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Abstract. Several factors can contribute to the final part quality in a High Pressure 
Die Casting process, in terms of roughness, porosity and strength. The injection 
velocity, the cooling of the die and aluminium’s inlet temperature are some of the 
factors that can have a higher effect on the part quality. The new advances on process 
digitalization, sensortization and simulation tools, combined with artificial 
intelligence techniques allow developing a functional Digital Twin aimed to monitor 
in near real time the evolution of the temperature and pressure during the production 
cycle to detect possible anomalies and predict the final part properties, reducing the 
required quality control. 
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1. Introduction 

The concept of Digital Twin (DT) appeared for the first time in 2002 in the context of 
product lifecycle management [1]. A DT is defined as a digital mirror of a physical 
system created from real data which includes algorithms and decision making [2]. In this 
sense, a Digital Twin must involve three main features: real system, virtual modelling of 
the system (including visualization tools and algorithms), and bidirectional 
communication between the real system and the virtual model. 

The use of solutions based on artificial intelligence (AI) is increasing due to the need 
to solve complex problems that are too difficult to address with conventional analytic 
tools. A DT, which can combine complex AI-based algorithms, together with analytic 
and visualization tools, can be applied in several environments. For instance, DTs are 
being applied to jet engines in the aeronautic sector to ensure an optimal predictive 
maintenance strategy and to evaluate the behaviour of the monitored asset in front of 
unexpected events and different climate conditions [3]. In the automotive sector a DT 
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can be applied to crash tests and to improve autonomous driving [4]. In logistics and 
value chain control, a full production plant can be represented by a DT used to optimize 
the productivity [5], check the process quality, improve energy efficiency, and do 
demand prediction including several external variables such as natural disasters, 
pandemics, and political conflicts. More recently, the use of DT is being applied to 
control and improve the efficiency of electric batteries [6] and could be also very useful 
to control smart cities as they can analyse and predict the traffic state, the weather, and 
the electric demand on buildings through machine learning algorithms among other 
features [7]. 

This paper explains the ongoing work on the design and development of a Digital 
Twin for the High Pressure Die Casting process (HPDC) with AlSi8Cu3 performed in the 
Eurecat premises. 

2. Methods 

To set up the Digital Twin of the HPDC process it is required to obtain experimental data 
from the manufacturing process (machine, die, sensors) and send this data to a digital 
platform, where simulations-based and AI-based models can be applied, show visual 
information for supporting decision making, and return information/commands to the 
shopfloor. The data acquisition of the process is done by three sensors (two pressure 
sensors and one temperature sensor) placed in the inner side of the die where the part is 
casted. The plunger position and velocity, which control the injection process, are also 
registered. The sensors placed in the die and in the injection machine (Bühler Evolution 
53D) send the information to an industrial PC via OPC, to be then ingested by the DT 
platform.  

The near real time data visualization in this DT is done in 4D, showing the surface 
evolution of the temperature/pressure as function of time. To obtain a 4D representation 
of the process it is required to calculate previously a set of similar configurations by 
numerical simulation in InspireCAST. Considering the geometry of the part the injection 
process is simulated. Matching the real temperature and pressure from the sensors with 
the simulated ones, a data driven calibration can be established to generate all the 
simulated sample grid. The simulations provide relevant information of the injection 
process, such as temperature and pressure as function of time and the final porosity of 
the sample (part quality indicator). Despite the expensive computational time of these 
simulations, AI algorithms can be combined with simulations and experimental tests to 
provide accurate results in a very reduced time window.  

To create the DT of the HPDC process, four AI-driven models are considered: 
anomaly detection, virtual sensors, quality prediction and process configuration 
prediction. The anomaly detection is performed by means of an unsupervised Isolation 
Forest model considering a 3% of outlier factor, which checks the goodness of each new 
cycle data. A Virtual Sensor (VS) is able to reproduce the trend of a real sensor 
(temperature or pressure in this case) through correlations with other parameters, and 
then reduces the need (and the cost) of using real sensors. Extra Trees Regressor [8], 
Random-Forest Regressor [9], and Support Vector Machine Regressor [10] algorithms 
with different combinations of hyperparameters have been tested. For quality and process 
configuration prediction multi-class classification algorithms are used. The aim of the 
quality prediction is to determine the quality of the sample, which is tagged by visual 
inspection of the expert operator from 1 to 4, being 4 the best quality. The process 
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configuration algorithm is developed to predict the configuration of the process 
(injection velocities v1 and v2, and aluminum inlet temperature) from the sensor’s 
information. Extra Trees Classifier, Random Forest Classifier and Gradient Boosting 
Classifier [11] algorithms have been tested in both cases. For all the models 80% of 
samples are used for training and 20% for test. 

3. Results and discussion 

The DT of the HPDC process is created with the AI-based algorithms showing a lower 
root mean squared error (RMSE) and higher accuracy score. Considering all the features 
extracted from the sensor’s information, the Maximum Information Coefficient (MIC) is 
calculated, which expresses the correlation of the different parameters with the target. 
Table 1 shows the MIC for the sample quality and process configuration. 
 

 
Figure 1. a) Anomaly detection prediction. b) Virtual sensor of Temperature. Confusion matrix for 

configuration prediction (c) and quality level (d). 

 
For anomaly detection, the current developed algorithm has a score of 84%. As it 

can be observed in Figure 1a, there is a big cluster in the top right side that corresponds 
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to the parts without die refrigeration and with a quality of 3 and 4. The other spread 
samples correspond to samples with die refrigeration, which have a quality of 1 and 2. 
Although the samples are spared, a small cluster is observed and therefore the algorithm 
does not detect them as anomaly. 

For the part temperature VS, the most relevant parameters are the pressure of sensor 
1 (MIC = 0.92), the injection velocity (MIC = 0.84), and the plunger position (MIC = 
0.79). Using these variables as input, the predictions with lowest RMSE (6ºC) are found 
for the Random Forest Regressor. Figure 1b shows the prediction of the RFR compared 
with the real experimental data, where it can be observed that although there is some 
noise in the initial flat zone and during the cooling, the overall prediction reproduces the 
sensor’s data. 

Table 1. Higher correlations of the sample quality process configuration 

Quality Configuration 
Variable MIC Variable MIC 

Temperature increase 0.81 Initial Temperature 0.87 
Max. Temperature 0.76 Max. Pressure 1 0.84 
Initial Temperature 0.74 Pressure 1 increase 0.83 
Cooling exponent 0.66 Max. Temperature 0.74 

 
To predict the sample quality, the temperature increase experienced by the matrix is 

the most important parameter, while to predict the configuration of the sample the initial 
temperature, the maximum pressure and the pressure increase (at sensor 1) are the key 
factors. Based on Table 1, Figure 1c and Figure 1d show the results obtained for 
configuration and quality prediction, showing a score of 89.5% for the configuration 
(Figure 1c) and 68% for the quality (Figure 1d). Notice that although the score for quality 
prediction is lower, the error is limited to adjacent values (similar qualities).  

4. Conclusions 

In this work the preliminary results of the ongoing DT development of the HPCS process 
implemented at Eurecat’s Laboratory facilities are presented. The methodology 
developed in this project is done in a way that can be extended to other industrial 
processes with minor modifications of the pipeline. The results show that the AI-based 
models can predict with high accuracy some process features like the produced part 
quality and estimate the process configuration parameters from few sensor’s information. 
In addition, a temperature virtual sensor can be obtained from training regressors with 
the information of pressure of the die, injection velocity and plunger position. In the same 
way, the pressure of the die can be obtained from the temperature and the other two 
parameters. 

The next steps will focus on improving of the prediction models to enable predictive 
maintenance solutions, and to extend the testing of the algorithms with different sample 
geometries and other aluminium alloys. 
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