
Generalized Multiquadric Neural Networks 

in Image Reconstruction 

Pornthip PONGCHALEEa, Pirapong INTHAPONGb, Krittidej CHANTHAWARAc, 
Pichapop PAEWPOLSONGb, and Sayan KAENNAKHAMb,1 

a
 Department of Applied Mathematics and Statistics, Faculty of Science and Liberal 

Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, 
Thailand. 

b
 School of Mathematics, Institute of Science, Suranaree University of Technology, 

Nakhon Ratchasima, 30000, Thailand. 
c

 Program of Mathematics, Faculty of Science, Ubon Ratchathani Rajabhat University, 
Ubon Ratchathani 34000, Thailand. 

Abstract. This work aims to numerically investigate the performance of the 

multiquadric (MQ) radial basis function in more general formats for image 

reconstruction applications. Desired features, i.e., accuracy and shape parameter 

sensitivity, of each form is numerically compared and explored. The famous Lena 

image is damaged using two levels of damage: 20% and 40%, in a Salt-and-Pepper 

manner. It has been discovered in this work that 3 / 2� � produces reasonably good 

accuracy and is least affected by the change in shape parameter while keeping both 

the CPU time and the condition number reasonably acceptable. This finding is 

promising and useful for further applications of MQ in more complex contexts.    
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1. Introduction 

Radial basis functions or RBFs have been receiving a great amount of interest ever since 

they were introduced in 1971. This also includes the advantages for solving partial 

differential equations known as ‘meshfree or meshless’ methods [1-3]. The multivariate 
property has made RBF attractive in a wide range of applications and one of the most 

popular RBF choices is the so-called multiquadric (MQ-RBF). The original and non-

normalized formula under this type of RBFs is � �2 2r
�

� � with � being the so-called 

‘shape parameter’ and 
2

r �� 	Χ Χ  for ,
�
Χ Χ ℝ n represents the distance function. Ever 

since it was implemented numerically, only 1/ 2� � 	 and 1/ 2� � 	  have been receiving 

attention where the solutions are known to be highly dependent on � , [4-7]. This 

challenge has come to our attention as whether there is a �  that is less affected by the 

choice of � . The study in this path is named as ‘Generalized MQ or GMQ) and was 
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firstly approached by Maggie E. Chenoweth [8] in 2009. Over the years, not much 
numerical work has been done until one of our preliminary works done in 2021 [9].  

The focus of this work is paid to the numerical application of GMQ under the context 

of image reconstruction investigated under the structure of a neural network (with space 

limitation, more details are found in [9]). For this, ten forms of GMQ were numerically 
investigated and their performances were monitored and recorded.  

2. Mathematical methodology 

2.1. Interpolation with RBFNs 

The investigation begins with the study of a multivariate function :g �� ℝ, where �   

ℝm, from a set of sample values � �� �
1

M

j j
g

�
x  on a discrete set � �

1
X=

M

j j�
 �x  (later 

referred to as ‘centres’). Such multivariate functions can be efficiently reconstructed if 

they are approximated by linear combinations of univariate interpolation functions with 

the Euclidean norm
2

� . In the mathematical literature, �  is often called a radial basis 

function with centres � �
1

M

j j�
x  and �  is the associated kernel. Interpolants G  of g  can 

be constructed as  � �
2

1

( )
M

j j
j

aG �
�

� 	�x x x  with real coefficients, � �
1

M

j j
a

�
 which is 

determined using the interpolating condition ( ) ( ),i igG �x x  for all 1, 2, ...,i M� ,  and 

it yields.   

 (1) 

Hence, what comes next is a system of linear equations with � �
1

M

j j
a

�
being the 

unknowns, expressed as �α gΦ , where � �1, ,
T

Ma a�α �,
T

Ma, M and 

� � � �1 , ,
T

Mg g� � �� �g x x� ��M� �M�g, �g, , and ij M M
�

�
� �� � �Φ is the symmetric M M�  matrix. Once the 

coefficient matrix, α , is obtained, the solution calculation process can then proceed. For 

unknown locations � �
ˆ

1

ˆ ˆX=
M

j j�
 �x  and ˆX X=�� , the approximate values of the 

corresponding function is obtained for all ˆ1,2,...,Mj � , by.  

 (2) 
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2.2. Generalized Multiquadric (GMQ) 

The multiquadric (MQ) basis function, in its generalized form, which is defined as 

follows, is the main focus of this paper. 

 (3) 

where . These values produce different curves (see 

Figure 1.) and have a direct bearing on the solvability of matrix involved. 

 

 

Figure 1. Function profiles of GMQ for each value of 's� (plotted only on the positive half of x-axis). 

3. Numerical algorithm 

Step 1. Two groups of pixels are created; the set of corrupted pixels ( �̂ , containing M̂  
elements), and the rest (� , containing M  elements). 

Step 2. For each ( , )i i ix y� 
�x , 1,2,...,i M� , and choose 3.m �   

 2.1 Choose �  for GMQ  and  Construct the interpolation matrix 
( 3) ( 3)M M� � �

� �� �Φ . 

 2.2 Solve � � � �
( 3) ( 3) ( 3) (1) ( 3) (1)M M M M� � � � � � �

� � �� �AΦ G , to get the coefficient matrix .A  

Step 3. For each ˆˆ ( , )j j jx y� 
�x , ˆ1,2,...,j M� . 
 Construct the interpolation matrix ˆ ( 3)M M� �

Φ  similarly to Step 2.1. 

ˆ ( 3) 2
ˆ( , )j i jM M �

� �
� � 	x xΦ  (4) 

Step 4. The reconstructed pixels,  is obtained by; 

 (5) 

Step 5. Validating the results by the pre-setup criteria. 
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4. Numerical experiments and results 

The famous Lina image is tackled in this study where the pixels are damaged in the Salt-

and-Pepper manner, i.e. the randomly chosen pixels are replaced either by 0 or 255, as 

shown in Figure 2. Other attempts under this context can also be found in [7, 10-12]. The 

root mean square error (RMSE), CPU-time and storage, and the mean condition number 
( ( )Cond� 	 ) of the interpolation matrices are used as performance criteria. Figure 3 

presents two crucial points regarding the effectiveness of each form of GMQ; the 

accuracy and the sensitivity to shape parameter. It can be seen in this Figure that 3 / 2� �
outperforms the others, even the two most popular choices 1 / 2� � 	 and 1/ 2� � , in both 

aspects. Considering the condition number, Table 1 shows, together with the best shape 

parameter for each GMQ type, that ( )Cond� 	  increases as � increases. The CPU time 

spent on each simulation, on the other hand, is found not to be significantly different 

from one another. The quality of the image reconstructed using each GMQ is displayed 

in Figure 4. 
 

 

Figure 2. The famous Lena image with the original 88 128 pixel� 	 (left), 20%-damaged (middle), and the 

corresponding pixel values after damaging (right).  

 

Figure 3. RMSE measured for each form of GMQ with (a) 20%-damage, and (b) 40%-damage, plotted against 

the shape parameter, � .  
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Table 1. Other criteria obtained for each form of GMQ using its best shape parameter.  

 

 

Figure 4. Images under investigation; (a) the original, (b) 20%-damage, (c) reconstructed with 9 / 2� � 	 , 

(d) with 7 / 2� � 	 , (e) with 5 / 2� � 	 , (f) with 3 / 2� � 	 , (g) with 1 / 2� � 	 , (h) with 1 / 2� � , 

(i) with 3 / 2� � , (j) with 5 / 2� � , (k) with 7 / 2� � , and (l) with 9 / 2� � .  

5. Conclusions 

The so-called multiquadric (MQ) radial basis function was numerically studied in more 

general forms (noted as ‘GMQ’) in this work. Its applications in image reconstruction 

tasks were carried out via a structure of a neural network. Ten forms GMQ (differentiated 

by � ) were tested and the corresponding optimal shape parameter for each �  was 

obtained in an ‘ad-hoc’ manner. This work interestingly reveals that 3 / 2� � produces 

overall best performance over the other forms, even the original, well-known and popular 

1 / 2� � 	 and 1/ 2� � 	 . Amongst all promising aspects, its ability to stay almost 

unaffected by the shape �  is most desirable, particularly for more complex applications 

such as solving partial differential equations (PDEs) and many others, which is the next 
step of this experiment.   

Criteria 9 / 2� � 	  7 / 2� � 	  5 / 2� � 	  3 / 2� � 	  1 / 2� � 	  

Best �  1.00 3.00 3.00 2.00 2.00 

RMSE 1.12E+02 1.14E+01 1.12E+01 1.07E+01 1.07E+01 

( )Cond� 	  1.39E+00 1.23E+03 5.57E+03 1.09E+03 2.33E+05 

CPU-time (s) 8.46E+02 7.20E+02 7.35E+02 6.69E+02 6.67E+02 

Criteria 1 / 2� �  3 / 2� �  5 / 2� �  7 / 2� �  9 / 2� �  

Best �  1.00 1.00 1.00 1.00 1.00 

RMSE 1.04E+01 1.06E+01 1.49E+01 1.97E+01 2.36E+01 

( )Cond� 	  2.51E+07 1.58E+11 7.67E+14 2.05E+21 1.60E+24 

CPU-time (s) 7.63E+02 8.03E+02 6.90E+02 7.80E+02 7.36E+02 
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