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Abstract. Breast cancer is the most frequently diagnosed cancer in women glob-
ally. Early and accurate detection and classification of breast tumors are critical
in improving treatment strategies and increasing the patient survival rate. Digital
breast tomosynthesis (DBT) is an advanced form of mammography that aids better
in the early detection and diagnosis of breast disease. This paper proposes a breast
tumor classification method based on analyzing and evaluating the performance of
various of the most innovative deep learning classification models in cooperation
with a support vector machine (SVM) classifier for a DBT dataset. Specifically,
we study the ability to use transfer learning from non-medical images to classify
tumors in unseen DBT medical images. In addition, we utilize the fine-tuning tech-
nique to improve classification accuracy.
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1. Introduction

Breast cancer is one of the most deadly deceases affecting females worldwide. The clin-
ical studies have shown that early identification and classification of breast tumors has
considerably improved the patient’s treatments [1]. Generally, current common modal-
ities for breast cancer screenings include mammography (X-ray images of the breast),
breast ultrasound (BUS), thermograms, magnetic resonance imaging (MRI), and digital
breast tomosynthesis (DBT) [2,3,4,5,6]. Digital breast tomosynthesis (DBT) is a promis-
ing new imaging modality for breast cancer screening that has the potential to overcome
the limitations of traditional mammography. Instead of the projectional 2-dimensional
images like in mammography, DBT delivers depth information through a practically 3-
dimensional structural image of the breast volume (cross-sectional slices) and offers bet-
ter performance [7]. DBT involves passing the X-ray tube in an arc over a fixed com-
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pressed breast at numerous angles to obtain a series of mammographic images [8]. Com-
puter software subsequently reconstructs these individual mammographic images into a
sequence of 3-dimensional and high-resolution slices. These 3-dimensional images no-
tably decrease the influence of dense tissues, which can obscure or make it even harder
to identify breast tumors [9].
While DBT can alleviate the limitation of tissue superimposition in mammography by
providing superior tissue visibility, misdiagnosis is common, particularly in the early
stages of breast cancer. So, a professional pathologist’s experience and knowledge are
required for a reliable breast cancer diagnosis. Regrettably, examining a more signifi-
cant number of slices per breast volume raises clinical workflow issues accompanied by
the fact that as the number of slices to examine grows, experts’ monitoring of findings
increases. Therefore, several computer-aided diagnostic (CAD) systems help clinicians
identify breast tumors on various breast image modalities. In particular, with DBT im-
ages, the performance of the CAD systems will likely be better.
Recently, with the noteworthy development in the deep learning frameworks in many
medical field studies [10], researchers have been inspired to investigate the application
of deep learning to study the use of deep learning in developing efficient automated CAD
systems for the breast cancer classification task [11]. For instance, Chougrad et al. [12]
explored the performance of the three recent and powerful state-of-the-art CNN models
to predict the correct diagnosis for various mammography breast cancer datasets. The
obtained results demonstrate that the explored models are performant and can predict if
the tumors are benign or malignant with accuracy ranging from 95 to 98% with different
datasets. Adeyinka et al. [13] presented a discriminative fine-tuning deep learning-based
method for breast cancer classification on mammograms. Their work aims to perform
fine-tuning training using five popular pre-trained CNN models. Unlike traditional fine-
tuning, which involves training the entire network again using a specified dataset, dis-
criminative fine-tuning is introduced where they assign different learning rates and mo-
mentum to each layer of the network during the training process. The performance of
their method is evaluated using the INBreast dataset [14] achieving the highest accuracy
of 99% by the DensNet model.
For DBT images, Bevilacqua et al. [15] proposed a supervised deep learning-based nor-
mal/abnormal lesions classification method for breast tomosynthesis images. Practically,
they compared the performance of two different classification approaches. The first ap-
proach is to utilize a shallow artificial neural network (ANN) classifier that takes mor-
phological and textural hand-crafted features like the Grey Level Co-occurrence Matrix
(GLCM) as input. The second approach is based on automatically computed features
and extracting several sets of features using deeper CNN from DBT images. The final
results showed that the second classification approach performs better. With a private
DBT dataset, they obtained an accuracy of 92% with the VGG network. Samala et al.
[16] developed a multi-stage deep learning framework for classifying malignant and be-
nign tumors in DBT images. The main idea of that work is to study the effectiveness of
the transfer learning approach when a pre-trained CNN model on non-medical images is
first fine-tuned to a related task in the medical imaging domain before being fine-tuned
to the target task in an attempt to overcome the lack of large training data. In practice, the
proposed framework consists of two stages. In the first stage, they utilized the AlexNet
model trained by more than a million non-medical images from the ImageNet dataset
to be fine-tuned with less than 3000 patch images extracted from mammograms. Then,
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they used the fine-tuned model from the first stage to further fine-tuned with less than
1500 patches from DBT images in the second stage. The experimental results evaluated
on a private DBT dataset showed that the accuracy of multi-stage transfer learning is
improved by 6% over single-stage transfer learning.
Zhang et al. [17] presented breast normal/abnormal lesions classification method in DBT
images where a traditional 2-D deep CNN model is operated on the whole volume of 3-D
DBT images, regardless of the number of slices. The fundamental idea behind their work
is that instead of only using small tumor patches, they focus on full-image classification.
Specifically, for z-slices of the DBT image, every three consecutive slices are stacked
as a three-channel image input to the feature extractor network. Then, they generated a
feature map by pooling the features extracted for the binary classification. The experi-
mental results evaluated using a private clinical DBT dataset showed that classification
performed best using the AlexNet model as feature extractor with MaxPooling for fea-
ture fusion.
Although various breast tumor classification methods in DBT are proposed, most of
them are limited to classifying normal and abnormal lesions. Also, most of these pro-
posed studies are evaluated using a private DBT dataset. Therefore, automated be-
nign/malignant tumor classification of the breast in DBT still faces several challenges
due to the lack of public available DBT datasets. In this paper, based entirely on the only
publicly available DBT dataset, we present benign/malignant tumor classification using
a support vector machine (SVM) classifier and deep learning classifier for DBT images
based on radiomics extracted from well-known CNN classification models. We explore
the ability to use transfer learning from non-medical images to classify tumors in DBT
images. Alongside, the fine-tuning approach is applied to improve the classifier’s effi-
ciency.
The remainder of this paper is designed as follows. Section 2 describes the proposed
classification method. The experimental results and discussion are presented in section
3. Section 4 concludes the paper.

2. Methodology

Figure 1 shows the proposed breast tumor classification method. The key elements of the
proposed method are data preparation, deep learning-based feature (Radiomics) extrac-
tion, and classification heads. Below, we describe the proposed method in detail.

Deep Learning-Based
Radiomics

SVM classifiaction

Fully connected Layer
Classification

Tumors Patches
Cropping

Data
Augmentation

Data Preparation

Benign

Malignant 

Benign

Malignant Input DBT
images

Figure 1. Breast tumor classification in DBT images based on deep learning-based radiomics.
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2.1. Data Preparation

In this study, the data preparation step consists of two stages: the tumor patch cropping
stage and the data augmentation stage. It should be noted that we used the only publicly
available DBT images dataset named the DBTex challenge dataset [18] which contains
1000 breast tomosynthesis scans from 985 patients. Disastrously, not all images are fully
annotated, as out of the 101 patients, only 224 DBT images have annotations leaving us
with few usable DBT images.
For the tumor patch cropping stage, in terms of ROIs selection, tumors are center cropped
and extracted from the annotated DBT image. The selected ROIs are then all resized into
identical dimensions of 224×224, to fit the input of deep learning networks in the feature
extraction step. Then, we divide the DBT images (patient-wise) and the corresponding
patches into training and testing sets as shown in Table 1.
Regarding data balance, we seek to achieve that the training and the test set involve the

Table 1. Overview of the DBT dataset.

No. of patients No. of tumor patches

Train Test Train Test

Benign 50 12 120 23
Malignant 27 12 63 23

Total 77 24 183 46

Augmented Data 77 24 246 46

equivalent amount of two classes of tumors. Therefore, in the data augmentation stage,
the number of training data tumor patches increases (see Table 1). In particular, to balance
the benign and malignant number of patches in the training set, we doubled the number
by jointly flipping all malignant patches in the training set horizontally and vertically.
This eventually results in 120 benign tumor patches and 126 malignant tumor patches,
with total patches of 246 in the training set, in addition to 23 benign tumor patches and
23 malignant tumor patch, with a total of 46 in the test set, which achieves a ratio of
approximately 80% of the training images and 20% of the test images of the whole set
of images.

2.2. Deep learning-based radiomics

In the breast tumor classification task, each tumor input patch supposes to be classified as
benign or malignant. However, in the case of automated machine-based classifiers, this
task is much more difficult due to the need to characterize those input images into dis-
criminative features. In contrast to the traditional methods based on hand-crafted feature
extraction, deep learning models enable robust and automated feature extraction.
As shown in Figure 2, the radiomics extraction process has been carried out in two

phases. In the first phase, a transfer learning approach, classification CNN models pre-
trained on non-medical images are used to directly extract features from the medical
DBT images to train one of the classifiers in the classification heads. Since these models
have been trained on a dataset with many images, for example, trained on the ImageNet
dataset, which contains 1.2 million non-medical images for a 1000 class image classifi-
cation problem, they can extract meaningful features that can be used for direct classifi-
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Figure 2. Feature extraction approaches: (a) transfere learning, and (b) fine-tuning.

cation.
In the second phase, a fine-tuning approach, classification CNN models pre-trained on
non-medical images are fine-tuned on the training set of 246 DBT images. Applying
fine-tuning allows us to utilize the pre-trained networks to the related breast tumor clas-
sification task in the DBT medical imaging domain, leading to higher accuracy. For both
feature extraction phases, we investigate the performance of various of the most inno-
vative deep learning models inspired by the well-known CNN backbone architectures
such as AlexNet [19], VGG [20], ResNet [21], WideResNet [22], SqueezeNet [23] and
EfficientNet [24] to extract discriminative features from DBT images.

2.3. Classification heads

Lastly, the generated tumor radiomics from the feature extraction stage can be classi-
fied by various machine learning classification algorithms. In this paper, we employ the
classification process through two scenarios: end-to-end deep learning classification by
a fully connected (FC) layer and an SVM classifier.
In the case of the end-to-end deep learning classification, we modify the classification
part of the last FC-layer to the set of classes of our task, i.e., two classes of benign and
malignant. Therefore, for the transfer learning approach, we do not need to re-train the
entire model, just the final classification part, which will be trained from scratch on top of
the pre-trained model. Differently, the fine-tuning approach jointly trains both the newly-
modified classifier layers and the whole layers of the base model.
In this study, we also employ the SVM algorithm, a fast and dependable classification
algorithm that performs very well with a limited amount of data to analyze, making it
suitable for the DBT breast tumor classification task due to the lack of data. Accordingly,
whether the radiomics are extracted using transfer learning or fine-tuning approaches,
these deep features are used to train the SVM classifier.

2.4. Implementation

To train the end-to-end deep learning classifier for both transfer learning and fine-tuning
approaches, we use Adam to optimize the evaluated CNN model with a learning rate of
1e−4. It should be noted that all models were trained for 30 epochs. On the other hand,
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to train the SVM classifier, radiomics are extracted first using one of the approaches men-
tioned above (i.e., transfer learning or fine-tuning), then extracted features are used as
input for training and evaluating the SVM classifier. For fair comparisons, the proposed
evaluated classifiers were trained using the same 246 DBT images and tested with the
same 46 DBT images. All the experiments were performed using the Pytorch framework
using a 64-bit Ubuntu operating system with 3.6 GHz intel core i7 with 32GB of RAM
and Nvidia RTX3080 with 10GB of video RAM.

3. Experimental Results and Analysis

3.1. Performance evaluation of transfer learning approach

Table 2 presents a quantitative comparison between the SVM classifier and the Deep
learning classifier trained with radiomics extracted from the evaluated models (AlexNet,
VGG, ResNet, wideResNet, SqueezeNet, and EfficientNet) for the transfer learning ap-
proach in terms of percentage accuracy.
As one can see, the SVM classifier trained with radiomics extracted from the pre-trained

Table 2. The performance of the SVM classifier and deep learning classifier with transfer learning approach.

Model SVM classifier Deep learning classifier

AlexNet 63.04% 56.52%
VGG19 65.22% 54.35%
ResNet50 52.17% 60.87%
WideResNet101 60.87% 60.87%
SqueezeNet 56.52% 63.04 %
EfficientNet 63.04% 58.70%
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Figure 3. ROC curves of (a) the SVM, and (b) DL classifiers.

VGG model achieved the best classification results with obtained accuracy of 65.22%
compared to the end-to-end deep learning classifier. Meanwhile, the deep learning clas-
sifier trained with radiomics from pre-trained SqueezeNet obtained a competitive classi-
fication accuracy of 60.04%. From the overall results in Table 2, we can say that for the
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transfer learning approach where deep learning models trained on non-medical data and
are used to extract features from unseen DBT images, the SVM classifier has a promising
classification accuracy and surpassed Deep learning classification on approximately all
evaluated model.
Figure 3 shows the ROC curves for SVM and deep learning classifier for the transfer
learning approach of all the evaluated pre-trained models. It is shown that the SVM clas-
sifier trained with VGG deep features (radiomics) performs best with an AUC of 0.65
compared to other feature extraction models. The second-best performing classifier is the
deep learning classifier trained with wideResNet radiomics, even if its overall accuracy
is lower than features from SqeezeNet with an AUC of 0.67.
Regarding class classification accuracy, Figure 4 presents the confusion matrix for the
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Figure 4. Confusion matrices of (a) the SVM classifier trained with deep features of VGG19 Network and (b)
the DL classifier trained with deep features of SqueezeNet Network.

best SVM classifier with radiomics from the pre-trained VGG model and the best end-to-
end deep learning classification with radiomics from the pre-trained SqueezeNet model.
As one can see, the SVM classifier succeeded in classifying malignant tumors by more
than 73%, outperforming the deep learning classifier by approximately 13%, while the
deep learning classifier outperformed the SVM classifier in classifying benign tumors by
4%.

3.2. Performance evaluation of fine-tuning approach

In the case of the fine-tuning method, Table 3 compares the classification performance
of the SVM classifier and the end-to-end deep learning classifier for the evaluated fine-
tuned deep feature (Radiomics) extractor models trained with the training set of the DBT
images dataset. As shown, when comparing values from Table 2 to values from Table3,
we can argue that fine-tuning the deep learning-based radiomics can yield noticeable
improvements in terms of classification accuracy for both classifiers, especially for the
end-to-end deep learning classifier.
With the fine-tuning approach, the performance of the SVM classifier trained with ra-

diomics from the AlexNet model increased by 8.7%. Besides, the classification accuracy
of the end-to-end deep learning classifier of the AlexNet model was also advanced by
23.91%. It is also noticeable that there is a comparative performance in the results of the
deep learning classifier for the rest of the models, with classification accuracy ranging
from 65.22% to 73.91%.
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Table 3. The performance of the SVM classifier and deep learning classifier with the fine-tuning approach.

Model SVM classifier Deep learning classifier

AlexNet 71.74 % 80.43%
VGG19 60.87% 67.39%
ResNet50 52.17% 65.22%
WideResNet101 50.00% 73.91%
SqueezeNet 60.87% 69.57%
EfficientNet 60.87% 67.39%
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Figure 5. ROC curves of (a) the SVM, and (b) DL classifiers.

The ROC curves for SVM and deep learning classifier for the fine-tuning method are
shown in Figure 5. It is shown that the SVM classifier and the deep learning classifier
trained with radiomics from the AlexNet model have the best performance, confirming
the high efficiency of both classifiers presented in Table 3 obtaining AUC of 0.72 and
0.80, respectively.
Regarding class classification accuracy, Figure 6 shows the confusion matrix for the best
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Figure 6. Confusion matrices of (a) the SVM classifier trained with deep features of AlexNet Network and (b)
the DL classifier trained with deep features of AlexNet Network.

SVM classifier with radiomics from the fine-tuned AlexNet model and the best end-to-
end deep learning classification with the fine-tuned AlexNet model. Here, the deep learn-
ing classifier has better accuracy in classifying the benign tumors with obtained accu-
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racy of 91%, while the SVM classifier outperformed in classifying Malignant tumors by
17%. Based on the above analysis, we can conclude that to transfer learning techniques
to extract features in cooperation with the SVM classifier is better for DBT images than
the deep learning classifier. In contrast, end-to-end deep learning classification based on
radiomics from fine-tuned models can significantly improve breast tumor classification
accuracy. Of note, the classification results could be further improved by utilizing an op-
timization algorithm, such as the stochastic whale optimization algorithm [25] to find the
optimal parameters of SVM.

4. Conclusions

This paper presents a breast tumor classification method for digital breast tomosynthe-
sis images (DBT) based on radiomics extracted from the most innovative deep learning
classification models. Our work first investigated the transfer learning technique where
pre-trained on non-medical images CNN models are used to directly extract radiomics
from the medical DBT images to train support vector machine and deep learning-based
classifier. Secondly, the fine-tuning technique where the CNN models pre-trained on non-
medical images is fine-tuned on the training set of DBT images. With the only publicly
available digital breast tomosynthesis dataset, our experiments showed that end-to-end
deep learning classification with radiomics extracted from the fine-tuned AlexNet model
achieved the best classification accuracy of 80.43%.
The future work will focus on developing a breast tumor classification method based on
the aggregation of robust deep learning-based feature extraction models.
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