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Abstract. Based on the definitions and properties of fuzzy metric for random sets.
We considered the limit theory of weighted sums for random sets in the sense of
fuzzy metric. The random sets are independent and compactly uniformly integrable,
and the weights are more general constants. The convergence is in the sense of
fuzzy metric induced by the Hausdorff metric.
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1. Introduction

For random sets, there are a lot of rich research on limit theory. For example, the strong
laws of large numbers (SLLN) was firstly proved by [1], where they dealt with indepen-
dent identically distributed compact random sets in finite-dimensional Euclidean space.
Later many authors have obtained beautiful convergence results in different conditions,
such as Puri and Ralescu in [2], Taylor and Inoue in [3], Adler, Rosalsky and Taylor in
[4], Fu and Zhang in [5], Guan and Li in [6]. And the limit theory of random sets plays
an important role in set-valued statistics inference.

Since 1965, Zadeh [7] introduce the fuzzy set theory. ”Fuzzy” have been a popular
vocabulary. And the fuzzy theory have been applied in many fields, such as economics,
mathematic finance, random cybernetics and so on. In practice, sometimes we will make
decisions with uncertainty. For example, We want to judge which faces are similar among
the many face photos. Since everyone’s judgment criteria are different, the conclusions
are often different. Then the fuzzy metric is more appropriate to characterize this phe-
nomenon. In 1994, George and Veeramani in [8] introduced the definition of fuzzy met-
ric for single-valued variables and then discussed completeness and separability in fuzzy
metric space. In 2005, Saadati and Vaezpour in [9] defined fuzzy normed space. Gregori
and Morillas in [10] introduced examples of fuzzy metrics and its applications. In 2020,
Ghasemi et al. in [11] discussed the laws of large numbers for fuzzy random variables in
the sense of fuzzy metric, but they did not gave the definition of fuzzy metric for sets or
fuzzy sets in detail. In 2021, Guan etc. in [12] introduced the definition of fuzzy metric
for sets, discussed the properties and proved the laws of large numbers for random sets in
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the sense of fuzzy metric. In this paper, what we are concerned is the strong limit theory
for weighted sums of compact random sets in the sense of fuzzy metric, where the fuzzy
metric is induced by dH .

This paper is organized as follows. In section 2, we shall briefly introduce some
notations and definitions of random sets. In section 3, we shall prove a limit theorem for
weighted sums of random sets in the sense of fuzzy metric induced by dH .

2. Notations

In this paper, we assume (Ω,A ,μ) is a complete probability space, (X,‖·‖) is a real sep-
arable Banach space, K(X) (Kk(X),Kc(X)) is the family of all nonempty closed (com-
pact and convex, respectively) subsets of X.

Let A,B∈K(X) and λ ∈R. Define the Minkowski addition and scalar multiplication
as the following:

A+B = {x+ y : x ∈ A, y ∈ B}, (2.1)

λA = {λx : x ∈ A}. (2.2)

The Hausdorff metric on K(X) is defined by

dH(A,B) = max{sup
x∈A

in f
y∈B
‖x− y‖,sup

y∈B
in f
x∈A
‖x− y‖}. (2.3)

for A,B ∈K(X). Then for an A ∈K(X), let ‖A‖K = dH(A,{0}).
Let X∗ be the dual space of X, for A ∈Kkc(X), the support function is defined as

s(x∗,A) = sup
a∈A

< x∗,a >, x∗ ∈ X∗, (2.4)

where < x∗,a > means the inner product.
Let S∗ denote the unit sphere of X∗, C(S∗) the all continuous functions of S∗, and

the norm is defined as ‖v‖C = supx∗∈S∗ |v(x∗)|.
A set-valued mapping F : Ω→K(X) is called a random set if for each open subset

O of X, F−1(O) = {ω ∈ Ω : F(ω)∩O �= /0} ∈ A . coF : Ω → Kkc(X) is defined by
(coF)(ω) = co(F(ω)) if F : Ω→ Kk(X) is a random set, and coF denotes the convex
hull of the set F .

For each random set F , the expectation of F , denoted by E[F ], is defined by

E[F ] =
∫

Ω
Fdμ =

{∫
Ω

f dμ : f ∈ SF

}
(2.5)

where
∫

Ω f dμ is the usual Bochner integral. Denote L1[Ω;X] as the family of integrable
X-valued random sets, and SF = { f ∈ L1(Ω;X), f (ω) ∈ F(ω) a.e.(μ)}.

Let L1[Ω,A ,μ;Kk(X)] denote the space of all integrably bounded compact random
sets, L1[Ω,A ,μ;Kkc(X)]) denote the compact and convex random sets. We can briefly
denote them as L1[Ω;Kk(X)] and L1[Ω;Kkc(X)] respectively.
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The Borel field of K(X) is denoted by B(K(X)). We define a sub-σ -field AF by
AF = σ{F−1(U ) : U ∈B(K(X))}, where F−1(U ) = {ω ∈Ω : F(ω) ∈U }. Random
sets F1,F2, · · ·Fn are said to be independent if {AFn : n≥ 1} are independent.

Definition 2.1([13]) The binary mapping ∗ : [0,1]× [0,1]→ [0,1] is called a t-norm,
if ∀x,y,z,k ∈ [0,1], it satisfies the following conditions:

(1)x∗ y = y∗ x;
(2) (x∗ y)∗ z = x∗ (y∗ z);
(3) if x≤ z and y≤ k, then x∗ y≤ z∗ k;
(4) x∗1 = x.
When the mapping is continuous on [0,1]× [0,1], ∗ is said to be continuous t-norm.

Definition 2.2 ([12]) Let ∗ be a continuous t-norm. The 3-tuple (K(X),M,∗) is said
to be a fuzzy metric space for sets, if the mapping M : K(X)×K(X)×(0,∞) satisfies the
following conditions, ∀A,B,C ∈K(X) and t,s > 0:

(1) ∀t > 0, M(A,B, t)> 0;
(2) ∀t > 0,M(A,B, t) = 1⇔ A = B;
(3) M(A,B, t) = M(B,A, t);
(4) M(A,B, t)∗M(B,C,s)≤M(A,C, t + s);
(5) M(A,B, · ) : (0,∞)→ [0,1] is continuous.
M is called a fuzzy metric on K(X).

Definition 2.3 ([12]) Let ∗ be a continuous t-norm. If ∀A,B ∈K(X) and t,s > 0, N
satisfies the following conditions:

(1) ∀t > 0,N(A, t)> 0;
(2) N(A, t) = 1⇔ t = 0;
(3) ∀α �= 0,N(αA, t) = N(A, t

|α| );
(4) N(A, t)∗N(B,s)≤ N(A+B, t + s);
(5) N(A, · ) : (0,∞)→ [0,1] is continuous;
(6) lim

t→∞
N(A, t) = 1.

then (K(X),N,∗) is said to be a fuzzy normed space for sets, N is called a fuzzy
norm for sets on K(X).

Lemma 2.1 (cf. [12]) Let NdH be a fuzzy norm, and MdH be a fuzzy metric induced
by NdH . Then ∀A,B,C ∈Kkc(X) and scalar α �= 0:

(1) MdH (A+C,B+C, t) = MdH (A,B, t);
(2) MdH (αA,αB, t) = MdH (A,B,

t
|α| ).

Lemma 2.2 (cf. [12]) Let X be a separable normed space. There exists a fuzzy
normed space C(S∗) and a function j0 : Kkc(X)→C(S∗) with the following properties:
for A,B ∈Kkc(X), t ≥ 0,

(1) MdH (A,B, t) = Md( j0(A), j0(B), t);
(2) j0(A+B) = j0(A)+ j0(B);
(3) λ ≥ 0, j0(λA) = λ j0(A),
where Md is the fuzzy metric induced by metric d in embedding space. The lemma

means Kkc(X) can be embedded into a fuzzy normed space by j0(·). We can take j0 :
Kkc(X)→C(S∗) as j0(A) = s(·,A).
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3. Main Results

In this section, we shall prove a laws of large numbers for compactly uniformly inte-
grable random sets in the sense of fuzzy metric. Before, we firstly gave the following two
lemmas.

Lemma 3.1 ([11]) Let {Vn : n≥ 1} ⊂ L1[Ω;Kkc(X)] and j0 be the isomorphic map-
ping provided by lemma 2.2.

E[ j0(Vn)] = j0(E[Vn]). (3.1)

Lemma 3.2 ([12]) Let {Vn : n≥ 1}⊂ L1[Ω;Kk(X)]. The fuzzy metric MdH is induced
by dH , then

MdH

(
n

∑
i=1

Vi,
n

∑
i=1

coVi, t

)
≥ min

1≤i≤n
MdH

(
coVi,{0}, t√

p

)
(3.2)

for any t > 0, where p is the dimension of X.

Lemma 3.3 ([12]) Let M be a fuzzy metric induced by fuzzy norm N. Then ∀A,B ∈
Kkc(X),

lim
t→∞

M(A,B, t) = 1. (3.3)

Definition 3.1(cf.[14]) The sequence {Vn : n ≥ 1} ⊂ L1[Ω;Kk(X)] is said to be
compactly uniformly integrable in the sense of dH if ∀ε > 0, there is a compact subset
Kε ∈Kk(X) such that

E[‖VnI{Vn /∈Kε}‖K ]< ε,∀n≥ 1, (3.4)

where I{Vn /∈Kε} denotes the characteristic function.

Then we have the following result which will be used later to prove the main result.
Theorem 3.1 Let {Vn : n ≥ 1} ⊂ L1[Ω;Kkc(X)] be compactly uniformly integrable

and j0 be the embedding function. Then { j0(Vn) : n ≥ 1} is also compactly uniformly
integrable.

Proof. Since {Vn : n ≥ 1} ⊂ L1[Ω;Kkc(X)] is compactly uniformly integrable, we
know that ∀ε > 0, ∃ a compact Kε ∈ Kk(X) such that E[‖VnI{Vn /∈Kε}‖K ] < ε,∀n ≥ 1.
Since j0 is a isometric isomorphic mapping, j0(coKε) is also compact.

E[‖ j0(Vn)I{ j0(Vn)/∈ j0(coKε )}‖C] = E[‖ j0(Vn)I{Vn /∈coKε}‖C]

≤ E[‖ j0(Vn)I{Vn /∈Kε}‖C]

= E[‖ j0(VnI{Vn /∈Kε})‖C]

= E[‖ j0(VnI{Vn /∈Kε})− j0({0})‖C]

= E[dH(VnI{Vn /∈Kε},{0}]
= E[‖VnI{Vn /∈Kε}‖K ]

<ε.
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That means { j0(Vn) : n≥ 1} is compactly uniformly integrable.

Theorem 3.2 Let {Vn : n ≥ 1} ⊂ L1[Ω;Kk(X)] be an independent and compactly
uniformly integrable random sets. Let {bn : n ≥ 1} be a sequence of positive constants
with bn ↑ and n = O(bn). If

∞

∑
n=1

1
bp

n
E[‖Vn‖p

K ]< ∞,1≤ p≤ 2. (3.5)

Then in the metric MdH , we have the following convergence:

1
bn

n

∑
i=1

Vi −→ 1
bn

n

∑
i=1

E[coVi] a.e. (3.6)

that is for t > 0,

MdH

(
1
bn

n

∑
i=1

Vi,
1
bn

n

∑
i=1

E[coVi], t

)
−→ 1 a.e.. (3.7)

Proof. Step 1. Let Vn : Ω→Kkc(X) be independent random sets and

∞

∑
n=1

1
bp

n
E[‖Vn‖p

K ]< ∞,1≤ p≤ 2. (3.8)

By theorem 3.1 we know that { j0(Vn) : n ≥ 1} is also compactly uniformly inte-
grable. Then { j0(Vn) : n≥ 1} are independent C(S∗)-valued random elements and

∞

∑
n=1

1
bp

n
E[‖ j0(Vn)‖p

C] =
∞

∑
n=1

1
bp

n
E[‖ j0(Vn)− j0({0})‖p

C]

=
∞

∑
n=1

1
bp

n
E[d p

H(Vn,{0})]

=
∞

∑
n=1

1
bp

n
E[‖Vn‖p

K ]

< ∞, 1≤ p≤ 2.

By a standard SLLN in Banach space([15]), it follows that

1
bn

n

∑
i=1

j0(Vi)−→ 1
bn

n

∑
i=1

E [ j0(Vi)] a.e. (3.9)

By theorem 3.1 and lemma 3.1 we know that

E[ j0(Vi)] = j0(E[Vi]), (3.10)
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1
bn

n

∑
i=1

j0(Vi) = j0(
1
bn

n

∑
i=1

Vi). (3.11)

Then

j0

(
1
bn

n

∑
i=1

Vi

)
−→ j0

(
1
bn

n

∑
i=1

E[Vi]

)
a.e. (3.12)

It follows from the embedding theorem that

MdH

(
1
bn

n

∑
i=1

Vi,
1
bn

n

∑
i=1

E[Vi],
t
2

)
−→ 1 a.e.. (3.13)

Step 2. Consider the general case. Vn : Ω → Kk(X), so coVn : Ω → Kkc(X). Since
Kkc(X)⊆Kk(X), so {coVn : n≥ 1} is also compactly uniformly integrable and

∞

∑
n=1

1
bp

n
E[‖coVn‖p

K ]≤
∞

∑
n=1

1
bp

n
E[‖Vn‖p

K ]< ∞,1≤ p≤ 2. (3.14)

It follows from step 1 that

MdH

(
1
bn

n

∑
i=1

coVi,
1
bn

n

∑
i=1

E[coVi],
t
2

)
−→ 1 a.e. (3.15)

and by lemma 3.2 and lemma 3.3, we can have

MdH

(
1
bn

n

∑
i=1

Vi,
1
bn

n

∑
i=1

coVi,
t
2

)
≥ min

1≤i≤n
MdH

(
coVi

bn
,{0}, t

2
√

p

)

= min
1≤i≤n

MdH

(
coVi,{0}, tbn

2
√

p

)

→ 1, n→ ∞ a.e.

From the triangle inequality, it follows that

MdH

(
1
bn

n

∑
i=1

Vi,
1
bn

n

∑
i=1

E[coVi]), t

)
≥MdH

(
1
bn

n

∑
i=1

Vi,
1
bn

n

∑
i=1

coVi,
t
2

)
∗

MdH

(
1
bn

n

∑
i=1

coVi,
1
bn

n

∑
i=1

E[coVi],
t
2

)
,

the right terms in above tend to 1. Then we have

MdH

(
1
bn

n

∑
i=1

Vi,
1
bn

n

∑
i=1

E[coVi], t

)
−→ 1 a.e. (3.17)

The result is proved.
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