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Introduction When designing human-machine interaction (HMI) systems, it is often
assumed beneficial if systems behave cooperatively towards a human operator [23,13,
2,5]. Cooperative machine behavior is assumed to lead to, for example, higher trust,
acceptance, and usability, [8,23,5], while, on the other hand, pure automation has been
criticized for leading to a lack of engagement, loss of expertise, or reduced trust on
user side [9]. It is thus hypothesized that making HMI more cooperative leads to more
satisfying and effective exchanges between machines and human users. The design of
cooperative HMI systems requires a definition of cooperative interactions. Moreover, to
be able to control, optimize, or evaluate system behavior and its effects on human users, it
is necessary to quantitatively describe cooperative interactions [17,11]. Even though the
interest in cooperative HMI [12,5,6] has significantly increased in recent years and other
disciplines such as psychology [18], biology [21,20], or game theory [19,14] have a long
tradition in researching cooperative behavior, the concept of cooperation in HMI and its
quantification stays elusive [2,22,11]. In the present work, we therefore develop a novel
definition of cooperative behavior in HMI contexts and present an approach to quantify
cooperative behavior based on this definition, using recent methods from information
theory. As a first demonstration, we successfully apply our approach to a model system
from reinforcement learning.

Methods As a first step, we propose a novel definition of cooperative behavior based on
prior work in HMI and related disciplines. As a prerequisite, our definition assumes two
or more agents with joint or individual goals, where a) a goal is reachable via subtasks
that are interdependent such that the agents have to coordinate their actions, and b) agents
commit to working jointly in a coordinated fashion [2,12,4,5,10]. Then, we define coop-
eration as a joint, coordinated activity towards solving interdependent subtasks, which
leads to a mutual facilitation of individual agents’ actions with respect to the current goal
[12,10]. To enable cooperative actions, agents have to be equipped with suitable sensors
and effectors for manipulating the environment and information sharing. Furthermore,
agents must be able to generate relevant internal representations of the environment and
other agents, from which future actions can be planned an controlled.

It is central to definitions found in literature that the joint activity strives to facilitate
individual agents’ actions towards their (sub)goals. In other words, cooperation should
lead to a synergistic effect of the joint effort towards the goal. To evaluate whether co-
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Figure 1. A) Illustration of PID framework. B) Synergy estimated from model system.

operation can indeed be identified such a synergistic effect, we propose to apply the re-
cently introduced information-theoretic framework of partial information decomposition
(PID) [24,25,3,7,15]. PID describes how two or more input variables and their interac-
tion contribute to the outcome of a target variable. The contribution can either be pro-
vided uniquely by one of the inputs, it can be redundantly shared by both inputs, or it
can be provided synergistically by both inputs, describing a contribution that is exclu-
sively provided by both inputs together and that can not be obtained from one input alone
(Figure 1A). We propose to use the synergy measure [3,16] to quantify the cooperative
contribution of two or more agents’ actions towards a common goal.

Experiments and Results As a first evaluation, we apply our definition and the proposed
measure to the level-based foraging environment [1], a 2D grid-world, in which multiple
agents and food items with different levels are placed. The agents’ goal is to collect as
many food items as possible, while an item can only be collected if an agent’s level or the
sum of the agents’ levels simultaneously collecting the item is equal or larger than the
item’s level. We set up the environment to require different levels of cooperation between
agents by setting the number of food items that could only be collected collectively, c, to
0, 20, 40, 60, 80, or 100 %, respectively. We further modified the heuristics for selecting
an agent’s next action proposed by [1] to obtain agents capable of various degrees of
cooperative and non-cooperative behavior: i) a baseline heuristic (BL) that selects the next
action at random, ii) a non-cooperative heuristic (Ego) that always goes to the closest
visible food and tries to collect it irrespective of its level, iii) a cooperative heuristic
(Coop) implementing our cooperation definition that targets the food that is closest to the
center of all agents and that is compatible with the agents’ summed level. To quantify
the degree of cooperation, we estimated the synergy between the two agents’ actions as
input variables, and the current sum of collected food items as target variable. We use the
measure proposed in [3] and implemented in [16]. As hypothesized, cooperative behavior
was reflected by a high synergistic contribution of agents’actions towards the target. We
found that synergy was significantly higher for the Coop than for both baseline heuristics,
and that the difference was more pronounced in cooperative environments (Figure 1B).

Conclusion We introduced a novel framework for quantifying cooperative behavior us-
ing recent methods from information theory. Our approach is scenario agnostic, and does
not require a-priori knowledge of possible agent strategies or behaviors. The approach
makes only mild assumptions about data observable from the interaction such that we
believe it to be applicable to a wide range of scenarios. We successfully demonstrate a
first application in a model system were we find a clear distinction between coopera-
tive and non-cooperative agent behaviors by the proposed measure. Evaluations in more
complex scenarios, ideally involving human agents, will be subject to future work.
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