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Abstract. In this paper, we study the preliminary test method in a linear regression
model. The preliminary test Liu-type estimator is introduced when it is suspected
that the regression parameter may be constraint to a subspace. We also compare the
preliminary test Liu-type estimator to the preliminary test estimator, preliminary
test ridge estimator and preliminary test Liu estimator in the mean squared error
sense.
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1. Background Study

Let us discuss the linear regression model

y = Xβ + ε (1)

where y defines an n×1 known vectors, X shows an n× p matrix with rank(X) = p, β
defines a p×1 vectors of unknown parameters, E(ε) = 0 and Cov(ε) = σ2I.

We also consider the following linear restrictions for β

Rβ = r (2)

where R shows a q× p known matrix and rank(R) = q(q < p), r shows a q× 1 known
vector.

The restricted least squares estimator (RLSE) of β denotes as follows:

β̂RLSE = β̂OLSE −S−1R′(RS−1R′)−1(Rβ̂OLSE − r) (3)

where β̂OLSE = S−1X ′y and S = X ′X .
When the prior information Rβ = r is suspected, the statisticians have been com-

bined the OLSE and RLSE to obtain a better performance of the estimators, which make
the preliminary test least squares estimator (PTE) and defined as

β̂PT E = β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα) (4)

1Corresponding Author:Yong Li, School of Mathematics and Big Data, Chongqing University of Arts and
Sciences, Chongqing, 402160, China; E-mail: jayleely@163.com.

Fuzzy Systems and Data Mining VIII
A.J. Tallón-Ballesteros (Ed.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220379

148



which I(A) defines the indicator of A, F shows the general test statistic for testing the
null hypothesis H0: Rβ = r against H1: Rβ �= r and

F =
(Rβ̂OLSE − r)′(RS−1R′)−1(Rβ̂OLSE − r)

qS2
ε

(5)

where S2
ε = (y−X β̂OLSE)′(y−X β̂OLSE)/(n− p) shows the unbiased estimator of σ2. We

can see that the test statistic F satisfy a central F -distribution with (q,n− p) degrees
of freedom under H0 and Fα is the upper α -level critical value of ζ . If H0 does not
hold, then ζ follows a noncentral F -distribution with (q,n− p) degrees of freedom non-
centrality parameter (1/2)Δ, where

Δ =
(Rβ − r)′(RS−1R′)−1(Rβ − r)

σ2 (6)

But if the multicollinearity exists in linear regression model, the statisticians have
found that the OLSE is no longer a good estimator. To deal with multicollinearity, we
can use biased estimator to do it, such as Stein estimator [1], ridge estimator [2], and Liu
estimator [3], two-parameter estimator [4], almost unbiased two-parameter estimator [5]
and Liu-type estimator [6].

Another method to deal with the multicollinearity is to use the linear restrictions.
Sarkar [7] introduced the restricted ridge regression estimator (RRRE). Kaçıranlar et al.
[8] proposed the restricted Liu estimator (RLE). Kibria [9] proposed PTRE and which is
defined as

β̂PT RE(k) = W β̂PT E = W
(

β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα)
)

(7)

where W = S−1
k S, Sk = S + kI and k > 0. And Yuksel and Akdeniz [10]introduced the

preliminary test LE (PTLE) and which is given as follows:

β̂PT LE(d) = Fd β̂PT E = Fd

(
β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα)

)
(8)

where Fd = (S+ I)−1(S+dI) and 0 < d < 1. Except these estimators, many authors have
studied the preliminary test estimator, such as Billah and Saleh [11-12], Khan and Saleh
[13], Kibria [14-15], Rao [16], Yang and Xu [17], Kibria and Saleh [18], Chang and
Yang [19], Xu and Yang [20], Liu and Yang [21], Wu [22], Chang and Wu [23],Yüzbaşı
et al. [24].

Our primary purpose of this paper is to consider the preliminary test Liu-type es-
timator (PTLTE) by combining Liu-type estimation approach and PTE in the linear re-
gression model. The rest of this paper is organized as follows. We propose the prelimi-
nary test Liu-type estimator in Section 2 and the comparison results of these estimator
are given in Section 3 and some conclusions are given in Section 4.

2. The New Estimator

The Liu-type estimator proposed by Xue and Liang [25] is given as follows:

β̂ (k,d) = Fk,d β̂ (9)
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where Fk,d = (S + kI)−1(S +dI) and k > d,d > 0.
Firstly, we introduced the following restricted LTE

β̂RLT E(k,d) = Fk,d β̂RLSE (10)

Based on LTE and RLTE, we introduced a new estimator:

β̂PT LT E(k,d) = Fk,d β̂PT E = Fk,d

(
β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα)

)
(11)

where Fk,d = (S + kI)−1(S + dI), k > d > 0. And we call this estimator as PTLTE. It is
easy to know that

β̂PT LT E(0,0) = β̂PT E = β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα) (12)

β̂PT LT E(k,0) = β̂PT RE(k) = W
(

β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα)
)

(13)

β̂PT LT E(1,d) = β̂PT LE(d) = Fd

(
β̂RLSEI(F ≤ Fα)+ β̂OLSEI(F > Fα)

)
(14)

3. Performance of the New Estimator

In this section, we will compare the new estimator to the PTE, PTRE and PTLE in the
MSE criterion. Firstly we compute the MSE of the new estimator.

Through (11), we can get that

E
(

β̂PT LT E(k,d)
)

= Fk,dβ −Fk,dηGq+2,n−p(l1;Δ) (15)

Bias
(

β̂PT LT E(k,d)
)

= −Bβ −Fk,dηGq+2,n−p(l1;Δ) (16)

where B = (k−d)S−1
k

MSE
(

β̂PT LT E(k,d)
)

= σ2 [
tr(Fk,dS−1F ′

k,d)− tr(Fk,dAF ′
k,d)Gq+2,n−p(l1;Δ)

]

+η ′F ′
k,dFk,dη

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′Fk,dη +β ′B′Bβ (17)

where B = (k − d)S−1
k , η = S−1R′(RS−1R′)−1(Rβ − r), A = S−1R′(RS−1R′)−1RS−1,

l1 = q
q+2 Fq,n−p(α), l2 = q

q+4 Fq,n−p(α), Gm,n(·;Δ) shows the cumulative non-central F-
distribution with (m,n) degrees of freedom and the non-central parameter 1/2Δ.

Thus we have

MSE
(

β̂PT E

)
= σ2 [

tr(S−1)− tr(A)Gq+2,n−p(l1;Δ)
]

+η ′η
[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
(18)

MSE
(

β̂PT RE(k)
)

= σ2 [
tr(WS−1W ′)− tr(WAW ′)Gq+2,n−p(l1;Δ)

]

+η ′W ′Wη
[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
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+2Gq+2,n−p(l1;Δ)β ′B′
1Wη +β ′B′

1B1β (19)

MSE
(

β̂PT LE(d)
)

= σ2 [
tr(FdS−1F ′

d)− tr(FdAF ′
d)Gq+2,n−p(l1;Δ)

]

+η ′F ′
dFdη

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′

2Fdη +β ′B′
2B2β (20)

where B1 = −kS−1
k ,B2 = (d −1)(S + I)−1.

Now we suppose that Q is the orthogonal matrix such that QSQ′ = diag(λ1, · · · ,λp)
where λ1, · · · ,λp > 0 define the ordered eigenvalues of S. Thus we obtain the following
representations

tr
(
Fk,dS−1F ′

k,d
)

=
p

∑
i=1

(λi +d)2

λi(λi + k)2 (21)

tr
(
Fk,dAF ′

k,d
)

=
p

∑
i=1

ãii(λi +d)2

(λi + k)2 (22)

η ′F ′
k,dFk,dη =

p

∑
i=1

η̃2
i (λi +d)2

(λi + k)2 (23)

β ′B′Fk,dη =
p

∑
i=1

(k−d)η̃iθi(λi +d)
(λi + k)2 (24)

β ′B′Bβ =
p

∑
i=1

(d − k)2θ 2
i

(λi + k)2 (25)

where θ = Q′β = (θ1, · · · ,θp)′, η̃ = Q′η = (η̃1, · · · , η̃p)′, ãii denotes the ith diagonal
element of the matrix Ã = QAQ′.

3.1. Comparison of the PTLTE and PTE

When the null hypothesis satisfy, we consider the following difference:

MSE
(

β̂PT E

)
−MSE

(
β̂PT LT E(k,d)

)

=
p

∑
i=1

σ2(k−d)(2λi + k +d)
λi(λi + k)2

[
1− ãiiλiGq+2,n−p(l1;0)

]−
p

∑
i=1

(d − k)2θ 2
i

(λi + k)2

(26)

Since λi > 0 and 0 < ãiiλiGq+2,n−p(l1;0) < 1, thus when d > max
(

0,
(θ 2

i λi−σ2

θ 2
i λi+σ2+2λi

)
,

MSE
(

β̂PT E

)
−MSE

(
β̂PT LT E(k,d)

)
> 0.

Under the alternative hypothesis, we consider the following difference:
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MSE
(

β̂PT E

)
−MSE

(
β̂PT LT E(k,d)

)

= σ2 [
tr(S−1)− tr(A)Gq+2,n−p(l1;Δ)

]
+η ′η

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
−{σ2 [

tr(Fk,dS−1F ′
k,d)− tr(Fk,dAF ′

k,d)Gq+2,n−p(l1;Δ)
]

+η ′F ′
k,dFk,dη

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′Fk,dη +β ′B′Bβ}

= σ2 [
tr(S−1 −Fk,dS−1F ′

k,d)− tr(A−Fk,dAF ′
k,d)Gq+2,n−p(l1;Δ)

]
+η ′(Ip −F ′

k,dFk,d)η
[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
−2Gq+2,n−p(l1;Δ)β ′B′Fk,dη −β ′B′Bβ (27)

Since Gq+2,n−p(l1;Δ) > 0 and 2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ) > 0, then

MSE
(

β̂PT E

)
−MSE

(
β̂PT LT E(k,d)

)
> 0

if and only

η ′(Ip −F ′
k,dFk,d)η ≥ f1(k,d,α,Δ)[

2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)
] (28)

where

f1(k,d,α,Δ) = σ2 [
tr(A−Fk,dAF ′

k,d)Gq+2,n−p(l1;Δ)− tr(S−1 −Fk,dS−1F ′
k,d)

]
+2Gq+2,n−p(l1;Δ)β ′B′Fk,dη +β ′B′Bβ (29)

By Anderson (1984), we have

λp
(
(Ip −F ′

k,dFk,d)S−1) ≤ η ′(Ip −F ′
k,dFk,d)η

η ′Sη
≤ λ1

(
(Ip −F ′

k,dFk,d)S−1) (30)

So when Δ > Δ1, then MSE
(

β̂PT E

)
−MSE

(
β̂PT LT E(k,d)

)
> 0, where

Δ1 =
f1(k,d,α,Δ)

λ1

(
(Ip −F ′

k,dFk,d)S−1
)[

2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)
] (31)

Summarize these, we may get the following theorems:

Theorem 3.1When the null hypothesis satisfy, when k > d > max
(

0,
(θ 2

i λi−σ2

θ 2
i λi+σ2+2λi

)
, the

PTLTE is superior to the PTE in the MSE criterion.
Theorem 3.2 Under the alternative hypothesis, when k > d > 0, and Δ > Δ1, then the
PTLTE is superior the PTE in the MSE criterion.

3.2. Comparison of the PTLTE and PTRE

When the null hypothesis satisfy, we discuss the following difference:

MSE
(

β̂PT LE(d)
)
−MSE

(
β̂PT LT E(k,d)

)
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=
p

∑
i=1

σ2(−d)(2λi +d)
λi(λi + k)2

[
1− ãiiλiGq+2,n−p(l1;0)

]
+

p

∑
i=1

d(2k−d)θ 2
i

(λi + k)2 (32)

Though λi > 0 and 0 < ãiiλiGq+2,n−p(l1;0)< 1, then when k > max
(

d,
d(θ 2

i λi+σ2)+2σ2λi
2θ 2

i λi

)
>

0 , MSE
(

β̂PT RE(k)
)
−MSE

(
β̂PT LT E(k,d)

)
> 0.

Under the alternative hypothesis, we have

MSE
(

β̂PT RE(k)
)
−MSE

(
β̂PT LT E(k,d)

)

= σ2 [
tr(WS−1W ′)− tr(WAW ′)Gq+2,n−p(l1;Δ)

]
+η ′W ′Wη

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′

1Wη +β ′B′
1B1β

−{σ2 [
tr(Fk,dS−1F ′

k,d)− tr(Fk,dAF ′
k,d)Gq+2,n−p(l1;Δ)

]
+η ′F ′

k,dFk,dη
[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′Fk,dη +β ′B′Bβ}

= σ2 [
tr(WS−1W ′ −Fk,dS−1F ′

k,d)− tr(WAW ′ −Fk,dAF ′
k,d)Gq+2,n−p(l1;Δ)

]
+η ′(W ′W −F ′

k,dFk,d)η
[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′(B′

1W −B′Fk,d)η +β ′(B′
1B1 −B′B)β (33)

Though Gq+2,n−p(l1;Δ) > 0 and 2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ) > 0, then

MSE
(

β̂PT RE(k)
)
−MSE

(
β̂PT LT E(k,d)

)
> 0

if and only

η ′(W ′W −F ′
k,dFk,d)η ≥ f2(k,d,α,Δ)[

2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)
] (34)

where

f2(k,d,α,Δ)
= σ2 [

tr(WS−1W ′ −Fk,dS−1F ′
k,d)− tr(WAW ′ −Fk,dAF ′

k,d)Gq+2,n−p(l1;Δ)
]

+2Gq+2,n−p(l1;Δ)β ′(B′
1W −B′Fk,d)η +β ′(B′

1B1 −B′B)β (35)

Then using the theorem in Anderson [25], we can get

λp
(
(W ′W −F ′

k,dFk,d)S−1) ≤ η ′(W ′W −F ′
k,dFk,d)η

η ′Sη
≤ λ1

(
(W ′W −F ′

k,dFk,d)S−1)(36)

So if Δ > Δ2, then MSE
(

β̂PT RE(k)
)
−MSE

(
β̂PT LT E(k,d)

)
> 0, where

Δ2 =
f2(k,d,α,Δ)

λ1

(
(W ′W −F ′

k,dFk,d)S−1
)[

2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)
] (37)

Then we have
Theorem 3.3 When the null hypothesis satisfy, when k > max

(
d,

d(θ 2
i λi+σ2)+2σ2λi

2θ 2
i λi

)
> 0

, the PTLTE is superior to the PTRE in the MSE critrion.
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Theorem 3.4 Under the alternative hypothesis, when k > d > 0, and Δ > Δ2, then the
PTLTE is superior to the PTRE in the MSE criterion.

3.3. Comparison of the PTLTE and PTLE

When the null hypothesis satisfy, we discuss the following difference:

MSE
(

β̂PT LE(d)
)
−MSE

(
β̂PT LT E(k,d)

)

=
p

∑
i=1

σ2(k−1)(λi +d)2(2λi + k +1)
λi(λi + k)2(λi +1)2

[
1− ãiiλiGq+2,n−p(l1;0)

]

+
p

∑
i=1

[(1+ k−2d)λi +2k−d −dk][(1− k)λi +d −dk]
(λi + k)2(λi +1)2 θ 2

i (38)

Though λi > 0 and 0 < ãiiλiGq+2,n−p(l1;0) < 1, then when k > d > 1+2k+kλi
2λi+1+k > 0 ,

MSE
(

β̂PT LE(d)
)
−MSE

(
β̂PT LT E(k,d)

)
> 0.

Under the alternative hypothesis, we can consider

MSE
(

β̂PT LE(d)
)
−MSE

(
β̂PT LT E(k,d)

)

= σ2 [
tr(FdS−1F ′

d)− tr(WAW ′)Gq+2,n−p(l1;Δ)
]

+η ′F ′
dFdη

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′

2Fdη +β ′B′
2B2β

−{σ2 [
tr(Fk,dS−1F ′

k,d)− tr(Fk,dAF ′
k,d)Gq+2,n−p(l1;Δ)

]
+η ′F ′

k,dFk,dη
[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′B′Fk,dη +β ′B′Bβ}

= σ2 [
tr(FdS−1F ′

d −Fk,dS−1F ′
k,d)− tr(FdAF ′

d −Fk,dAF ′
k,d)Gq+2,n−p(l1;Δ)

]
+η ′(F ′

dFd −F ′
k,dFk,d)η

[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

]
+2Gq+2,n−p(l1;Δ)β ′(B′

2Fd −B′Fk,d)η +β ′(B′
2B2 −B′B)β (39)

Since Gq+2,n−p(l1;Δ) > 0 and 2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ) > 0, then

MSE
(

β̂PT LE(d)
)
−MSE

(
β̂PT LT E(k,d)

)
> 0

if and only

η ′(F ′
dFd −F ′

k,dFk,d)η ≥ f3(k,d,α,Δ)[
2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)

] (40)

where

f3(k,d,α,Δ)
= σ2 [

tr(FdS−1F ′
d −Fk,dS−1F ′

k,d)− tr(FdAF ′
d −Fk,dAF ′

k,d)Gq+2,n−p(l1;Δ)
]

+2Gq+2,n−p(l1;Δ)β ′(B′
2Fd −B′Fk,d)η +β ′(B′

2B2 −B′B)β (41)

Then using the theorem in Anderson [25], we can get
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λp
(
(F ′

dFd −F ′
k,dFk,d)S−1) ≤ η ′(F ′

dFd −F ′
k,dFk,d)η

η ′Sη
≤ λ1

(
(F ′

dFd −F ′
k,dFk,d)S−1)(42)

So if Δ > Δ2, then MSE
(

β̂PT LE(d)
)
−MSE

(
β̂PT LT E(k,d)

)
> 0, where

Δ3 =
f3(k,d,α,Δ)

λ1

(
(W ′W −F ′

k,dFk,d)S−1
)[

2Gq+2,n−p(l1;Δ)−Gq+4,n−p(l2;Δ)
] (43)

Now we have
Theorem 3.5 When the null hypothesis satisfy, when k > d > 1+2k+kλi

2λi+1+k > 0, the PTLTE
is superior to the PTLE in the MSE criterion.
Theorem 3.6 Under the alternative hypothesis, when k > d > 0, and Δ > Δ3, then the
PTLTE is better than the PTLE in the MSE criterion.

4. Conclusion

In this paper we proposed a preliminary test Liu-type estimator in linear regression model
with linear restrictions. We also show that under certain conditions the new estimator is
superior to the PTE, PTRE and PTLE in the MSE sense.
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