZ(E ∩A1,A1 \E)≤ κZ(E ′ ∩A2,A2 \E ′)
4. κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A1,A1 \E ′)

Case 1 and 2 are clear via definition. For case 3 we know that κZ(E ∩A2,A2 \E) ≤
κZ(E ∩A1,A1 \E) and therefore also κZ(E ∩A2,A2 \E)≤ κZ(E ′ ∩A2,A2 \E ′). Hence,
weak decomposition is satisfied. Case 4 can be proven similar to case 3.

The final properties we want to recall are the reinstatement ones, which state that
if an argument is defended and does not add conflicts into a set, then the addition of
this argument into a set should not lower the plausibility, respectively should raise the
plausibility of the set.

Theorem 6. �κZ

AF satisfies weak reinstatement. Where τ satisfies weak reinstatement iff
a ∈ FAF(E), a /∈ E and a /∈ (E− ∪E+) implies E ∪{a} �τ

AF E.

Proof. Let AF= (A,R) be an AF and E ⊆A. Assume a /∈ E and a /∈ (E−∪E+). We have
to show that κZ(E ∪{a},A\E ∪{a})≤ κZ(E,A\E). We know that E ∪{a} violates the
same attacks as E, because E and {a} are not in a conflict with each other. This means
that κZ(E ∪{a},A\E ∪{a}) can not be greater than κZ(E,A\E).

For strong reinstatement i. e., adding an argument into an AF, which is defended
by a set and does not create more conflicts, should raise the plausibility, we can look at
Example 6. We see, that {c} is equally ranked to {a,c} despite it holds that a∈ FAF({c}),
a /∈ {c} and a /∈ ({c}− ∪{c}+). So strong reinstatement is violated.

Even though a number of properties are violated by �κZ

AF this does no lower the
impact of this semantics, since �κZ

AF focuses on a global view. The semantics identifies
important attacks in the AF and ensures, that these attacks are satisfied. So it is worse
to not satisfy a single highly ranked attacked, than not satisfying multiple lower ranked
attacks. Another difference of this semantics to the semantics of Skiba et al. [2] is the
fact, that the number of conflicts a set contains in not important just the fact, that the set
is not conflict-free is significant.

6. Discussion

In this work, we continue the research of investigating the relationship of conditional
logics and abstract argumentation, by using concepts for conditional logics to reason in
abstract argumentation. In particular, we defined a formalism of OCFs to rank sets of
arguments. It turns out that these preorders are in line with current work about extension-
ranking semantics and produce a ranking for the powerset of arguments for an argumen-
tation framework.

One use of conditional logics is belief change. Where preorders are used to up-
date beliefs with information inconsistent with them. There are a number of different
works investigating belief change involving preorders over extensions of an argumen-
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tation framework [12,13,14]. However, all these works tackle a different problem. To
summarise, given an AF and an extension semantics σ , the AF will be changed using a
preorder to satisfy new information. This paper talks about using OCFs to reason over
sets of argument, while not changing AFs. Weydert [9] investigates a different idea to
define extension rankings using conditionals, his definitions could be used to define an
extension-ranking semantics similar to Section 5. However, his semantics cannot differ-
entiate conflicting sets. All conflicting sets have the same rank of infinity. A full investi-
gation of the properties of the resulting extension-ranking semantics will be done in fu-
ture work. A noteworthy mention is that System Z and rational closure by Lehmann and
Magidor [15] use the same construction. So our work also allows us to draw connections
between argumentation and non-monotonic inference. Additionally OCFs with natural
numbers and an infinity level are really close to possibilistic logics [16].

As there are more possible OCFs satisfying our proposed principles, we can define
more extension-rankings semantics, like for example an extension-ranking semantics
based on c-representations [17].
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