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Abstract. Condition monitoring becomes an integral part of the industrial 

manufacturing system to ensure a safe working environment and reduce the cost of 

maintenance. Involving deep learning techniques in fault diagnosis methods not 

only increases the accuracy and reliability of the system but also reduces the 

operation time and hassle of the manual feature extraction process. In this paper, a 

complete framework for fault classification is introduced by using the vibration 

signals of bearings containing normal and faulty conditions. Firstly, the frequency 

spectrums of the time-series signals are generated with FFT and transformed the 1-

D signal into 2-D images with the recurrence plots (RP) algorithm. Finally, a deep 

CNN model is designed to classify the bearing conditions with the extracted high-

level features from the RP-based image dataset. The images show a distinct pattern 

in every bearing condition and the CNN model can achieve 99.24% accuracy to 

classify three different bearing conditions. The image classification-based fault 

diagnosis approach is automated and eliminates the disadvantages of the manual 

feature extraction process. The generated images with RP were also trained with 

three predefined CNN models to verify the effectiveness of the fault patterns. Finally, 

the comparative analysis demonstrates that the proposed method outperforms other 

researchers’ approaches both in terms of classification accuracy and computational 

cost.  
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1. Introduction 

The vibration signals are the most used signal type in the fault diagnosis approaches of 

induction motors (IM) due to the convenient installation process of vibration sensors and 

the integrity of the collected data [1]. Some benefits of IMs, such as simple design, low-
cost and high fabricating technologies, and reliable operating ability make them an 

inseparable component in modern industries. Sudden failure of any components due to 

long operating time, tough working environment, and varying load can result in both 

economic and health hazards on a large scale. To ensure the continuous operation and 
high reliability of the system, the importance of performing predictive maintenance 

cannot be ignored [2]. The IEEE survey found that the bearing fault was the most 
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occurring and covered more than 40% of the total mechanical failures [3]. The fault 
diagnosis of the rolling element bearings can be classified mainly as a model-based and 

data-driven method. A mathematical model is designed with the assumptions of the real 

system and compares the result with the corresponding data of the system to predict the 

health conditions of the bearings [4]. The data-driven technique mainly extracts features 
from the data of different bearing health conditions and classifies them with machine 

learning (ML) models. Different types of signals from induction motors such as vibration 

signal, current signal, acoustic emission signal, and temperature are acquired and 

investigated to analyze faulty conditions in condition monitoring. Multiple features from 
the time domain, frequency domain, and time-frequency domain are extracted from the 

acquired signal, but due to the non-linear and non-stationary nature of bearing data, all 

extracted features may not equally exhibit fault signatures and a feature selection 

technique is required. However, the successful implementation of this overall process 
needs a good knowledge of the acquired data and expertise in the signal processing 

techniques [5]. Advanced ML methods, such as deep learning (DL) techniques, named 

autoencoder (AE), deep belief networks (DBN), artificial neural network (ANN), and 

convolutional neural network (CNN) can successfully overcome the limitations of 
manual ML algorithms by automatically extracting significant features from the original 

data [6].  

Despite CNNs' ability to learn patterns directly from raw data, the raw data are often 

heavily contaminated by noise from the outside environment. Therefore, CNNs have 
been combined with different domain-based processing algorithms to improve fault-

diagnosis systems. The generation of images from 1-D signals by using wavelet packet 

transforms (WPT), spectrograms, and Gramian angular field (GAF), and classifying 

them with a 2-D CNN model has become very efficient in fault diagnosis fields [5]. A 
detailed discussion on fault diagnosis of IM can be found in [7]. 

2. Experimental setup 

The vibration signal used in this study is taken from the KAT-bearing dataset by the Kat-

Data Center of Paderborn University [8]. The overall experimental test rig of the dataset 
is shown in Figure 1. 

 

 

Figure 1. An experimental testbed of collecting bearing data. 

Here, a 425-W Hanning synchronous motor (Type SD4CDu8S-009) was used as the 

test drive motor, and an inverter (KEB Combivert 07F5E 1D-2B0A) with a 16 kHz 

switching frequency was employed to control its operation. This dataset contains 
different types of signals from five sensors, which include vibration signal, current signal 

with two different phases, load torque, and radial forces on the bearings. The vibration 

signal was recorded by a piezoelectric accelerometer with a sampling rate of 64 kHz for 

several working conditions, where different values of the rotational speed, radial force, 
and load torque were considered. In this study, we considered 17 bearings signals and 

divided them into three different health conditions, named normal (N), outer race fault  
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(OF), and inner race fault (IF). The initiated "damage/fault" had been prepared according 
to ISO 15243. The bearing code of the respective bearing conditions with the label is 

listed in Table 1. 

Table 1. Bearing code with the health condition. 

Type Bearing Code Label 
Normal (N) K001, K002, K003, K004, K005, K006 0 

Outer race fault (OF) KA04, KA15, KA16, KA22, KA30 1 

Inner race fault (IF) KI04, KI14, KI16, KI17, KI18, KI21 2 

3. Materials and methods 

Rolling element bearings may sustain a variety of types of mechanical damages 
throughout their long-term use in industrial environments because of incorrect 

installation, manufacturing error, and material fatigue. We considered two different 

faulty conditions of bearings, named outer race fault and outer race fault. The respective 

fault frequency can be expressed with the Eqs. (1) and (2) as given below [9]:  

Outer race fault freq.: 
                               (1) 

Inner race Fault freq.: 
                                (2) 

Where Nball defines the number of rolling elements, Dball and Dcage represent the rolling 

element and cage diameter, respectively.  indicates the angles of the load from the 

radial plane and fm denotes the rotational frequency of bearing. 

 

(a) (b) 

Figure 2. (a) Time and (b) Frequency spectrums of the vibration signal for three different health conditions. 

An imaging method based on vibration signal is proposed to classify different types 

of bearing faults in IM with CNN in this work. The overall method can be divided into 

two parts. The first part converts the 1-D time-series vibration signal into 2-D images 

and in the second part, a customized CNN model is designed to classify the images in 
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respective bearing conditions. As discussed earlier, there exist different fault frequencies 
depending on the type of occurring fault in the bearings, we generate the frequency 

spectrum from the time domain signal for all the considering bearing conditions (Figure 

2(b)) and found that frequency-domain signals were more suitable to generate distinct 

patterns among the bearing condition with RP.  
The FFT outputs of the time-series signals show that each bearing condition reveals 

a different frequency spectrum due to the different fault types and characteristics 

frequency of the bearings. The recurrence analysis is considered one of the promising 

methods to analyze the nonlinear and non-stationary as well as noisy time-series data 
obtained from the different experimental testbeds. The term “recurrence” can be 

specified as the occurrence of a specific repetitive state of a dynamic oscillator [10]. 

Eckmann et al. [11]launched the recurrence plots (RP) method to visualize the trajectory 

of dynamic systems. The method allows the identification of hidden recurring patterns, 
non-stationarity, and changes in the system structure. 

The recurrence plot can be obtained by following three steps [12]: 

Step 1: For an N-length time-series signal , the signal will be 

reconstructed to the 2-D phase space having dimension m and delay time τ as Eq (3): 

 (3) 

Here,  and M implies the vector number in the 

rebuilt phase space.  

Step 2: After that, based on the distance between the i-th and j-th phase point of the 

reconstructed phase space signal, the recurrence matrix will be generated by Eq (4): 

  

        =  
(4) 

Here,  represents the threshold, and H represents the Heaviside function.  

Step 3: Finally, with the values of each horizontal (i) and vertical (j) coordinate, 

the recurrence plot will be generated with the matrix. As it always follows, , 

the pattern of the resultant recurrence plot is always symmetric. As a result of texture 

information, individual dots, sloping lines, perpendicular lines, and horizontal lines can 
be identified, whereas typology information can be categorized as uniform, shift, regular, 

and interrupted. The resultant recurrence plots of the frequency spectrum signal of three 

different bearing conditions are provided in Figure 3.  

   
(a) (b) (c) 

Figure 3. Recurrence Plot of the frequency spectrum signal for (a) Normal, (b) Outer fault , and (c) Inner fault 

conditions. 

Finally, a three-layer deep CNN model is designed to classify the generated RP 

images and evaluate the model performance with some evaluation matrix. Each stage 
consists of convolution, activation, and pooling layers and acts as a feature learning stage 

including different feature levels. A fully connected layer is attached to the convolution 

layers and the output node of the dense layer is equivalent to the number of considered 

health conditions, which is three for this study (Healthy bearing, inner race fault, and 
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outer race fault). The ReLU activation function was applied for all the layers. As part of 
the CNN training process, two learnable parameters named the network's weight matrix 

and bias are updated using stochastic gradient descent (SGD). The CNN model requires 

less pre-processing to efficiently read images with the filters, which makes CNN more 

efficient in image classification than conventional ML algorithms. As a part of the study, 
we investigated various configurations and tuning parameters to determine their effect 

on classification performance, and finally, the most optimum CNN model we found is 

described in Table 2.  

Table 2. The applied CNN architecture  

Layer (type) Output Shape Learnable Parameters 
Input layer (128×128×3) 0 

Convolution layer_1 (128×128×16) 448 

BatchNormalization_1 (128×128×16) 32 

relu_1 (128×128×16) 0 

Max pooling_1 (64×64×16) 0 

Convolution layer_2 (64×64×32) 4640 

BatchNormalization _2 (64×64×32) 64 

relu_2 (64×64×32) 0 

Max pooling_2 (32×33×32) 0 

Convolution layer_3 (32×33×64) 18496 

BatchNormalization _3 (32×33×64) 128 

relu_3 (32×33×64) 0 

Max pooling _3 (32×31×64) 0 

Fully connected (fc) (1×1×3) 190467 

Softmax (1×1×3) 0 

Output layer - 0 

 

The workflow of the summarized operations of our proposed fault classification 

methodology is presented in Figure 4.  

 

Figure 4. Proposed methodology of fault classification. 

4. Results and discussions 

In the experiment, the total number of samples was 1320, where the bearings with the 

normal condition and the inner race fault contain 460 samples each, and the remaining 

400 samples belong to the outer race fault. Among them, 70% (924 images) and 10% 
(132 images) samples were separated for training and validating the CNN model, 

respectfully and the remaining 20% (264 images) samples were for testing purposes. To 

learn the multi-level features from three bearing conditions RP, the CNN model was 

trained up to 50 epochs. Throughout the training phase, the designed deep CNN model 
can efficiently learn to generalize features from RP images and can achieve almost 100% 

accuracy both in training and validation. Finally, the performance of the trained CNN 

model was measured by the 264 testing samples, and the results were present in the 

classification report and confusion matrix. To validate the use of frequency spectrum 
instead of time-domain signal, we generate RP-based images from both time and 

frequency domain signals and check the classification performance with the same CNN 

Vibration Data 
Acquisition

Classify images 
with Deep CNN

Frequency 
Spectrum

Generate 2-D 
images with RP
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model. The classification report of the designed model on the test dataset is given in 
Table 3, which clearly shows that the CNN model extract and learn the features well and 

finally, classify the features into individual class with the test samples with 99.24% 

accuracy. 
Table 3. Classification Report. 

Class Precision Recall F1-Score 
Normal 0.99 0.99 0.99 

Inner Fault 1.00 1.00 1.00 

Outer Fault 0.99 0.99 0.99 

Accuracy (%) 99.24 

 

From the confusion matrix of Figure 5, it shows that the images generate from the 

original signal have an accuracy of 71.21%, whereas the RPs from the frequency 
spectrum can classify bearing conditions with more than 99% accuracy with a very low 

number of misclassification samples.  

  

(a) (b) 

Figure 5. Confusion matrix of the CNN model with recurrence plot on (a) Original signal, and (b) frequency 

spectrum signal. 

In addition, three other most commonly used pre-defined CNN models for image 
classification [13], named GoogleNet (22-layers), ResNet-18 (18-layers), and AlexNet 

(8-layers) were implemented to train and classify the RP-based images of the bearings 

to validate the efficiency of the generating image dataset. Figure 6 (a) represents the 

classification accuracy values for all four CNN models. Along with our designed CNN 
model, the ResNet-18 and AlexNet can successfully classify RP images with more than 

99% accuracy, whereas GoogleNet shows 93.18% accuracy on the test dataset. But the 

computational complexity is not the same for every model, as it depends on the number 

of layers of the respective models. We show the model execution time for 50 epochs in 
Figure 6 (b), which clearly shows that because of having a higher number of layers, all 

the 3 pre-defined CNN models require a large computational time than our designed 

CNN model.  

  
a b 

Figure 6. Comparison of (a) accuracy, and (b) computational complexity of the proposed and three pre-defined 

CNN models.  
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In the end, some prior methods have been considered to compare the classification 
performance of the proposed method applied to the same KAT vibration data. In different 

studies, the time-series data pattern was changed into the 2-D format, such as 2-D 

reshaped matrix, grayscale images (vibration/CWT), or RGB images. In addition, 

various types of pretrained CNN models (TICNN, LeNet-5, VGG16, ResNet)) were also 
applied to classify the 2-D image samples. The evaluation performances of different 

approaches are listed in Table 4 based on accuracy and f1-score. 

The performance of the CNN models becomes higher with the image input rather 

than 1-D data in terms of accuracy and f1-score. In addition, the CNN models based on 
the pre-defined model, such as VGG16 and ResNet have a higher computational cost 

than the other CNNs. Therefore, from the results provided in Table 4, the proposed 

signal-to-image conversion-based fault classification approach based on the RP and deep 

CNN methods show superior performance in terms of accuracy and computational cost. 

Table 4. Performance comparison of different methods. 

Reference Applied Method Accuracy f1-score Computational 
Cost 

[14] Original+TICNN   96.03 96.03 O (90772) 

[15] 1-D matrix+CNN 94.49 95.04 O (2117120) 

[16] CWT+VGG16 97.99 97.99 O (138357544) 

[17] RGB+ResNet 99.53 99.53 O (25636712) 

[18] MSF+RGB+CNN 99.99 99.99 O (37467) 

This paper FFT+ RP+CNN 99.24 99.24 O (190467) 

5. Conclusions 

A comprehensive fault classification approach of bearing is presented based on the 

recurrence plot-based visualization of time-series signal and deep CNN model. Based on 
the property of locating the characteristics of fault frequencies from the time-domain 

signal of FFT, a method of displaying vibration signal frequency spectrums was explored. 

The raw vibration data acquired from the industrial testbed is often surrounded by noise 

and very difficult to extract fault information in case of condition monitoring. Different 
pre-processing mechanisms need to be applied for extracting fault signatures, which 

requires high expertise in this field. In our study, the 1-D signal observe sequentially and 

converted images by RP algorithm helps to preserve the temporal features, which 

resolves the necessity of additional signal processing requirements. The images generate 
through RP help the deep CNN model to achieve the classification accuracy of 99.24%. 

In addition, due to image property, it can accomplish the classification task with the CNN 

model quicker than the other conventional approaches. The overall method does not 

require much expertise or prior knowledge of extracting features and that makes it more 
efficient than the manual feature extraction-based process of the traditional ML 

classification algorithms. Finally, a comparative study was presented with some different 

2-D imaging and neural network-based techniques, which proves that the proposed fault 

classification approach can be an excellent solution in bearing fault diagnosis with great 
reliability, high accuracy, and low computational cost. Our next phase of research aims 

to improve the proposed method's ability to handle information from sensors with 

different sampling frequencies and design an optimized CNN with hyperparameter 

tuning to make the system more automated.  
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