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Abstract. Under the architecture of a neural network, this work proposes and applies 

three multiquadric radial basis function (MQ-RBF) interpolation schemes; The 

Common Local Radial Basis Function Scheme (CLRBF), The Iterative Local Radial 

Basis Function Scheme (ILRBF), and The Radius Local Radial Basis Function 

Scheme (RLRBF). The schemes are designed to perform locally to overcome 

drawbacks normally encountered when using a global one. The famous Franke 

function in two dimensions is numerically tackled. It is revealed in this work that all 

three local methods outperform the traditional MQ interpolation in terms of both 

CPU-time and condition number, while the accuracy is overall acceptable, 

particularly when the number of nodes increases. This finding indicates their 

potential for dealing with bigger datasets and more complex problems.  
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1. Introduction 

Radial Basis Functions (RBFs), � , are commonly found as multivariate functions whose 

values are dependent only on the distance from the origin. This means that 

ℝ with ℝ  and ℝ, in other words, on the distance from a point of a given 

set � �jx , and ℝ. Here, jr  is the Euclidean distance. One of the 

most popular types of RBFs is the Multiquadric (MQ) whose general format is expressed 

below.  

� � 2 2,r r� � �� 	
 

(1) 

With �  being the so-called ‘shape parameter’ to be determined by the user. Over 

decades, MQ-RBFs and other forms have been receiving a great amount of attention 

from scientists and engineers. Some successful applications are those for function 
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approximation [1], for solving regulator equations [2], for classifying weblog dataset [3], 
for support vector machine classifiers [4], and for numerically solving partial differential 

equations [5, 6].  

Despite the wide range of applications nicely documented in the literature, it is to be 

noted that most of them are based on a global manner of RBF interpolation. Proceeding 
it this way leads to several undesirable aspects such as the highly-dense nature of the 

interpolation matrix which could lead to ill-condition, high computational costs, and 

stability issues [7]. Inspired by our previous work [8], in this work, on the other hand, 

we focus on performing the MQ function interpolation in three local architectures of 
neural networks. For the sake of comparison, a global format is to be included in the 

experiments and all results obtained are recorded and compared against one another.  

2. Mathematical methodology 

The whole study can be seen as an extended version of that proposed by [7]. It starts with 

letting � �
1

N
i ix

�
 be a given large set of scattered data points (Interpolation points), and 

� �
1

tN

j j�
z  be a set of evaluation points, as shown in Figure 1. Suppose the function values 

� �
1

( )
N

i if
�

x  at the interpolation points are given; we try to use these known values to obtain 

the approximate values of � �
1

( )
tN

j j
f

�
z . 

Let � be a radial basis function. Choose all interpolation points in the local domain

j
  as the centers of the basis functions. Using RBF interpolation on j
 , we have the 

following linear system. 
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(2) 

Which can be written in the matrix form as follows. 

[ ]ˆ i
k k k��f Φ α

  (3) 

Thus, 

[ ] 1 ˆi
k k k
�
��α Φ f  (4) 

Therefore, 
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The values of � �
1

( )
tN

j j
f

�
z  are now roughly determined. 

From this point, the main idea is then combined with the sliding style of a local 

influent domain previously performed by [9]. It then leads to the formation of three local 

interpolation schemes investigated in this work.  

 

Figure 1. An example of a local domain with the interpolation and evaluation points.  

2.1. The Common Local Radial Basis Function Scheme (CLRBF)  

This method starts with choosing the k interpolation points that are closest to jz  to 

generate the local domain j
 . It then assigned these interpolation points in the local 

domain j
  as the centers of the basis functions. Then carry out the aforementioned 

computational procedure. 

2.2. The Iterative Local Radial Basis Function Scheme (ILRBF)  

Similarly to CLRBF, this approach also produces local domains. The approximate values 

of 
� �jf z

 are computed as usual in each local domain j

. However, the main difference 

is that once 
� �jf z

of an preciously-unknown point jz
 has been approximated in j


, 

this point with its values is then treated as a centre (interpolation point) for the next 
adjacent local domain. 
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2.3. The Radius Local Radial Basis Function Scheme (RLRBF) 

This approach builds a radius jr   around jz   in each local domain j
 . The k closest 

interpolation points from jz  are chosen, and the distance of the point that is farthest from 

jz  is used to get the radius for each local domain. All interpolation points within the 

radius jr  can be used as the basis function centers to approximate the values of � �jf z . 

Then perform the usual approximation of � �jf z  values. Likewise to the ILRBF, when 

approximate values of � �jf z  are obtained, jz  is moved into the set of interpolation 

points. 

 

Figure 2. Node distributions involved in the experiment; (a) the fixed 500 evaluation points, (b) Level-1 with   

222 nodes, (c) Level-2 with 444 nodes, and (d) Level-3 with  887 nodes.  

3. Numerical experiments and results 

Three levels of interpolation points were generated (Level-1, 2, 3) together with 500 

evaluation points, depicted in Figure 2., for all numerical experiments. For the sake of 

comparison, apart from the three local schemes; CLRBF, ILRBF, and RLRBF, the 
traditional global scheme (noted as TGS) was also included in the experiments. To 

validate the performance of the local schemes under investigation, the famous two-
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dimensional Franke's function is numerically tackled. This function is mathematically 
expressed as follows, [10] (with its surface profile shown in Figure 3(a).) 
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Figure 3. (a) Surface profile of the Franke’s function, (b) CPU time spent for each computation involved, (c) 

the condition number of the interpolation matrix/matrices, and (d) the RMSE for each method.  

For this preliminary experiment of this path, the value of k  was fixed to 5 for all 

local schemes and for the whole experiment. Due to the limitation of space, the number 

of evaluation nodes was fixed at 500. Since it is well-known that there is no such thing 

as “an optimal shape” for every problem, this numerical investigation started with the 
attempt to identify a reasonably good shape parameter, � . Table 1 provides information 

of comparatively good accuracy obtained using a wide range of �  for all schemes. With 

this in mind, 0.301� � was chosen to be used for the rest of the experiments.  

Figure 3 (b), 3(c), and 3(d) illustrate respectively the CPU time spent, the mean 

condition number of the interpolation matrices, and the root mean square error (RMSE). 
Note that Level-4 containing 1,774 nodes was added to the experiment to make it clearer 

for trend analysis. It is clearly shown that with more nodes involved, both condition 

number and CPU time increased significantly for the global method when compared to 
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the three local schemes, while RMSEs fell in a reasonably acceptable range. This 
strongly indicates the robust use of the proposed local schemes for more complex 

applications of the MQ neural network.  

Table 1. The range of �  values that give reasonably good accuracy for each method. 

Methods 0.201� �  0.251� �  0.301� �  0.351� �  0.401� �  
TGS 1.02E-02 8.60E-03 7.23E-03 6.80E-03 8.08E-03 

CLRBF 2.59E-02 2.48E-02 2.44E-02 2.43E-02 2.44E-02 

ILRBF 3.86E-02 3.43E-02 3.16E-02 2.99E-02 2.88E-02 

RLRBF 1.33E-02 1.62E-02 1.59E-02 4.76E-02 1.49E-01 

4. Conclusions 

With the shortcomings normally encountered when applying a global RBF neural 

network in an interpolation application, this work proposes and applies three local MQ-
RBF schemes with the suitable shape parameter achieved in an ‘ad-hoc’ manner. The 

famous Franke function is then used to test the effectiveness of the methods with the 

results being compared against the global one. It is discovered in this work that the local 

schemes are able to produce reasonably good accuracy while keeping both the condition 
number and CPU time comparatively low. This strongly reveals their potentials for 

bigger and more complex domains which are the next steps of the study. Additionally, 

to strengthen the proposed methods, it is our future aim to compare them with some other 

global schemes. 
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