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Transformer language models (LMs) are state of the art in a multitude of NLP tasks.
Despite these successes, their opaqueness remains problematic, especially as the train-
ing data might be unfiltered and contain biases. As a result, ethical concerns about these
models arise, which can have a substantial negative impact on society as they get increas-
ingly integrated into our lives [1]. Therefore, it is not surprising that a growing body of
work aims to provide interpretability and explainability to black-box LMs [2]: Recent
evaluations of saliency or attribution methods [3,4] find that, while intriguing, differ-
ent methods assign importance to different inputs for the same outputs, thus encourag-
ing misinterpretation and reporting bias [5,6]. Moreover, these methods primarily focus
on post-hoc explanations of (sometimes spurious) input-output correlations. Instead, we
emphasize using (interactive) prototype networks directly incorporated into the model
architecture and hence explain the reasoning behind the network’s decisions.

Interactive Prototype Learning. In order to address the black-box character of current
LMs, we here focus on providing case-based reasoning explanations [7] during the infer-
ence process (cf. Fig. 1). We enhance the basic transformer architecture with a prototype
layer and propose Prototypical-Transformer Explanation (Proto-Trex) Networks. Proto-
Trex provides an explanation as a prototypical example for a specific model prediction,
which is similar to (training-)samples of the same label. This approach not only increases
interpretability [8] but is ideally suited for user interaction.

To enhance Proto-Trex, we propose an interactive learning setting, iProto-Trex. In
addition to simply revealing the network’s reasoning by providing prototype explana-
tions, our approach further enables users to revise the network’s explanations accord-
ing to their preferences. In this way, we use human capabilities to incorporate knowl-
edge outside of the rigid range of purely data-driven approaches. To this end, we inte-

Figure 1. Interactive prototype learning: iProto-Trex classifies the input and gives the user an explanation
based on a prototype. The user can directly, e.g., replace a given explanation with a self-chosen sequence.
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Type of interaction Acc. Prototype/ Explanation

no interaction 93.64
Horrible customer service and service does not care about safety features.
That’s all I’m going to say. Oh they also don’t care about their customers

soft replace (<1) 93.79
I really don’t recommend this place. The food is not good, service is bad.
The entertainment is so cheesy. Not good

soft replace (1) 93.79 They offer a bad service.

Table 1. Showcasing interactive prototype learning: a user manipulates a model iteratively, i.e. softly replaces
a prototype, with varying certainty. Thereby, he adapts it to his preferences without performance loss.

grate eXplanatory Interactive Learning (XIL) into prototype networks, which, in con-
trast to previous XIL methods [9], avoids tracing gradients and allows “Plug & Play”,
i.e. directly interacts on prototypes (cf. Fig 1). This combination is exciting and arguably
necessary as explanation quality is normative, and no direct optimization is available.

Language Model Yelp Movie
SBERT [10] 94.92±0.01 84.56±0.91

SBERT (Proto-Trex) 93.59±0.16 80.05±0.26

CLIP [11] 93.78±0.00 75.49±0.21

CLIP (Proto-Trex) 87.16±1.56 63.52±0.66

GPT-2 [12] 93.78±0.41 87.05±0.31

GPT-2 (Proto-Trex) 95.32±0.06 84.57±0.31

SBERT (iProto-Trex) 93.81±0.03 80.24±0.31

GPT-2 (iProto-Trex) 95.25±0.11 84.80±0.17

Table 2. Average accuracy of (i)Proto-Trex with
different LMs compared to their baselines.

In order to address suboptimal explana-
tions, user revision promotes good expla-
nation quality wrt. individual notions of
human subjects. To this end, we provide
users with several methods, including
the incorporation of strong- and weak-
knowledge, as well as user certainty, to
interact on the explanation. Users can di-
rectly replace weak prototypes, i.e. expla-
nations, or steer the model to provide bet-
ter ones, regarding their viewpoint. Interaction via explanations can be valuable already
in the model building and understanding phase, avoiding Clever-Hans moments early on,
increasing the explanation quality of the model and, in turn, user trust [13,14,15].

Results. As Tab. 2 shows and expected from the literature, interpretability comes along
with a trade-off in accuracy. Still, our first experimental results demonstrate that Proto-
Trex networks perform on par with non-interpretable baseline LMs. More importantly,
we showcase that users can interact with ease by simply manipulating the interpretable
layer, i.e. a prototype (cf. Fig. 1). In Tab. 1, a user manipulates a prototypical explanation
successively. While the accuracy remains unchanged, the user applies interactions with
different certainty levels to give feedback and manipulate the model regarding his prefer-
ences. A certainty of <1 yields a prototype close to the user preference, whereas 1 means
the user’s prototype is adopted. Interactive learning (Tab. 1) enables a loop between hu-
mans and AI, adapting the network according to user preferences of good prototypical
explanations along with high accuracy. This loop can be repeated multiple times with
different feedback methods, including different knowledge and certainty levels.

Conclusion. We introduce prototype networks for transformer LMs (Proto-Trex) to
provide explanations. Importantly, to improve prototype explanations, we provide a novel
interactive prototype learning setting (iProto-Trex) accounting for user knowledge and
certainty1. An exciting future avenue is to equip prototype networks with a more flexible
interaction policy, i.e. components beyond user certainty, to promote a greater human-AI
communication towards what might be called cooperative AI [16].
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1full paper available at arxiv.org/abs/2110.02058 and code at github.com/felifri/XAITransformer
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