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Abstract. Explainable Al consists in developing models allowing interaction be-
tween decision systems and humans by making the decisions understandable. We
propose a case study for skin lesion diagnosis showing how it is possible to provide
explanations of the decisions of deep neural network trained to label skin lesions.
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1. Introduction

Al based decision support systems have a huge impact in different domains, providing
high accuracy predictions and recommendations. Their adoption in high-stake scenarios
has raised concerns about the fairness, bias, transparency and dependable decisions taken
on the basis of Al suggestions [1]. These concerns are relevant in domains like health-
care: image classification can be applied for purposes ranging from heart disease diag-
nosis to skin cancer detection [2—4]. Machine learning models are typically black boxes
hiding the rationale of their behavior, for this reason, research on black box explanation
has received much attention [5-8]. Our solution [9] is based on the local model-agnostic
method ABELE. The approach is proved on a classification model for the ISIC 2019 Chal-
lenge and consists of two modules: (i) a CNN model to classify skin lesion images; (ii)
an explainer that exploits Adversarial AutoEncoder (AAE) to produce images for the ex-
planation. Since it is crucial to have a wide catalog of instances, we developed a progres-
sive growing AAE to maximize the diversification of the generated images. Accurately
designing the AAE is crucial for obtaining an explanation based on realistic images.

2. ABELE explainer

The Adversarial Black box Explainer generating Latent Exemplars (ABELE) is a local
model agnostic explainer for image classifiers [11]. The explanation is composed of (i) a
set of exemplars and counter-exemplars, instances classified with same or different out-
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Figure 1. ABELE graphic explanation of a Melanocytic nevus.

come of a given image, (ii) a saliency map that highlights areas that contribute to the
classification and areas that push it toward another class. First, ABELE generates a neigh-
borhood exploiting an AAE [12], then it learns a decision tree on the latent neighborhood
providing local decision and counterfactual rules [14], and finally selects and decodes
exemplars and counter-exemplars, extracting a saliency map.

3. Case Study

ISIC 2019 is a challenge proposed by the International Skin Imaging Collaboration. The
goal is to classify dermoscopic images among different categories. For the classification,
we used a classical ResNet, pretrained on Imagenet and fine tuned on ISIC dataset.

We implemented a collection of techniques for successfully training an AAE. Pro-
gressive Growing GANs [19] have been introduced to achieve a stable training of gener-
ative models. We propose a Progressive Growing AAE (PGAAE): starting with a single
block of layers for the generating network we reconstruct low resolution images, then we
increase the number of blocks until the network manages images of the desired size.

Denoising autoencoders [20] are a stochastic version which randomly corrupt input
image and are proved to learn more robust representations. We augment our PGAAE
with noise injection applied to both generator and discriminator. Mini Batch Discrimina-
tion [16] is a technique that mitigates collapse of the generator network. Such technique
along with the progressive growing structure, helped to avoid the mode collapse .

4. Explanations

The outcome is a compact interface: 1) the original image and the predicted label; 2) a
map that emphasizes areas that had a positive or negative contribution to the classifica-
tion; 3) a set of synthetic prototypes that are classified with the same or different class of
the input. Fig. 1 shows a sample explanation. From the map the user can evaluate which
parts of the image were relevant for the CNN; the prototypes generated by the AAE en-
force the confidence with the black-box decision while the counterexemplar probes the
black-box result, by generating an image similar to the input but classified differently.

5. Conclusion

This work is the core of a wider system where the interaction should be further developed
by enabling an exploration of the latent space, allowing the user to ask for additional
explanations. We design a survey with experts to test different explanations features [10].
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