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1. Introduction

Classical argumentation semantics [1] determine which arguments of a given argumenta-
tion framework (AF) are considered to be jointly acceptable in light of the AF’s attack re-
lation. A collection of such compatible arguments is called an extension; thus semantics
can be seen as functions that associate AFs with sets of extensions. Recently, abstract ar-
gumentation has been lifted into probabilistic settings to allow modelling of uncertainty,
beliefs, and other quantitative aspects, giving rise to various probabilistic argumentation
semantics. These include semantics working on the marginal probabilities of single ar-
guments [2], notions to capture admissibility and complete semantics in the probabilistic
setting [3], and direct liftings on the level of extensions of classical semantics [4].

For a given AF, a probabilistic semantics induces a family of probability distribu-
tions over the AF’s extensions. Notably, while there is only a finite number of possible
extensions for finite argumentation graphs, the space of distributions over extensions is
infinite. As a result, reasoning problems for probabilistic semantics come with additional
challenges of representing and enumerating solutions.

CPrAA2 is a Python tool developed in the context of [3] that is capable of solv-
ing common reasoning problems in the probabilistic setting. Given an AF as input and
selecting one or multiple probabilistic semantics from [2,3,4], the tool can

• compute distributions satisfying the semantics’ constraints, or get an assertion that
no such distribution exists,

• check credulous and skeptical acceptance of single arguments in the AF under
a given threshold (see [3]), i.e., verify whether the marginal probability of the
argument exceeds the threshold for at least one, or, respectively, all distributions,

• find a distribution under which the marginal probability of a given argument is
maximal (or minimal),

• enumerate infinite solution spaces by finding the distributions at corners of solu-
tion polytopes,

• utilize a number of labelling schemes [5] to yield the finite set of all labellings
corresponding to the (potentially infinitely many) distributions.
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2. Tool Architecture

Based on the input AF, the selected semantics, and the chosen task, CPrAA generates a
set of constraints on distributions for the AF. Subsequently, the constraints are passed to
an appropriate backend solver, with two general classes of solvers available.

First, linear solvers (via CVXOPT [6]) are applicable for semantics where all in-
duced constraints are linear, which is the case for the majority of semantics taken from
the literature (see [3] for details). They allow convex optimization tasks like the mini-
mization or maximization of marginal probabilities mentioned above. Linear constraints
further imply that the solution space forms a convex polytope. By enumerating the dis-
tributions found at the corners of the polytope, one yields an explicit representation of
the solution space: all distributions within this space arise as convex combination of the
corner distributions.

Second, SMT solvers like Z3 [7] cover all probabilistic semantics characterized by
polynomial constraints. This includes not only all semantics from [2,3,4], but also their
respective complement semantics, that is, a semantics inducing exactly those distribu-
tions not induced by the original semantics. Further, they allow enforcement of additional
context-specific constraints by using the standard SMT-LIB format [8], e.g., to specify
the conditional probability for an argument to be accepted given that certain other ar-
guments are not accepted. In addition to Z3, all SMT solvers available via the pySMT
interface [9] can be used as backend.

The tool comes with a rich command line interface for direct interaction and can
also be included as a Python library in other projects. Due to the constraint-based design,
extending CPrAA with new probabilistic semantics for AFs is straightforward.
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