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Abstract. The paper studies invariants for curves in three dimensional equiform
Galilean geometry. We obtain Lie algebra structure for equiform Galilean space and
concrete expressions of curve invariants using Fels-Olver’s moving frame method.
The corresponding relationship between Galilean invariants and equiform Galilean
invariants for curves is received, the Frenet formula for curves in equiform Galilean
space is also showed.
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1. Introduction

The Galilean space G3 is a three dimensional projective space, and was dealt with in
detail in [1,2]. Galilean motion has important applications in dynamics, physics, control
theory and other mathematical fields. Which has attracted more and more scholars to s-
tudy the curves in Galilean geometry. For instance, Ogrenmis, Ergut and Bektas [3] con-
sidered helix in three dimensional Galilean space, gained its characterizations for a curve
about Frenet frame. Ogrenmis and Yeneroglu [4] considered inextensible curve flows
in Galilean space and represented the curve flow as a partial differential equation about
the curvature and torsion. Yilmaz [5] obtained Frenet-Serret frame and its equations of
a curve in four dimensional Galilean space and proved that tangent vector of a curve
satisfied a vector differential equation of fourth order. Akar, Yiice and Kuruoglu [6] s-
tudied one-parameter planar motions in Galilean plane. Mahdipour-Shirayeh [7] demon-
strated a classiflcation of spacetime curves under Galilean motions using Cartans method
of equivalence. Ozturk, Cengiz and Koc Ozturk [8] established relationship between the
curve motions in Galilean space, its similarity geometry and the inviscid, viscous Burgers
equations.

The equiform geometry preserves angles between planes and lines, respectively.
Some basic notions of equiform differential geometry of curves in G3 was given in [9],
the basic invariants, Frenet’s formulas and curves of constant curvatures was obtained.
Yoon [10] discussed an inextensible curve flow in the equiform geometry of Galilean
space, and received a set of partial differential equations characterizing the flow. Ay-
din and Ergiit [11] studied equiform differential geometry of curves in four dimensional
Galilean space, get the angle between the equiform Frenet vectors and their derivatives
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and characterized generalized helices about their equiform curvatures. Yoon, Lee and
Lee [12] considered osculating curves and equiform osculating curves in four dimen-
sional Galilean space and characterize such curves. Bozok, Sepet and Ergiit [13] found
that the Frenet formulas and curvatures of inextensible curve flows and its equiformly
invariant vector fields and intrinsic quantities were independent of time.

Now, we want to know: Is there any other way to find the spectific representation
of curve invariants in three dimensional equiform Galilean space? What is the relation
between curve invariants in equiform Galilean space and curve invariants in Galilean s-
pace? This paper will answer these questions. The paper’s outline is given as follows:
Section 2 considers curves in three dimensional equiform Galilean space. First, we give
some notions about three dimensional equiform Galilean space. Second, we obtain con-
screte expression of infinitesimal generators of equiform Galilean group in three dimen-
sional Galilean space. Third, we compute the moving frame and differential invariants
for curves in three dimensional equiform Galilean geometry using Fels-Olver’s mov-
ing frame method [14,15]. The relationship between Galilean invariants and equiform
Galilean invariants for curves is also deductived. Fourth, we establish specific represen-
tation of Frenet frame for curves in three dimensional equiform Galilean space. Section
3 is a conclusion.

2. Curves in the equiform Galilean space

First, let’s give a brief introduction to basic notions from the equiform Galilean space.
The transformation group in the equiform Galilean space is given by

A 0 0

X X a
v | =1 Aa Acos¢ Asing y|l+1b], (1)
Z Aay —Asing Acosd z c

where A,ay,az,¢,a,b,c are real numbers.
The equiform Galilean scalar product of vectors & = (x1,y1,21), B = (x2,¥2,22) is
given in this form

X1X2, ifxl #001‘)62 ?50,
a = . 2
<ap> {)’1)’2+11Z2,1fx1=0andx2=0- )

The distance between a, 8 is defined by the formula

dop = { oz — x1, if x1 # x2, 3)
o \/(y2*y1)2+(127z1)2,ifx1 =X3.

Let C: I C R — G3 be a curve in Galilean space Gj3, has the following form

C(x) = (x,y(x),z(x)). “)
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2.1. The structure of Lie algebra

In three dimensional equiform Galilean geometry, the equiform Galilean transformation
is given by

X A 0 0 X a
v | =1\ Aar Acos¢p Asing y|l+1[b
z Aay —Asing Acosd Z c

According to above expressions, the corresponding infinitesimal generators of the
three dimensional equiform Galilean group in local coordinate (x,y,z) are given by

V1= ax» V2 = aya V3= azv \Z :xa}M \H :xazv (5)
V6 = 20y —y0;, V7 = X0y + ydy +20;.

For the infinitesimal generators (5), we have the following commutator table:

Vi V2 V3 V4 V5 Vg V7
\41 0 0 0 V2 V3 0 \41
\b) 0 0 0 0 0 —V3 V)
V3 0 0 0 0 0 V2 V3
V4|—V2 0 0 0 0 —Vs5 V4

V5|—V3 0 0 0 0 V4 0
Ve 0 V3 —V2 V5 —V4 0 0
V7|—V1 —V2 —V3 —V4 0 0 0

2.2. Moving frame and invariants for curves

In this subsection, we compute moving frame and invariants for curves in three dimen-
sional equiform Galilean geometry using Fels-Olver’s moving frame method [14,15].

For a parametrized curve (4), the prolonged group transformations of equiform
Galilean transformation (1) are given by

d .
& _ aj +yxcosQ + zysing,

><|I

dx
dz .
i=—=a —yxsm(P —|—ZxCOS¢,
dx
. dyy 1 .
or = dTE;) = I(ymcos(]ﬁ + ZeSing),
Y . 6
oy = i = z(—yxxsmgl) + ZxxCOSP), ©
. &y 1 .
= o = ﬁ(yxxxcos(i) + ZySing),
_ Py 1 .
e — dTg = 77 (“Yeusing + zucosp),
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which are received by utilizing the differential operator

d d
& Adr 7

successively to ¥ and zZ. Now, we select the cross-section
2 =4{0,0,0,0,0,0,1},

and solve the above equations for A, a;, az, ¢, a, b, ¢ generates the right equivariant

moving frame
A=)Vt 2
a=—x \/ yjzcx +Z)2cx’

b= x(yxzxx - yxex) — YZxx + ZYVxxs

c= x(yxyxx + szxx) — YVxx — Z%xx»

Yxx ®)
¢ = —arctan—,
Txx
T VxZxx + ZyYax
ar = /2 2
yXX + ZXX
—YxYxx — Zxlxx
L= 5
yxx + Z.XX
The differential invariants are
di —/y3, +2.dx:=d0,
_ + ZxxxZ _
Zfﬁ '_> — y.XX)Cy)CX X.X.X3.X.X - K’ (9)
Vit

YaxxZoxx — YaxZaxx =
—2 - 3 = T,
V y,KX +ZX.X

where 6, K, T are the arclength, curvature and torsion of the curves in three dimension-
al equiform Galilean geometry, respectively. curvature K, torsionand 7 and their deriva-
tives about the arclength 6 form a complete system of differential invariants of curves
in equiform Galilean space. Any geometric invariants in equiform Galilean space are
invariant under the equiform Galilean transformation (1).

As we all know, the transformation group in three dimensional Galilean space G3 is
provided by [1]

Vere > =

x 1 0 0 X a
v | =1 a cos¢ sing y|l+1|b
z ap —sing cos¢ z c
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For the given curve (4), we repeat the above Fels-Olver’s moving frame method, the
corresponding arclength, curvature and torsion of the curve in three dimensional Galilean
geometry are provided by

dx —dx :=ds,
3
T = /Y T2 =K, (10)

YxxxZoxx — LxxxYxx
Vit 2

where s, k, 7 are the arclength, curvature and torsion of the curves in three dimensional
Galilean geometry, respectively.

Compare (9) and (10) to find the following relation between Galilean invariants and
equiform Galilean invariants for curves:

Ve —> = =1,

40 = xds, k== = (), £ = (1)

2.3. Frenet formulas for curves

In this subsection, let’s establish specific representation of Frenet frame for curves in
equiform Galilean space.
The Frenet vectors of the curve (4) are defined by

dr
t= a = (17 Yx» Zx)7
t 1
n= ;X = E(()’ Yxxs Zxx)a (12)

1
b = E(()? —Zxxy yxx)a
where t, n, b are called the unit tangent vector, unit normal vector and binormal vector
of the curve r in the Galilean space, respectively. Then the Frenet formulas of the curve
r in three dimensional Galilean geometry can be the form as

t 0k O t
n| =(00r+< n (13)
b 0-70 b

X

LettingT= 42 = 4t dx — L (1 'y 7.) = L then the Frenet frame vectors in equifor-

m Galilean space can have the following form

t 1

T= E = E(L Yx, ZX)7
n 1

N = E = E(Oa )’xxa ZXJC)? (14)
b 1

B = E = E(()) —Zxxs yxx)~
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The corresponding Frenet formula in three dimensional equiform Galilean space is
represented as

= Z =

Il
S O Al
=)

T
N|. 15)
B

Q Al —
Al Ql

¢}

3. Conclusion

The paper considers invariants for curves in three dimensional equiform Galilean ge-
omtry. We establish the relation between Galilean invariants, Frenet formulas in Galilean
space and equiform Galilean invariants, Frenet formulas in equiform Galilean space.
Whether there is a similar relationship between curves in higer dimensional Galilean
space and in higer dimensional Equiform Galilean space is the focus of our future study.
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