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Abstract. This paper continued the study of the complexity behavior of the 

satisfiability analysis of hard random formulas given in the conjunctive normal form 

(CNF). In the 3-CNF formula, each clause contains three literals of logical variables. 

The number of logical variables in the formula is N. In this paper, the SAT solver is 

improved by introducing equality reduction and pure literal identification 

procedures. The solver improvement reduced the exponent (with base 2) from 

N/20.86 to N/21.41 with an R=4.6 ratio of the number of clauses to the number of 

variables. The results show that the efficiency of the pure literals identification 

procedure decreases as R increases. An important part of the study is an empirical 

estimation of the algorithmic complexity of the SAT problem with large number of 

variables. The proposed method gives a convenient lower bound on the complexity 

of analysis for random 3-CNF formulas. We estimated the algorithmic complexity 

for the range N=256÷8192. The exponential dependence of complexity on N for 

random 3-CNF formulas at a fixed value of R is demonstrated in this range. 
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1. Introduction 

This paper continues the research on the question of whether the algorithmic complexity 

of the SAT problem is polynomial or exponential in the number of Boolean variables. 

The SAT problem is to establish the property of a logical formula to be satisfiable or 

unsatisfiable. Our study considers logical formulas given in the conjunctive normal form 
(CNF). CNF is the set of clauses. In 3-CNF any of clauses contain no more than three 

literals of logical variables (literal is the variable itself or it’s negation).  

Excellent surveys of the problems under consideration are presented in [1-3]. The 

SAT problem can be considered as the kernel of the class of NP-complete problems. In 
turn, the problems of this class cover a wide class of computationally complex problems 

related to optimization, verification, identification, and so on. SAT problem is directly 

related to automated theorem proving (also known as ATP or automated deduction). Due 

to the wide application of NP-complete problems in artificial intelligence systems, the 
question of estimating their algorithmic complexity is considered very important. Many 

publications are devoted to the algorithmic complexity of the SAT problem. References 

to the base papers are given in surveys [1-3].  
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The proposed paper develops a study of the algorithmic complexity of the analysis 
of the satisfiability/unsatisfiability property of hard random 3-CNF formulas. The 

development is carried out in the direction indicated in [4-6].  

It is assumed that the study of such formulas will help to answer the question whether 

the algorithmic complexity of the SAT problem is polynomial or exponentially bounded 
with respect to the number of variables N.  

In the study, we will try to evaluate the complexity of the analysis of 3-CNF 

formulas over a wide range of the number N of variables up to 213 (8192).  

2. Hard random 3-CNF formulas 

The object of the study are 3-CNF formulas generated randomly. For generating 3-CNF 

formulas we use a very convenient method [1-3]. The total number of possible three 

literal clauses is 8  (N3) where N is the number of logical variables. Each clause is 

numbered and is a disjunction of three terms (literals). 
In the process of building the formula we randomly select required number M of 

clauses. A formula is satisfiable if there is some assignment for logical variables that 

gives it the value TRUE. 

For random 3-CNF formulas the property (satisfiable/unsatisfiable) correlates with 
the ratio R of the number of clauses to the number of variables. It was shown [7, 8] that 

as the number of variables increases with R ≤ 3.52, unsatisfiable formulas are generated 

negligibly rarely. On the other hand, satisfiable formulas are generated negligibly rarely 

if 4.51 ≤ R. The most difficult (hard) to analyze are the random 3-CNF formulas with R 
≈ 4.3 [4-6].  

In this paper we describe experimental results relating to R=4.6 and R=5.0. Let us 

note that in full accordance with the theoretical prediction all constructed random 3-CNF 

formulas turned out to be unsatisfiable.  

3. Improvement in the SAT solver  

A previous study [6] was conducted using a SAT solver 1 based on the well-known 

Davis-Putnam-Logemann-Loveland (DPLL) algorithm [1-3] with the BinRes clause 

learning procedure described in [9]. This procedure assumes that all resolutions whose 
resolvents are units or two-literal clauses are executed during formula analysis. 

In this paper we use improved SAT solver 2. This solver 2 includes procedures of 

equality reduction and pure literal identifying [9]. Both procedures are aimed at reducing 

the number of variables handled by the solver as quickly as possible.  
The possibility of equality reduction arises if in the formula we find (for example) a 

pair of two-literal clauses (2-clauses) such as {a, ¬b} and {¬a, b} (i.e., a → b and b → 

a, hence a ↔ b). In this case we can replace variable b by variable a.  

If there is a single literal among the two possible literals of a variable in the clause 
set, then we have found a pure literal. Then, obviously, we can assign a TRUE value to 

the pure literal.  

Incorporating these procedures into the SAT solver reduces the number of branches 

of the analysis tree. However, depending on the implementation of the solver, these 
procedures may require significant additional computations. 
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Any time we need to choose a variable to branch, the SAT solver chooses the 
variable that is represented in the maximum number of shortest clauses.  

4. Experiment on complete analysis of 3-CNF formulas  

Experimental results are presented in the Table 1. For comparison, Table 1 shows the 

results for both solvers 1 and 2. This allows us to evaluate the contribution of the 
introduced procedures for identifying equal literals and identifying pure literals.  

 

Table 1. Results of complete analysis of 3-CNF formulas by two solvers. 

N Solver 1  Solver 2 
R=4.6 R=5.0 R=4.6 R=5.0 

256 896∙10^1 (4,0%)  

13.13 
301∙10^1 (1.0%) 

11.59 

 812∙10^1 (1.0%)   

12.99 

268∙10^1 (0.3%)  

11.38 

320 799∙10^2 (2.2%)   

16.29 

191∙10^2 (1.0%) 

14.22 

 625∙10^2 (3.8%) 

15.93 
158∙10^2 (2.5%) 

13.95 

384 767∙10^3 (3.1%)   

19.55 

145∙10^3 (19%) 

17.15 

 575∙10^3 (11%) 

19.13 
105∙10^3 (7.0%) 

16.69 

448 592∙10^4 (2.1%)   

22.49 

719∙10^3 (5.0%) 

19.46 

 364 10^4 (11%)  

21.8 

570∙10^3 (4.3%) 
19.12 

512 422∙10^5 (12%)  

25.34 

458∙10^4 (3.0%) 

22.13 

 334 10^5 (2.5%) 

24.99 

364∙10^4 (0.6%) 
21.8 

 

The cells of Table 1 show μEJ(N, R), J=1,2, median (for 65 instances) values of the 
complexity of proving unsatisfiability of the formulas, expressed through the number of 

branches constructed. The notation 10^X=10X is used. The index J corresponds to the 

number of the solver used (solver 1 or solver 2). Then the deviation of the median value 

μEJ(N, R) from the value given by the obtained approximation formula (for the 
corresponding solver) is given in brackets, expressed as a percentage. 

 

Figure 1. Graphical representation of the empirical complexity values μEJ(N, R). 
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After that the value of log2(μEJ(N, R)) is given in the second line of cells.  
Experimental results presented in the Table 1 are illustrated in Figure 1. In 

logarithmic scale are presented values of μEJ(N, R). The data corresponding to solver 2 

is approximated by the least squares method as:  

e(4.6, N) = N/21.41 + 1.046,    (1) 

e(5.0, N) = N/24.61 + 0.982. (2) 

In [5] an approximation formula was obtained for solver 1:  

μE1(N, R) ≈ 2 · 2N/(8.4R-17.81). (3) 

It was not possible to obtain a similar formula for solver 2. This is because the 
efficiency of the pure literal identification procedure increases with decreasing R value, 

while the efficiency of the BinRes procedure decreases. For solver 2, we have separate 

approximation formulas for each value of R. We obtain:  

μE2(N, 4.6) = 2e(4.6, N) ≈ 2.045 · 2N/21.41, (4) 

μE2(N, 5.0) = 2e(5.0, N) ≈ 1.975 · 2N/24.61. (5) 

The experiment showed that the introduction of the procedures of equality reduction 

and identification of pure literals significantly reduces the number of analyzed branches. 

For R=4.6 we get 2 to the power of N/21.41 versus the former N/20.86 (for R=5.0 we 
have N/24.61 versus N/24.2).  

The experiment also showed that in the range N=256÷512, the improved algorithm 

(solver 2) shows an exponential on N increase in the complexity of the analysis of random 

3-CNF formulas generated with a fixed ratio R (R=4.6 and R=5.0) of the number of 
clauses to the number of variables.  

5. Computational experiment with an enlarged number of variables 

We want to get a lower bound on the complexity for the number N of variables that 

significantly exceeds 512. However, when the number of variables exceeds 512, it 
becomes difficult to perform a computational experiment with complete analysis of 3-

CNF formulas because of the huge amount of calculations.  

To get around this obstacle, the following technique is used. Our approach is to 

select a limited number of branches from the huge tree of formula analysis. For these 

branches the median value μ (N, R) of the number of variables that were used to branch 

in the tree is calculated. Each of these (used for branching) variables corresponds to a 

node in the analysis tree. From the obtained value of μ  we can try to estimate the total 

number of branches in the complete analysis tree. The first thought is to use 2μ  as an 

estimate:  (N, R) = 2μ .  

In the conducted experiment, 1024 random 3-CNF formulas were generated (with 

ratio R=4.6) for each of the desired numbers of 256, 512, 1024, 2048, 4096, and 8192 

variables. In the analysis tree of each formula 2^10 (1024) branches are selected (using 
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random numbers). For each of the considered numbers of N variables the median value 

μ (N, 4.6) of the number of nodes among 2^20 (1048576) branches is obtained. The 

computational experiment was conducted using solver 2. The results of the experiment 
are presented in Table 2. 

 

Table 2. The median number of nodes in the branch as a function of N. 

N 256 512 1024 2048 4096 8192 

μ  11 20 39 76 150 298 

μ ” 10.88 20.15 38.68 75.74 149.88 298.14 

 

The linear least-squares approximation μ "(N, 4.6) = α·N + β for the first two lines 

of the table as gives us the values α = 0.0362 and β = 1.61.  

The approximation values are presented in the third row of Table 2. Linear 

approximation μ "(N, 4.6) provides a sufficiently high correlation with empirical data. 

It is necessary to explain the way of selecting the analyzed branches. A random 

number is generated each time a branching variable is assigned. If this number is 1, the 

value of the branching variable is TRUE, if 0, it is FALSE. In the case of an unsatisfiable 
formula, the branch ends in a contradiction, and we fix the number of branching variables 

(nodes).  

 

Figure 2. Predominant choice of short branches. 

 
Note that the branch selection method used has the unavoidable drawback that it 

predominantly selects short branches. This drawback illustrated on Figure 2. This figure 

shows an example of a fragment of the analysis tree. It is easy to see that the probability 

of choosing branch 1 is equal to the total probability of choosing branches 2÷7. Also, the 
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probability of choosing branch 7 is equal to the total probability of choosing branches 
4÷6. This property of the proposed branch selection method can be seen as a way to 

obtain a bottom estimate of the complexity of the analysis of random 3-CNF formulas.  

Having a method for finding a lower estimate of the complexity of the analysis 

(performed by a given solver) of generated (with a given value of the ratio R) 3-CNF 
formulas is very valuable. The exponential nature of the lower estimate is evidence in 

favor of the exponential nature of the complexity of the analysis (performed by fixed 

solver) of generated random 3-CNF formulas.  

In conducted experiment the resulting lower estimate  2(N, 4.6) gives us:  

 2(N, 4.6) = 2μ "(N, 4.6) ≈ 3.05 · 2N/27.62. (6) 

In Figure 1, logarithmic value of  2(N, 4.6) is represented by the bold dashed line.  

The empirical distribution of the number of branches (vertical axes) by the number 
of nodes (horizontal axes) for 3-CNF formulas with N=256, 512, 1024, 2048, 4096, and 

8192 is shown in Figure 3 and Figure 4. 

 

Figure 3. Distribution of the number of branches by the number of nodes for N=256, 512, 1024. 

 

Figure 4. Distribution of the number of branches by the number of nodes for N=2048, 4096, 8192. 
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The distribution of the number of nodes in the analysis tree for a given N number 
of variables is close to a normal distribution. 

6. Conclusions 

We performed the computational experiment in two modes. The first mode is the 

complete analysis of a Boolean formula. Complete analysis implies the possibility of 
proving the unsatisfiability of the formula by considering all branches of the proof tree.  

The second mode is a partial (randomized) analysis of formulas with an extremely 

large (for a complete analysis) number of variables.  

The first mode focuses on the question whether or not the introduction of some 
additional procedures into the solver can violate the exponential behavior of the 

algorithmic complexity estimate μE(N, R).  

The introduction of equality reduction and pure literal identifying procedures into 

the solver significantly reduced the number μE(N, R) of branches analyzed by the solver. 
For hard random 3-CNF formulas, the value of μE(N, 4.6) decreased by a factor of 1.4 

on average. At the same time, the behavior of the estimate μE(N, R) for the range 

N=256÷512 remains exponential.  

For the second method of the computational experiment, we presented a method for 

obtaining the lower bound  (N, R) of the complexity of the analysis of the 3-CNF 

formula using a concrete SAT solver. We used solver 2.  
This method involves constructing a limited number of branches from the full 

analysis tree. The set of branches to be analyzed is chosen randomly. The number of 

branching nodes in the selected branches is used in forming the estimate  (N, R).  

The presented method allowed us to estimate the complexity of analysis of formulas 

with the number of variables in the range from 256 to 8192.  

The estimate obtained  (N, R) is not exact, it is greatly underestimated. Empirically, 

it depends exponentially on N. For solver 2 we obtained  (N, 4.6) ≈ 3·2N/27.62. This 

suggests that a more accurate estimate μE(N, R) should also be exponential from N.  
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