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Abstract. Computational argumentation is primed to strengthen the current hot
research field of Explainable Artificial Intelligence (XAI), e.g., by dialectical ap-
proaches. In this paper, we extend and discuss a recently proposed approach of so-
called strong acceptance on abstract argumentation that aims to support explaining
argumentative acceptance. Our goal is to push these results into the realm of struc-
tured argumentation. In this setting, a knowledge base induces an abstract argu-
mentation framework (AF) via instantiation. We investigate how and under which
conditions it is possible to transfer results regarding strong acceptance between the
given knowledge base and the induced AF. To this end we consider generic func-
tions formalizing the interaction of the AF and the knowledge base. This approach
helps us to infer rather general results making basic assumptions rather than dealing
with the technical details of several structured argumentation formalisms. Along
the way, we apply our techniques to the concrete approach of assumption-based ar-
gumentation (ABA) which constitutes one of the primal structured argumentation
formalisms.

Keywords. Structured argumentation, Assumption-based argumentation, Strong
acceptance

1. Introduction

Computational argumentation is a thriving research area within the broader field of
knowledge representation and reasoning and the landscape of AI research [1]. With ap-
plication avenues in, e.g., legal and medical research [2], a key contribution of computa-
tional argumentation are ways of specifying argument structures and argumentative ac-
ceptance forming the basis for, e.g., automated argumentative reasoning. Central to these
formalizations are prescribed workflows: from a knowledge base argument structures are
instantiated, together with inter-argument relations, upon which argumentation seman-
tics define criteria of acceptance [3,4,5,6]. Importantly it was shown that after instantia-
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Figure 1. Arguments {A3,A5} are strongly accepting p on the AF side. On the KB side,
{(d ← c,e),(p ← e),e} is strongly accepting p.

tion, an abstract view of arguments and their relations suffices for deriving acceptance of
arguments for several use cases.

Computational argumentation is actively contributing to the area of explainable ar-
tificial intelligence (XAI) [7], e.g., by providing dialectical grounds of acceptance or re-
jection of arguments and claims. Several approaches that support explainability arising
from argumentation have been proposed and studied. We focus here on ways of support-
ing explanations by investigating what arguments, or parts of the knowledge base, are
sufficient to show acceptance of a target conclusion or argument.

In monotonic formalisms, a common way of looking at parts that entail acceptance
is to look at minimal parts (of a knowledge base) that entail the result. In non-monotonic
approaches, such as virtually all approaches to argumentation, an adapted notion was
presented in order to account for the fact that parts of a knowledge base might entail a
certain claim, but as a whole it does not. Formally, given some set B, we can only be sure
that a subset B′ suffices to entail a certain piece of information, whenever this is the case
for each B′′ with B′ ⊆ B′′ ⊆ B.

Recently, these approaches were extended to the field of abstract argumenta-
tion [8,9,10]. However, as observed from various other aspects [11,12], connecting re-
sults from abstract to the non-abstract view is not always immediate. Consider a simple
example in the structured argumentation formalism called assumption-based argumenta-
tion (ABA) [4], where, briefly put, arguments are derivations starting off from assump-
tions via a given set of derivation rules. A (possibly asymmetric) contrary relation de-
cides conflicts between arguments. Altogether arguments and directed conflicts (attacks)
are referred to as argumentation frameworks (AFs) [13].

Example 1. Consider an ABA framework consisting of five assumptions {a, b, c, d, e}
and three rules: (p ← e), (e ← c,d), and (d ← c). That is, from assumption e we can
derive p, from assumptions c and d we can derive e, and from assumption c we can
derive d. As for (asymmetric) contraries, let d be the contrary of d, e be the contrary
of e, b be the contrary of c, and finally a the contrary of b. These ingredients lead to
eight different arguments that can be instantiated from this ABA framework. All of these
directly correspond to derivations based on the assumptions via the rules. Figure 1 shows
all eight arguments and their directed conflicts. For instance, argument A3 attacks A4
because the former concludes d, the contrary of d, which is an assumption in A4.

Let us consider ways of argumentative acceptance of atom p and the prominent ap-
proach of admissibility and credulous acceptance. Reasoning on ABA frameworks can
be defined via arguments: finding a set of non-conflicting arguments that defends itself
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against counterarguments and concludes p. It holds that {A1,A3,A5} constitutes an ad-
missible set that concludes p, e.g., the attack from A2 onto A3 is countered by A1.

Following recent work [8,9,10], one can look at so-called strongly accepting sub-
frameworks that show parts that are sufficient for acceptance. This notion is defined on
the level of arguments. For instance here {A3,A5} is a strongly accepting subframework
for p. Let us look at the subframework consisting only of these two arguments: there
are no conflicts and p can be concluded. “Re-adding” A4 leads to a conflict with A5
(the argument we need to defend), but it holds that A3 defends A5 against A4. Adding A2
leads to the case that A2 defends A5 against A4 (again making up an admissible set in
the subframework concluding p). Adding further arguments again leads to the overall
picture: if one commits to A3 and A5 we can safely find admissible sets concluding p in
the subframeworks in-between the one with only these two arguments and all arguments.

On the other hand, when looking at the structured ingredients needed to conclude
p, we find that assumption e and two rules (d ← c) and (p ← e) are sufficient: with
these components we can only instantiate argument A5 (for all others some components
are missing), and adding any further rules or assumptions leads to cases where we still
find an admissible set concluding p. For instance, re-adding components to instantiate
A4 requires assumption c, with which, together with (d ← c), leads to the case that A3
can be instantiated, again leading to the case that A3 defends A5 against A4. However,
here we see a mismatch: considering all arguments that can be instantiated from the
strongly accepting assumption e and the two rules leads to the set {A5} of arguments.
This set does not constitute a strongly accepting subframework when looking only at the
argument-level, since we can add A4 (and no other argument), which defeats A5.

We address strongly accepting subframeworks in terms of parts of knowledge bases
and AFs, and provide the following main contributions.

• We introduce strongly accepting sub-bases both for a general notion of structured
knowledge bases, and for the concrete example of ABA.

• We show that strongly accepting subframeworks of a corresponding AF induce
a strongly accepting sub-base on the side of the knowledge base, for a generic
structured argumentation approach.

• At the same time, as exemplified above, we show that the converse does not hold in
general, and point out that by considering “closed” AFs (containing all arguments
and attacks from base), and an adaption of strong acceptance on AFs addresses
this issue.

• We show that under mild assumptions, a strongly accepting subframework can
be bound polynomially on the argument-level in terms of the original knowledge
base. This indicates that even though AFs corresponding to a knowledge base
might be large (exponentially-sized), a “witness” for acceptability can be bound
polynomially in size.

2. Preliminaries

Abstract Argumentation. We fix a non-finite background set U . An argumentation
framework (AF) [13] is a directed graph F = (A,R) where A ⊆ U represents a set of
arguments and R ⊆ A×A models attacks between them. Let F be the set of all AFs over
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U . For two arguments x,y ∈ A, if (x,y) ∈ R we say that x attacks y as well as x attacks
(the set) E given that y ∈ E ⊆ A. A set E ⊆ A attacks a ∈ A if ∃b ∈ E with (b,a) ∈ R. We
let E+

F = {x ∈ A | E attacks x} for a set E ⊆ A. For two AFs F = (A,R) and G = (B,S)
we define the ⊆ relation component-wise, i.e. F ⊆ G if A ⊆ B and R ⊆ S.

A set E ⊆ A is conflict-free in F iff for no x,y ∈ E, (x,y) ∈ R. We say E defends
an argument x if E attacks each attacker of x. A conflict-free set E is admissible in F
(E ∈ ad(F)) iff it defends all its elements. Given an AF F = (A,R) a semantics σ returns
a set of subsets of A. These subsets are called σ -extensions. In this paper we consider
so-called complete, grounded, preferred, and stable semantics (abbr. co, gr, pr, stb).

Definition 1. Let F = (A,R) be an AF and E ∈ ad(F).

• E ∈ co(F) iff E contains all arguments it defends;
• E ∈ gr(F) iff E is ⊆-minimal in co(F);
• E ∈ pr(F) iff E is ⊆-maximal in co(F);
• E ∈ stb(F) iff E+ = A\E.

Assumption-based Argumentation. We assume a deductive system (L ,R), where L
is a formal language, i.e. a set of sentences, and R is a set of inference rules over L .
A rule r ∈ R has the form a0 ← a1, . . . ,an with ai ∈ L . We denote the head of r by
head(r) = a0 and the (possibly empty) body of r with body(r) = {a1, . . . ,an}.

Definition 2. An ABA framework is a tuple (L ,R,A , ), where (L ,R) is a deductive
system, A ⊆ L a non-empty set of assumptions, and a contrary function : A → L .

Assumption 1. In this work, we focus on ABA frameworks which are flat, i.e., for each
rule r ∈ R, head(r) /∈ A (no assumption can be derived), and finite, i.e., L , R, A are
finite; moreover, each rule is stated explicitly (given as input).

Given an ABA framework D = (L ,R,A , ), a tree-based argument is a finite la-
beled rooted tree t, also denoted by A �R′ p with A ⊆A , R′ ⊆R, and p ∈L , s.t. the root
is labeled with p. Moreover, each leaf is labeled by an assumption a ∈ A or a dedicated
symbol 	 /∈ L . The set of all labels of leaves is A, and each internal node is labeled
with the head of a rule r ∈ R′ s.t. the set of labels of children of this node is equal to the
body of r or 	 if the body is empty. For each r ∈ R′ there must be such a corresponding
internal node. We write A � p if there is some R′ ⊆ R s.t. A �R′ p. An ABA framework
induces an AF as follows.

Definition 3. The associated AF FD = (A,R) of an ABA D = (L ,R,A , ) is given by
A = {S � p | ∃R′ ⊆ R : S �R′ p} and attack relation (S � p,S′ � p′) ∈ R iff p ∈ S′.

Semantics of ABA frameworks can then be direct taken as σ -extensions of the as-
sociated AFs.

Notion of Credulous Acceptance As for acceptance, we consider credulous acceptance.
Given an ABA framework and a semantics σ , an atom p ∈ L is (credulously) accepted
under σ if there is a σ -extension on the associated AF with an argument A � p in the
extension. When looking only at the argument-level, an atom is, likewise, (credulously)
accepted if there is a σ -extension concluding the atom. Formally, we let crdσ (F) =
⋃

E∈σ(F) conc(E) for a semantics σ and AF F , and with conc(E)= {p | (A� p)∈E} (i.e.,
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collecting all conclusions of arguments). For an ABA framework D and its associated
AF FD, we let crdσ (D) = crdσ (FD), i.e. the semantics of ABA frameworks is defined via
AF instantiation.

3. A General View on Structured Argumentation

Before delving into defining the notion of strongly accepting subframeworks on ABA, we
first define a general view on structured argumentation in order to broaden our scope. We
consider a general approach to structured argumentation formalisms in line with ABA.
For our purposes, three ingredients are important:

• a definition of structured knowledge bases,
• a translation to AFs,
• a function extracting components of the knowledge base from an instantiated AF.

Formally, a knowledge base is an (abstract) structure B which we simply define as
a set for ease of presentation. That is, B can be seen as a set composed of ingredients
making up the knowledge base. By definition of sets, we arrive at sub-bases by referring
to the ⊆ relation. For instance, /0 is the empty knowledge base. Given a knowledge base,
we need a function that instantiates the knowledge base as an AF. We denote this func-
tion as af . We also consider a function extracting a knowledge base (back) from an AF,
denoted by kb. These mappings af and kb were used in a similar fashion before [12], but
not presented in the same depth and not connected to strong acceptance.

Definition 4. A knowledge base is a set B. Define the mapping af : 2B → F. We define
FB = {F | F ⊆ af (B)} as the set of sub-frameworks of the AF instantiated from B.

In order to apply our general definitions to ABA frameworks D, we identify D =
(L ,R,A , ) with the set R∪A of rules and assumptions. Recall that each ABA frame-
work D induces an associated AF FD as defined above. We can thus apply our general
proposal to ABA in a naturally way by letting af ABA(D) :=FD. Given a fixed ABA frame-
work D, the mapping af ABA : 2D → F formalizes all conceivable possibilities to instanti-
ate D using only a subset of the rules and assumptions. Thereby, we will sometimes work
with a technically different ABA framework containing fewer assumptions. With a little
notational abuse, we always assume that the contrary function is suitably restricted to
the considered set of assumptions.

Example 2. In this example, we extend the ABA framework from our motivating example
D = (L ,R,A , ), i.e. we have A = {a,b,c,d,e}, c = b as well as a = b and rules

p ← e. e ← c,d. d ← c. p ← r.

where “p ← r.” is a novel rule which is not applicable. For brevity, we use d and e to
mean fresh symbols without explicating them. The mapping af ABA applied to D returns
the argumentation framework depicted in Figure 1. If we restrict R to the set of rules
{(p ← e.), (d ← c.)} and A to {c,d,e}, then the corresponding AF is the sub-graph
consisting of A3, A5, A6, A7, and A8:
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For the usual instantiation procedures known from the literature, not every AF F ∈
FB corresponds directly to some subset of the knowledge base. Consider e.g. our running
example. There is no subset of R ∪A resulting in the AF containing the argument A5
only since constructing A5 requires assumption e which would induce A8 as well.

Moving from a knowledge base to an induced AF is a standard procedure in struc-
tured argumentation formalisms. For our investigation, we need to connect AFs and
structured bases in both directions. Therefore, we require a formal tool to extract (parts
of) the given knowledge base from (parts of) the instantiated AF.

Definition 5. Let B be a knowledge base. Define the mapping kb : FB → 2B.

That is, for a knowledge base B, each sub-framework F ∈ FB is mapped to some
subset kb(F) = B′ ⊆ B of the original knowledge base. Intuitively, one may e.g. think
of those parts of the knowledge base which are necessary to construct the arguments
occurring in F .

As we already mentioned, not every AF F ∈ FB is induced by some B′ ⊆ B. There-
fore, it holds that af and kb are in general not inverse to each other. However, for some of
our technical results we require the two mappings to correspond to each other in a certain
sense. As already mentioned, the intuitive idea is that when considering a sub-framework
F ∈ F, in kb(F) we collect all components of the knowledge base which are necessary to
construct F . If we then apply af again obtaining af (kb(F)), we expect F (and potentially
further arguments) to be constructible again, for otherwise our selected components in
kb(F) would not suffice for our intended purpose.

Definition 6. Let B be a knowledge base. We call af and kb well-behaved if for all F ∈FB
it holds that F ⊆ af (kb(F)).

An illustration of this notion is depicted in Figure 2. Inspecting the relationship F ⊆
af (kb(F)) reveals that if this inclusion is proper, i.e., F � af (kb(F)), we find a kind of
(apparent) “closure” operator, i.e. the composition of af and kb. Intuitively, if af (kb(F))
contains more arguments than F itself, then further arguments can be constructed without
the necessity to make use of additional components of the knowledge base.

Definition 7. Let B be a knowledge base. We call an AF F closed if there is some B′ ⊆ B
s.t. F = af (B′). We call af and kb strictly well-behaved if they are well behaved and in
addition F = af (kb(F)) holds for all closed AFs F.

Let us now demonstrate how we can define a natural mapping kb in the context of
ABA. The attentive reader may realize that for kb to be reasonably defined we need to
be able to extract the knowledge base from the given instantiated AF. This is possible
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Figure 2. For a given knowledge base B, function af (B) results in the associated AF of B. For an AF F that is
a sub AF of af (B), inspecting its components (kb(F)) leads to a sub part of B (potentially proper). Applying
af on the sub part may lead to a potential super framework of F (namely af (kb(F))). The composite function
af (kb(·)) can be interpreted as a closure operation.

for ABA as long as we can be sure the knowledge base D does not contain any hidden
information which is not reflected in FD.

The following notion suffices to ensure that all information included in the ABA
framework are made explicit in the selection of all arguments. It simply states that for
each atom p ∈ L , there is at least one tree-based argument inferring it.

Definition 8. We call an ABA framework D = (L ,R,A , ) trim if L = ThD(A ).

Interestingly, assuming that D is trim already suffices to rebuild the whole ABA
framework by inspecting the constructed arguments. From a technical point of view, we
want to emphasize however that in our definition of an argument, the whole tree is stored.

Proposition 1. Let D = (L ,R,A , ) be a trim ABA framework and let FD = (A,R) be
the associated AF. Then

• L is the union of all labels of roots occurring in A,
• A is the union of all labels of leaves except 	 occurring in A,
• a0 ← a1, . . . ,an ∈ R iff there is some t ∈ A s.t. a0 is a label of a node in t and its

children are labeled a1, . . . ,an.

Proof. (L ) We have
⋃

t∈A root(t)= ThD(A )=L where the first “=” holds by definition
and the second since D is trim.

(A ) We show
⋃

t∈A leaves(t) \ {	} = A . The inclusion ⊆ is clear. For the other
direction note that each assumption a ∈ A induces a tree-based argument {a} � a.

(R) The (⇐)-direction follow from the way argument trees are constructed. Re-
garding (⇒) let r = a0 ← a1, . . . ,an ∈R. Since D is trim, there are tree-based arguments
t1, . . . , tn ∈ A with root(ti) = ai for 1 ≤ i ≤ n. Therefore, there is a tree-based argument t
stemming from t1, . . . , tn and the rule r, i.e. t ∈ A s.t. root(t) = a0 and the children of the
root are labeled with a1, . . . ,an.

Inspired by Proposition 1, for a given AF F we let kbABA(F) be the set R ∪A of
rules and assumptions as described in the proposition, i.e. a0 ← a1, . . . ,an ∈ kbABA(F) iff
there is some t ∈ A s.t. a0 is a label of a node in t and its children are labeled a1, . . . ,an;
a ∈ kbABA(F) iff a �=	 and there is some leave labelled a. With a little notational abuse
we denote the induced ABA framework with (L ,kbABA(FD), ).

Interestingly, D does not need to be trim in order to find all the necessary components
of the knowledge base, since we can simply ignore rules which are not applicable. In
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the following we establish that af ABA and kbABA are strictly well-behaved, even without
restricting our attention to trim ABA frameworks.

Proposition 2. Let D = (L ,R,A , ) be an ABA framework and let D′ be induced by
kbABA(F), i.e. D′ = (L ,kbABA(FD), ). Then FD = FD′ .

Proof. Set FD = (A,R) and FD′ = (A′,R′). We have kbABA(D)⊆R∪A (part of the proof
of Proposition 1 which does not require D to be trim). Moreover, kbABA(D)∩A = A
is clear since each assumption induces some argument. By definition of the instantiation
procedure, FD′ ⊆ FD. Since attacks are uniquely determined by the tree-based arguments,
it suffices to show that A ⊆ A′.

Suppose the contrary, i.e. take t ∈ A\A′. Without loss of generality, assume that each
proper sub-argument in t occurs in A′. Since D and D′ share the same assumptions, the
root label of t is no assumption, say a0. Let a1, . . . ,an be the label of the children. By
definition a0 ← a1, . . . ,an ∈ kbABA(D) and hence t ∈ A′; contradiction.

Example 3. For D with the AF FD from Example 2, kbABA(FD) consists of the rules

p ← e. e ← c,d. d ← c.

and assumptions A = {a,b,c,d,e} which can be extracted from the tree-based instan-
tiated arguments occurring in the AF (see Figure 1); the dummy rule “p ← r.” is lost.
Nonetheless, af ABA(kbABA(FD)) = FD.

Consider an AF F ′ consisting only of argument A5 (with assumption e and rule
p ← e). This AF is not closed. It holds that F ′ � af ABA(kbABA(F ′)) = F ′′ with F ′′ having
the two arguments A5 and A8. Confirming our intuition, F ′′ is now closed.

Corollary 1. The mappings af ABA and kbABA are strictly well-behaved.

We now have settled the syntax of our approach. Regarding the semantics, let us
consider a generic mapping acc that returns for both knowledge bases and AFs a set of
“accepted” atoms.

Definition 9. The mappings acc and af are called compatible if it holds that a ∈ acc(B)
iff a ∈ acc(af (B)) for each knowledge base B.

Intuitively, compatibility simply states that when instantiating a knowledge base, the
corresponding semantics are preserved. It is well-known that this is the case for ABA.

Proposition 3. For the ABA and AF semantics we consider, crdσ and af ABA are compat-
ible (for fixed L , and ).

We remark that our general view and the condition of af and kb being well-behaved
(F ⊆ af (kb(F))) have a certain relation to Galois connections. Highlighting only the
essential, if kb(F)⊆ B implies F ⊆ af (B) (*), one can show that F ⊆ af (kb(F)) follows.
Condition (*) can be seen as “one direction” of the requirement for Galois connections.
Intuitively, condition (*) appears plausible for structured argumentation: if B contains all
ingredients to instantiate F , then af (B) should contain all of F , as well.

Proposition 4. If kb(F)⊆ B implies F ⊆ af (B), it holds that F ⊆ af (kb(F)).

Proof. By definition, kb(F)⊆ kb(F) holds and F ⊆ af (kb(F)) holds by assumption.
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4. Strongly Accepting Subframeworks

Next we discuss our notion of strong acceptance, utilizing earlier works [8,10].

4.1. Basic Definitions

The idea behind a strongly accepting sub-framework is that one aims to find a
sub-framework B′ ⊆ B accepting a certain atom (argument), but accounts for non-
monotonicity by requiring that this property survives moving to supersets of B′ within B.
We first define this idea on knowledge bases.

Definition 10. Let B a knowledge base. A set B′ ⊆ B strongly accepts a if a ∈ acc(B′′)
for all B′′ such that B′ ⊆ B′′ ⊆ B.

As mentioned earlier, strong acceptance can be defined on AFs [8,10].

Definition 11. Let B a knowledge base and F = af (B). A sub-AF F ′ ∈ FB strongly
accepts a if a ∈ acc(F ′′) for all F ′′ such that F ′ ⊆ F ′′ ⊆ F.

Example 4. Consider our running Example 2. As we already discussed in the introduc-
tion, the sub-AF consisting of {A3,A5} strongly accepts A5 (and hence the atom p). From
the point of view of the knowledge base, we require the assumptions A ′ = {c,e} and
rules R ′ = {(d̄ ← c,e.),(p ← e.)} to construct these arguments. The reader may verify
that indeed, A ′ ∪R ′ strongly accepts p (note that this is a superset to the one discussed
in the introduction; we come back to a smaller one below).

The observation we made in the previous example is no coincidence: given a
strongly accepting sub-graph of af ABA(B), under mild conditions we can find a strongly
accepting subset of B by applying the mapping kbABA. The following proposition formal-
izes this result.

Proposition 5. Let B be a knowledge base, and F ′ ∈ FB. Suppose af is ⊆-monotone, and
af , kb, and acc are well-behaved and compatible. If F ′ strongly accepts a, then kb(F ′)
strongly accepts a.

Proof. Assume that F ′ strongly accepts a and kb(F ′) = B′ does not. Then there is a B′′
with B′ ⊆ B′′ ⊆ B with a /∈ acc(B′′). It holds that af (B′) ⊆ af (B′′) (by monotonicity of
af ) and F ′ ⊆ af (kb(F ′)) (by af and kb being well-behaved). Then F ′ ⊆ af (kb(F ′)) =
af (B′) ⊆ af (B′′). Moreover, since af (B) is ⊆-maximal, it follows that F ′ ⊆ af (B′′) ⊆
af (B). By assumption that F ′ is strongly accepting a, it follows that a ∈ acc(af (B′′)),
which implies a ∈ acc(B′′), a contradiction.

The opposite direction does not hold in general, also not for concrete instantiations
(e.g., ABA and ASPIC+ [3]) as discussed partially before and more concretely in the
following counter-example.

Example 5. From our running example ABA D consider the rules R ′:

d̄ ← c. p ← e.
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and A ′ = {e}. The set D′ = A ′ ∪R ′ strongly accepts p in D which can be seen as fol-
lows. In order to prevent p from being acceptable, the argument A4 is required. However,
for this we would need to add assumptions c and d as well which in turn allows to con-
struct A3. We already know however that presence of A3 and A5 suffice to strongly accept
p. On the other hand, the AF af ABA(D

′) consists of the argument A5 from Figure 1 only
which does not suffice to strongly accept p: we can simply add A4.

However, if af is a bijection and kb its inverse, then the converse is also true.

Proposition 6. Let B a knowledge base, and F ′ ∈ FB as well as B′ ⊆ B. Suppose af and
kb are ⊆-monotone, and af , kb, and acc are compatible s.t. af : 2B → FB is a bijection
and kb = af−1. If F ′ strongly accepts a, then kb(F ′) strongly accepts a. If B′ strongly
accepts a, then af (B′) strongly accepts a.

To summarize, the notion of strong acceptance can be naturally defined for both the
AFs as well as the underlying knowledge base. Since not every AF F ∈ FB is induced
by some subset of the knowledge base B, it is in general not true that strong acceptance
is preserved when applying af resp. kb. However, as formalized by Proposition 5, under
mild conditions it can be translated back from the AF to the knowledge base. As our
results regarding ABA demonstrate, the preconditions for Proposition 5 hold for ABA.

If one restricts strong acceptance on the AF side to only closed AFs in FB, in addition
to having af being a bijective with kb its inverse, we can apply Proposition 6 to conclude
that strong acceptance transfers in both ways.

4.2. Strong Acceptance and Size of Subframeworks

In the general case, an associated AF may not be small w.r.t. the structured knowledge
base it was instantiated from. For instance, an AF associated to an ABA framework may
be exponential in size [14] (the example given there applies to ABA as well). Neverthe-
less, as we show, in many cases one can bound strongly accepting subframeworks both
on the knowledge base and argument level.

To formalize this idea, we will make use of claim-augmented AFs (CAFs) [15]. A
CAF is a triple F = (A,R,cl) where F = (A,R) is an AF and cl : A → C assigns a claim
c ∈C to each argument in A; C is a countably-infinite set. We let cl(E) = {cl(e) | e ∈ E}
for a set E of arguments. In the literature, semantics for CAFs have been introduced and
formally investigated, but we are only interested in the claims as additional information.
We thus let σ(F ) = σ(F) for each semantics σ considered in this paper. We assume
that our mappings af , kb, and acc naturally extend to CAFs.

Example 6. Our running example ABA frameworks yields a CAF F = (A,R,cl) where
the underlying F = (A,R) corresponds to the AF from Figure 1. Claims of arguments
correspond to their conclusions, i.e. we let cl(A3) = d̄ and analogously for the other Ai.

When constructing arguments corresponding to an ABA framework D, out-going
attacks are naturally characterized by the conclusions of an argument. Viewing the AF as
a CAF by defining cl as shown above, this procedure yields a well-formed CAF. In the
following, we assume that the CAFs we work with possess this feature.

Assumption 2. For a given KB B, af (B) = F = (A,R,cl) is well-formed in the sense
that cl(a) = cl(b) implies a+ = b+ for each argument a,b ∈ A.
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We remark that this assumption holds for many structured argumentation ap-
proaches, such as ABA, but not all: in case of preferential approaches (e.g., ASPIC+ [3])
one can find counterexamples. We make use of one additional technical assumption that
holds for several structured argumentation formalisms.

Assumption 3. For a given KB B, it holds that the set of claims in af (B) is bounded
polynomially by |B|.

This assumption does not hold, e.g., if there is an underlying logic or deductive
system of a knowledge base which gives rise to claims not present in original knowledge
base (e.g., if a leads to a∨b leads to a∨b∨ c, ...). Observe however that for our running
example of non-preferential ABA instantiations, we have |cl(A)| ≤ |L | and for each
framework D, FD is well-formed.

In the following, we will show that any strongly accepting sub-framework can be
reduced to at most |C| arguments, where C is the set of claims occurring in F . The crucial
observation is formalized in the following theorem. It states an admissible extension
E ∈ ad(F) with more than |C| claims can be reduced in size. The proof proceeds by
removing arguments which do not contribute any novel claim.

Theorem 1. Let F = (A,R,cl) be well-formed, a ∈ A, and the set of claims C = cl(A)
of F finite. If a set of arguments E is admissible in F and contains a, then there exists
an admissible set E ′ with a ∈ E ′ and |E ′| ≤ |C|.
Proof. Let E be admissible in F and a ∈ E. If |E| � |C| then there is a claim α ∈ C
such that more than one argument in E has claim α . Pick any a ∈ E with claim(a) = α .
We claim that E ′ = E \ {x ∈ E | claim(x) = α ,x �= a} is admissible in F . It holds that
E ′ is conflict-free (since conflict-freeness holds for any subset of a conflict-free set).
Suppose there is a b ∈ E ′ such that there is a c ∈ A with (c,b) ∈ R and there is no
d ∈ E ′ with (d,c) ∈ R. Since E ′ ⊆ E it holds that b ∈ E. Since E is admissible there
is a d′ ∈ E such that (d,c) ∈ R. Since d′ ∈ E \E ′, by construction of E ′, it holds that
claim(d′) = α = claim(a). By well-formedness, it holds that (a,c) ∈ R, contradicting
the assumption that b is not defended by E ′. We conclude that E ′ is admissible in F .
Define C′ ⊆C as the set of claims of arguments in E. Finally, pick for each claim α ∈C′
an argument xα ∈ E with the exception that aα is chosen for the claim of a, and set
E∗ = {xα | xα ∈ E,α ∈ C′}. By the statements above it holds that E∗ is admissible and
contains a. By construction, there is exactly one argument per claim in C′.

For the other semantics σ ∈ {co,gr,pr,stb} we might move to a superset in order
to fulfill the semantic-specific requirements, but we can be sure that an admissible set of
small size can be extended in a suitable way.

Corollary 2. Let F = (A,R,cl) be well-formed, a ∈ A, and the set of claims C = cl(A)
of F finite. Let σ ∈ {co,gr,pr,stb}. If E ∈ σ(F), then there is some E0 ∈ ad(F) with
|E0| ≤ |C| and E0 ⊆ E.

Since extensions induce strongly accepting subsets as formalized in [8] we can now
infer that the size of such subsets can be trimmed down to size of at most |C| arguments.

Corollary 3. Let F = (A,R,cl) be well-formed, a ∈ A, and the set of claims C = cl(A)
of F finite. Let σ ∈ {co,gr,pr,stb}. If there is a strongly accepting sub-framework for a,
then here is also a strongly accepting sub-framework containing at most |C| arguments.
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5. Conclusions

In this paper we revisited strongly accepting subframeworks [10,8,9] (see also [16]),
and investigated their connection to structured argumentation frameworks. Based on a
generic notion of such structured frameworks, we showed that strongly accepting sub-
frameworks are applicable and generalizable from abstract AFs to structured frame-
works, with the concrete formalism ABA being presented here. There is an apparent mis-
match between notions on the abstract and structured level, but which can be addressed
with careful consideration of, e.g., closed AFs. Moreover, we considered properties con-
necting to strongly accepting frameworks, in particular we showed that such strongly ac-
cepting subframeworks can be bounded polynomially, even if a “full” AF is not bounded
polynomially, indicating that notions supporting explanations, based on strongly accept-
ing subframeworks, exhibit interesting size bounds, and open up further investigation.

The most apparent future work directions include the investigation of other concrete
structured argumentation formalisms and finding natural and mild conditions ensuring
the converse of Proposition 5. Moreover, studying relations to other forms explainability
is an intriguing avenue of future research.
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