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Abstract. In [1], Newman et al. introduced the Reduced Mutual Information
(RMI), a measure of the similarity between two partitions of a set useful in clus-
tering and community detection. The computation of RMI requires counting the
amount of contingency tables with fixed row and column sums, a #P-complete
problem, for which the authors suggest to use analytical approximations that work
in general, but for other not so pathological cases these give highly inaccurate ap-
proximations. We propose a hybrid scheme based on combining existing Markov
chain Monte Carlo methods with analytical approximations to make more accurate
estimates of the number of contingency tables in all cases.
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1. Introduction

The computation or approximation of the number of contingency tables with fixed row
and column sums is a necessary step for the computation of Reduced Mutual Information
(RMI). This is a #P-complete problem (see e.g. [2]), so we don’t have any algorithm to
perform the exact computation efficiently, which rules it out for even moderately sized
networks. When introducing the RMI [1], Newman et al. suggest using analytical ap-
proximations, but they have important limitations. Particularly, they don’t give accurate
results when row and column sums contain numerous small elements (instead, the ap-
proximation is accurate when the contingency tables are very dense). On the other hand,
it is possible to use a Markov chain Monte Carlo method, as described in section 2 , but
it is much slower to compute. The idea behind our approach is to separate the part of the
table for which the analytical formula is accurate, and use that to then obtain the result
with fewer steps of the Monte Carlo method.

Reduced Mutual Information. Given r and s two labelings of a set of n elements,
the Reduced Mutual Information is defined as:
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RMI(r;s) = I(r;s)− 1
n

logΩ(a,b). (1)

where Ω(a,b) is a integer equal to the number R× S of non-negative integer matrices
with row sums a= {ar} and column sums b= {bs} (i.e., contingency tables). In practice,
computing or at least approximating Ω(a,b) with enough accuracy is the main challenge
in obtaining the Reduced Mutual Information of two partitions.

2. Analytical approximation

The following approximation works in cases where the numbers of clusters R and S are
relatively small relative to the total number of elements, resulting in very populated clus-
ters. Let a and b vectors of lengths R and S respectively be the margins of the contin-
gency table, and Ω(a,b) the corresponding number of contingency tables. Also, define:
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However, this approximation can become highly inaccurate when the conditions
aren’t met. This can easily happen, for example, when a relatively high number of ver-
tices are left isolated forming their own clusters, even if the rest of the clusters are large.

3. Monte Carlo approximation

An alternative approach is to use a Monte Carlo method to estimate the number of con-
tingency tables by successively iterating over the set of solutions using an appropriately
defined Markov chain. The method, introduced in [3], uses a nested chain of subsets
Σab = H1 ⊃ H2 ⊃ ... ⊃ Ht . Then, Monte Carlo sampling is used to estimate each ra-
tio |Hi|/|Hi+1|, which will allow the estimation of the whole set by just being able to
enumerate Ht , which will be small (more specifically, it will contain a single element).

Random walk. First let’s define a random walk on the set Σab of matrices with
row sums a and column sums’ b. Let M ∈ Σab. A pair of rows i1, i2 and columns j1,
j2 is selected randomly. Then, M′ ∈ Σab is obtained by adding 1 to the (i1, j1), (i2, j2)
elements and substracting 1 to the (i1, j2), (i2, j1) elements, or viceversa, each of the two
possibilities with probability 1

2 . This gives a connected, symmetric, aperiodic Markov
chain on Σab.

Subset chain. Let M ∈ Σab. Then, define [Σab|M;(k, l)] the subset of Σab containing
only tables that match M in all positions strictly preceding (k, l) in the lexocographic
order. Then, if (k′, l′) succeeds (k, l), then [Σab|M;(k′, l′)] ⊆ [Σab|M;(k, l)]. This gives
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a chain of subsets Σab = [Σab|M;(1,1)] ⊆ ... ⊆ [Σab|M;(r,s)]. The following result is
proved in [3].

Theorem 3.1 The random walk on [Σab|M;(k, l)] is ergodic and has uniform stationary
distribution for all M ∈ Σab.

4. Hybrid analytical Monte Carlo approximation

We redefine the subset chain of the Markov Monte Carlo method to reduce its length by
estimating the size of the biggest subset we can have analytically. We want to concentrate
all the denser communities on one corner of the matrix, so a and b are sorted in ascending
order. Then, divide the matrix into four blocks Q1, Q2, Q3, Q4 such that |(ΣQ4)ab| can be
estimated analytically. Of course, it is not possible to extend this estimation directly using
the method described in section 2 because not all elements of Q1, Q2 and Q3 precede
those of Q4 unless Q4 has only one row.

Order relation. Here we will define an order in which to traverse the matrix M of
R× S elements, or equivalently, a total order relation on the set [R]× [S]. Let ≺, and
� denote the lexicographical order (the strict and non-strict versions respectively), and
p ∈ [R]× [S] the element at the lower right corner of Q1. Then, we define the strict order
relation � as follows:

x � y ⇐⇒ x≺ y if x,y ∈ Q1∪Q2

x � y if x ∈ (Q1∪Q2),y ∈ (Q3∪Q4)

(x1,x2)� (y1,y2) ⇐⇒ x2 < y2 or(x2 = y2 and x1 < y1) if x1,y1 > p1

In other words, � puts the elements of Q1 and Q2 first in lexicographical order, and
then those of Q3 and Q4 in a variation of the lexicographical order that goes from left to
right and top to bottom in that order. That puts all elements of Q4 after any element of
Q1, Q2, and Q3. We will denote � the non-strict version of the strict order relation �.

Hybrid algorithm. With the order relation �, we can define [Σab|M;(k, l)]� as the
subset of Σab containing tables that match M in all positions strictly preceding (k, l) in the
� order. To obtain a random walk on [Σab|M;(k, l)]�, we just need to uniformly select a
pair of rows i1 < i2 ≤ R and columns j1 < j2 < S such that (k, l)� (i1, j1). Only elements
that succeed (k, l) in the � order will be modified by the random walk. We have

Corollary 4.1 of theorem 3.1. The random walk on [Σab|M;(k, l)]� is ergodic and has
uniform stationary distribution for all M ∈ Σab. �

Then, the resulting algorithm can be described as follows:

• Rearrange the rows and columns of M so that their sums are in ascending order.
• Determine p = (p1, p2) the position of the upper left corner of Q4. This is the

cutoff point between the small and large communities, here we are using the first
row and column with size > 1.

• Estimate the values |H1|/|H2|, |H2|/|H3|, . . . , |Hq−1|/|Hq|, where
Hq = [Σab|M;(p1, p2)]�, with the Markov chain Monte Carlo method.

• Approximate Hq with the analytical formula described in section 2.
• Multiply the chain of fractions from the previous steps to obtain H1 = Σab.
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5. Experiments and discussion

To test the standard Markov chain Monte Carlo and the hybrid algorithms, we use
two vectors to set the margins of the tables, and execute both. The chosen vectors are:
a=(20,10,10,5,5,1,1,1,1,1,1,1,1,1,1) and b=(10,10,5,5,5,5,5,1,1,1,1,1), which
correspond to a network of 50 nodes. Even in such a relatively small network, exact
counting algorithms are not practical. Using the analytical approximation alone, the re-
sults are not meaningful because of the presence of a few isolated vertices, which makes
the contingency tables less dense.

For the hybrid method, the matrix is split such that Q4 sub-matrix is formed by
the rows and columns with sum greater than 1. The computation took 24.2 seconds,
almost twice as fast as the standard Markov chain Monte Carlo method (41.32 seconds).
The term 1

n logΩ(a,b) estimated with each method differs by less than 0.01, so there
is not a significant loss of accuracy when the method is used for the computation of
the Reduced Mutual Information. In comparison, using only the analytical formula on
the whole matrix produces an estimation that is off by over 0.3, which is clearly too
inaccurate to obtain any meaningful estimation of the Reduced mutual Information.

If we instead study a case with fewer single element labels: a = (25,25,15,10,4,1)
and b = (25,20,15,9,8,8,1,1,1), the difference is much more apparent with the hybrid
method taking 2.98 seconds compared to 37.41 of the standard Monte Carlo.

It is worth noting that the implementation of the Markov chain uses a naive sampling
method that doesn’t take advantage of the sparsity of the matrix in some areas. When
the chosen elements that have to be decreased by one are already 0, the matrix remains
invariant for that step of the chain. Then, when the matrix is very sparse and most of the
steps are going to be invariant, it is possible to optimize the process by simply simulating
the number of invariant steps before the matrix changes with a geometric distribution, and
then sampling only from the rows and columns which will result in a step that modifies
the matrix. This optimization would be a lot more beneficial on the sparser parts of the
matrix (Q1, Q2, Q3) and much less on the Q4 sub-matrix, which would benefit the hybrid
method more than the standard Monte Carlo method.

The implementation of the RMI measure presented here will be released as part of
the clustAnalytics R package [4], with the goal to provide a readily available tool for
cluster analysis on networks.
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