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Abstract. With the help of the space-to-depth and depth-to-space modules, we 

provide a convolutional neural network design for depth estimation. We show 

designs that down sample the spatial information of the picture utilizing space-to-

depth (SD) as opposed to the widely used pooling methods (Max-pooling and 

Average-pooling). The space-to-depth module may shrink the image while 

maintaining the spatial information of the image in the form of additional depth 

information. This technique is far superior to Max-pooling, which diminishes the 

image's information and features. We also suggest a lightweight decoder step that 

builds a high-resolution depth map out of many low-resolution feature maps using 

the depth-to-space (DS) module. The suggested architecture effectively learns depth 

estimation with high processing speed and accuracy. We trained and evaluated our 

suggested model on NYU-depthV2 dataset and attained low error values (RMSE= 

0.342) and high delta accuracies (δ 3=0.996) at a fast-processing speed (25Fps). 
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1. Introduction 

The majority of convolutional neural network (CNN) architectures use Max-pooling 

(MP) to compress the feature space to a more condensed representation, but MP 

introduces information loss as they do so because the important information only exists 

in the window's maximum value, which is used to slide over the input data. Due to the 
information lost during the pooling process, certain pooling algorithms provide a lossy 

compressed representation, which has a severe impact on the entire learning process 

utilizing the neural network design. The suggested down-sampling methodology lowers 

the input features' spatial size, but it adds the spatial reduction as additional depth 
channels using a convolutional learnable technique that keeps the same amount of 

information. The depth-to-space (DS) module [1] and the space-to-depth (SD) [2] 

module [2] were first suggested for the image super-resolution task. Recent 

developments in CNN designs have demonstrated their improved performance on a 
variety of computer vision applications, particularly the depth estimation task. In robotics, 

3D image interpretation, medical diagnosis, virtual/augmented reality, and self-driving 

cars, depth estimate is a crucial problem. For those applications, performing depth 

estimate with high speed and accuracy is therefore quite helpful. 
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Following is a summary of our contribution in this paper: 

� We provide a new convolutional neural network architecture that is built on the 

efficient SD and DS modules that can effectively learn depth estimation tasks. 

� We compare the performance of the proposed encoder architecture with 

convolutional architecture with MP. 

An overview of the proposed CNN architecture using SD and DS modules is shown 

in Figure 1. The SD-CNN compresses the input image features to many low-resolution 
feature maps, the DS module up-samples the representation to form the depth map. 

  

Figure 1. Overview of the proposed CNN architecture using SD and DS modules. 

2. Related work 

The depth estimation is mostly performed by predicting a per-pixel label or continuous 

value. To estimate depth from stereo pair pictures or from a single image, several depth 

estimation techniques using various CNN architectures were recently introduced. A 
coarse prediction CNN network was suggested by Eigen et al. [3] to predict an initial 

coarse depth map and improve it using a different CNN network. A cascade of several 

continuous random fields (CRF) was proposed by Xu et al. [4] to integrate the output of 

multiple CNNs. A monocular depth estimation approach employing relative depth maps 
of certain pairwise comparison matrices was suggested by Lee et al. [5]. A shift- and 

scale-invariant depth map is predicted for each semantic portion of the image using the 

divide-and-conquer network which was proposed by Wang et al. [6]. A depth estimation 

technique applying an attention module (SharpNet) to the outlines of the objects in the 
image that are occluded, was proposed by Ramamonjisoa et al. [7]. To maximize depth 

estimation utilizing U-Net architecture, Wu et al. [8] presented PhaseCam3D, a depth 

estimation technique based on optimizing a mask on the camera aperture plane. From 

Big to Small (BTS), a CNN encoder-decoder that employs unique local planar guiding 
layers in the decoding step for precise depth estimates, was suggested by Lee et al [9]. 

To achieve accurate depth estimation, Yin et al. [10] suggested an encoder-decoder CNN 

for depth estimation based on imposing a geometric restriction of the virtual normal 

direction on the 3D structure. An encoder-decoder transformer-based architectural block 
that separates the depth range into bins with estimated centers depending on the image 

was proposed by Bhat et al [11]. Patil et al. [12] recently proposed a two head CNN 

network for depth estimation, the first head produces pixel-wise plane values while the 

second head produces a dense vector field for each pixel position. The output from the 
second head is adaptively fused by the output of the first head. 

The DS module was employed in recent CNN-based depth methods [13-14] but the 

SD module was not presented as a down-sampling technique like we propose in this 
research. The suggested architecture outperforms state-of-the-art (SOTA) approaches for 

depth estimation, despite being simpler and less sophisticated than the SOTA methods. 
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3. Proposed method 

The proposed method is built around two main blocks: the SD layer, which acts as a 

down-sampling module like the pooling layers, and the DS layer, which acts as a decoder 

stage to merge the feature depth in order to up-sample the feature maps to form the dense 

map at the same size as the input. Wang et al. [2] introduced the Space-to-Depth (SD) 
module as a method of producing a dense representation of the optical flow for use in 

video super-resolution. We use it as a learnable spatial down-sampling layer in our 

suggested technique, comparable to the pooling method. The SD module differs from 

pooling in that no feature compression occurs on the input feature maps, but the decrease 
in spatial size is transformed into depth data via pixel aggregation. This pixel aggregation 

is accomplished by turning input feature maps of shape rW × rH × C into feature maps 

of shape W × H ×C × r2 using an aggregation process that can be described 

mathematically as shown in equation (1). 

                                                 (1) 

where Y and X are the DS layer's low-resolution output with extended depth channel and 

high-resolution input, respectively. WL and bL are the DS layer's weights and biases, W 

is the image width, H is the image height, C is the image channels, r is the image depth, 
and F is the layer's activation function. This layer is used five times in our suggested 

designs, each time reducing the spatial dimension by r=2 in width and r=2 in height and 

increasing the depth by four times r2 = 4. Depending on the architecture, convolutional 

layers, Relu, and batch normalization are applied in a different sequence each time the 
input image is down sampled. Shi et al. [1] introduced the depth-to-space (DS) module 

as a method of aggregating the pixels of the input features to generate a higher resolution 

image for the image super-resolution task. We use it as a one-stage up-sampling decoder 

in our suggested technique. Pixel aggregation is accomplished by turning the encoder's 
input feature maps of shape W×H×r2 into a dense map of form rW × rH via a learnable 

process that can be described mathematically as the opposite of equation (1) as in 

equation (2). A graphical illustration of the SD and DS is shown in Figure 2. 

                                                          (2) 

 

Figure 2. The two main modules in our proposed method. a) Space-to-Depth (SD) which is used to down 

sample the input feature map of size rW×rH×C to lower resolution map of size W×H×C×r2. b) Depth-to-Space 

(DS) which is used as the decoder stage in our method to up-sample the input low-resolution feature map of 

size W × H × r2 to a higher resolution map of size rW × rH. 
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Figure 3. The proposed architectures for comparison. (a) MP-CNN: Max-pooling-based CNN architecture for 

down-sampling. (b)SD-CNN: Space-to-Depth (SD)–based CNN architecture for down-sampling. In both 

architecture DS module is used to construct the high-resolution depth map from the down-sampled features. 

We present two designs using distinct down-sampling strategies, evaluate their 
performance, and emphasize the benefits of each. We propose a basic CNN that uses 

max-pooling (MP-CNN) to minimize the spatial size of the input features, using two or 

three convolutional layers that are repeated with “Relu” activation and batch 

normalization (BN). The feature depths through the down-sampling stages are 3, 16, 64, 
256, and 1024, and the final dense map is created from 1024 low-resolution features 

produced by 1 × 1 convolutional layer with a size of 32×W and 32×H using the DS 

decoder, as shown in Figure 3-a. The second CNN design is SD-Net, which has the same 

architecture as the first with MP but uses the SD layer instead of MP to down sample the 
spatial size of the input and expand the depth of the output features, as illustrated in figure 

3-b. In section 4 (Experimental Results), we compare the performance of the two 

suggested architectures, demonstrating that SD-Net has much higher accuracy in the 

depth estimation task than the MP-Net. The Huber loss (a function that selectively acts 
either like L1 loss or L2 loss depending on a threshold value "t") is the loss function used 

for learning the depth estimation. It is mathematically stated as in equation (3). 

                                    (3) 

where I is the ground truth pixel value and   is the predicted pixel value, and "t" is set 

to 1 since it experimentally speeds up the training process. L1 and L2 are also evaluated 
individually in two distinct tests for the suggested technique training, however, each one 

experienced a slow loss improvement problem at some point throughout the training. 

4. Experimental results 

The proposed architectures are trained and tested on NYU-depthV2, which consists of 
1449 labeled photos of indoor scenes (bedrooms, living rooms, kitchens, bathrooms, and 

workplaces) and their corresponding depth maps taken by the Microsoft Kinect sensor. 

The dataset has 795 training photos and 654 test images. We train and test our model on 
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a desktop computer with an Nvidia RTX3090 GPU with Ampere 24 GB memory, an 
Intel Core i7-8700 CPU with a clock speed of 3.20 GHz and 64 GB RAM, and a 

Tensorflow Keras environment for 1500 epochs with Adam's optimizer. 

The training and test image sizes are 640×480. We evaluate the depth estimation 

performance using the absolute relative error (REL = ), the root mean 

squared error (RMSE =   ), and the delta accuracy  for 

t threshold values 1.25, 1.252, and 1.253, where y and  are the ground truth and predicted 

pixel values, respectively, and N is the number of pixels in the depth map. 

Table 1. Evaluation of the results obtained by the proposed method in terms of REL, RMSE, δ accuracy. 

Model Param. count REL RMSE  δ1 δ 2 δ 3 FPS 
MP-CNN 23,668,624 0.0947 0.3852 0.9287 0.9815 0.9946 26.3 

DS-CNN 34,363,552 0.0924 0.3421 0.9301 0.9824 0.9955 25.0 

 

 
Figure 4. Results obtained by the proposed architectures. (a) Input RGB image. (b) Ground truth depth map. 

The predicted depth maps by MP-CNN and SD-CNN are shown in (c) and (d), respectively. 

As shown in Table 1, SD-Net attained better errors (REL of 0.0924 for SD-Net 
versus 0.0947 MP-Net) and accuracy values but at a lower speed than MP-CNN (25.0 

versus 26.3 fps). By comparing the visual quality in Figure 4, the predicted depth by SD-

CNN is better than that for MP-CNN. MP-CNN introduces a severe blocking effect due 

to the nature of the Max-pooling process, which introduces data loss, while it is less in 
the case of SD-CNN as no data loss happens. Table 2 shows a comparison between the 

proposed models and the recent methods on the NYU-depth V2. SD-CNN is the best 

model in terms of REL, RMSE, and δ1 although its architecture is simple. 
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Table 2. Comparison between the proposed architectures and the recent methods of depth estimation in terms 

of REL, RMSE, δ accuracy.  

Model REL RMSE  δ1 δ 2 δ 3 
Eigen et al. [3] 0.158 0.641 0.769 0.950 0.988 

Xu et al. [4] 0.121 0.586 0.811 0.954 0.987 

Lee et al. [5] 0.131 0.538 0.837 0.971 0.994 

SharpNet [7] 0.139 0.502 0.836 0.966 0.993 

Yin et al. [10] 0.108 0.416 0.875 0.976 0.994 

BTS [9] 0.110 0.392 0.885 0.978 0.994 

SDC-Depth [6] 0.128 0.497 0.845 0.966 0.990 

PhaseCam3D [8] 0.093 0.382 0.932 0.989 0.997 
Adabins [11] 0.103 0.364 0.903 0.984 0.997 
P3Depth [12] 0.104 0.356 0.898 0.981 0.996 

MP-CNN (ours) 0.094 0.385 0.928 0.981 0.994 

SD-CNN (ours) 0.092 0.342 0.930 0.982 0.996 

5. Conclusion 

The suggested technique uses the powerful and fast SD module for lossless image down-

sampling in the encoder stage and the fast DS module for up-sampling in the decoder 
stage, it can efficiently learn the depth estimation problem (RMSE=0.342 and δ 3=0.996). 

The effectiveness of the proposed technique was demonstrated in the results section 

showing that it can work at a fast speed (25 fps) suitable for real-time applications. 
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