
Toward an Integrated Annotation and

Inference Platform for Enhancing

Justifications for Algorithmically

Generated Legal Recommendations and

Decisions

Yi-Tang Huang⁋ Hong-Ren Lin‡ Chao-Lin Liu†

National Chengchi University, Taiwan

{108753132⁋,109753156‡, chaolin†}@nccu.edu.tw

Abstract. We introduce our workflow that integrates the steps of annotation and

classification, and hope that the end products are helpful for improving the

justifications for legal reasoning and for recommending similar civil cases.

Keywords. technology-assisted annotation, annotation and prediction and inference,

system integration, machine learning, natural language processing

1. Overview

Convincing justifications strengthen the usability of the legal recommendations and

decisions that are produced by algorithmic computations [1][3]. A legal informatics

system may offer similar cases for preparing cross-examinations in courts, and may even

attempt to predict the sentences against the defendants. Such assistive systems, which

are constructed by the machine learning (ML) approaches, typically rely on training data

to learn to select the recommendations and decisions. An ML-based predictive procedure

that aims to offer satisfactory recommendations and decisions would be more useful if

we can associate their outputs with appropriate supporting evidences.

We believe that such supporting evidences require at least a few high-quality

annotated data for training the predictive procedure. Given a collection of original

judgment documents, we use existing tools for lexical, syntactical, semantic, and even

pragmatic analysis to mark the texts. Human experts can verify and correct the raw

annotations. Our system also allows the annotators to read, find and mark the statements

for high-level legal factors for specific categories of lawsuits. The annotated data will be

used to train a new generation of tools, hopefully improving the quality of future

annotations.

Currently, we use the open judgment documents of the courts in Taiwan in our

system. We believe that the system architecture can be adopted by systems of legal

informatics in any other languages. If the proposal is accepted, we will show the current

operations of the annotation system both on site and online during the Conference.

Legal Knowledge and Information Systems
E. Francesconi et al. (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220481

281

2. Architecture and Raw Data Selection

Figure 1 shows the system architecture for the integrated system. To modularize our

presentation, we show the architecture in four blocks, which are indicated on the left

margin in Figure 1.

The block b3 shows that we need an annotated dataset, m_dataset, to support the

machine-learning approaches to train a classifier, MIG. We split the annotated dataset

into two parts for training and test to produce the classifier.

In order to obtain the annotated dataset, we first need to extract appropriate files

from a large collection of judgment documents. In our current work, we use the open

data repository of the Judicial Yuan of Taiwan as the main source. We show this

repository as TWJY in block b1. There are about 17.6 million documents in TWJY as of

April 2022. Assuming that our research focuses on a specific category of cases, say

burglary. We can use “burglary” as a keyword in criteria_1, and let the retriever extract

documents that are related to burglary from TWJY. The resulting raw data set usually

includes some documents that do not really fit the research requirements from the legal

informatics perspective. Hence, we would consult the expertise of legal experts, and use

the filter to remove some files from the raw data set based on criteria_2 to produce the

refined data set. After this step, our system offers an interface via which a human expert

can select to read a specific document to determine whether to annotate a file in the set.

Depending on the research issues of the researchers, the size of refined data set may

not be large, even though we have millions of documents in TWJY. TWJY includes

documents for lawsuits of all possible criminal, civil, and other special cases of between

1996 and April 2022. Some types, e.g., burglary and gambling, can be relatively common,

but some are relatively infrequent, e.g., verification of presumption of paternity.

Figure 1. System architecture.

Y.-T. Huang et al. / Toward an Integrated Annotation and Inference Platform282

3. The Annotation Procedure

The block b2 shows the main steps for the annotation task. Usually, the human annotator

chooses to annotate one file, r_file (“r” for raw and refined), from the refined data set at

a time. In fact, depending on the needs of the research, an annotator may just need to

examine some specific parts (sections) of the documents, e.g., the facts and reasons, and

do not need to inspect the whole judgment document. If you may find the “理由” in

eighth line of the center window of Figure 2, that is the Chinese word for reasons.

Figure 2 shows a sample of a_file (“a” for annotated) and the current implementation

of the human annotator assistant. In the center of Figure 2 is a sample of a_file. The

selected r_file was annotated by the algorithmic annotator. The algorithmic annotator

uses the tools that are set up in the tools component (to be explained shortly). In this

example, the tools component is just the named entity recognition (NER) component of

the CKIP toolset [2]. It is our software that colors the outputs of the CKIP-NER by the

types of entities, and coverts the file format for the reading and annotation interface. The

current CKIP-NER identifies seven categories, as is shown on the upper right corner of

Figure 2, where “ORG” and “GPE” refer to organizational and geographic entities,

respectively. The categories of the words in the text are indicated by their colors.

We can equip the human annotator assistant with multiple functions. The most

basic ones include allowing the annotators to create, update, and delete the annotations

that are suggested by the algorithmic annotator, whose suggestions may not be perfect.

It is evident that the seven categories of entities that the CKIP-NER attempts to

identify is insufficient for the needs of legal reasoning. For the cases of burglary, it might

be preferable to annotate the places of the events, the thief, the stolen objects and their

values, and perhaps whether the thief is armed. An annotator can add such additional

categories in the box on the upper right corner of Figure 2, where we put a “TEST” box

as an example. An annotator can add a new tag, then chooses texts in the center window,

and labels the chosen texts with the new tag. More than one tag can be added in a session.

Figure 2. A sample of a_file and the current human annotator assistant.

Y.-T. Huang et al. / Toward an Integrated Annotation and Inference Platform 283

The RELabel button leads the annotators to enter an interface for editing regular

expressions to define patterns. A pattern can represent an established way to express a

legal notion in the text, and will be assigned a tag. Defining patterns for legal notions in

regular expressions allows the software to identify the patterns automatically for us. A

more complex system for annotation could offer a mechanism for the annotators or the

research team to maintain and share useful domain-dependent regular expressions. The

RELabel button in Figure 2 offer the annotators to try their instincts for automatic

annotations on the fly.

The Download button allows the annotators to save the results of the current

annotation, i.e., m_file in Figure 2. A previously annotated file can also be uploaded to

the annotation system again so that the annotators can revise the annotations. To protect

the previously annotated results from being overwritten, the algorithmic annotator will

be suppressed for reloaded files.

4. Progressively Powerful Models

We gather a sufficient number of m_files to obtain the m_dataset in b3, and run whatever

types of machine learning procedures we plan to. In b4, we show that we may use

whatever software tools as the algorithm annotator, including JIEBA, spaCy, Stanford

NLP tools (STFNLP in Figure 1).

Whenever possible and desirable, we may use our own model, MIG, as one of the

possible tools to annotate the documents. This is not only possible but should be more

reasonable when the size of the refined data set is large such that it is unreasonable and

inefficient to expect human experts to inspect and annotate all of the data files all at once.

Assume that we have � files in the refined data set and that � is large. We can split

the refined data set into � parts, each having �
�
 files. Assume further that, we choose one

of the tools in b4, but not MIG, as the algorithmic annotator to annotate an installment

of
�

�
 files in the first iteration. The annotator may examine, check, and revise annotations

of these
�

�
 files. We can use these files to train an MIG, and use this MIG in the next run.

 Assume that the MIG can perform better than the other choices, because it is directly

trained with our annotated data, but the other tools do not have this privilege. Hence,

starting from the second iteration, we choose MIG as the algorithmic annotator. In the

second run, we use the second installment of
�

�
 files. Since MIG is a better model, we

expect the quality of the annotations in the a_file is better than before. As a result, it is

easier for the human annotator to create, update, and delete labels this time. This type of

improvement can continue in the following runs at least on average. Hence, splitting �

files in the refined data set into parts can make our annotation process more efficient.

We have assumed that the MIG we obtained in the first iteration will outperform the

other tools. If this is not true, we may wait until MIG can outperform others before we

switch to our own MIG in b4. If MIG continues to underperform, we probably should

improve our machine learning procedure in block b3 first.

5. Concluding Remarks

We have used our own annotation tools for our work on classifying statements by their

functions in judgment documents for civil cases. Statements for civil cases typically are

more indecisive than those for criminal cases, so the availability of human annotations

is more helpful and necessary. We attempt to identify the statements of the requests of

Y.-T. Huang et al. / Toward an Integrated Annotation and Inference Platform284

the plaintiffs, of the responses of the defendants, and of the viewpoints and decisions of

the judges. More importantly, we attempt to automatically find the conflicting issues

between the plaintiffs and the defendants. Based on these results, we hope to find “similar”

civil cases. The results of this application-oriented research remain promising.

Acknowledgements

This research was supported in part by the project 110-2221-E-004-008-MY3 of the

National Science and Technology Council of Taiwan.

References

[1] Atkinson K, Bench-Capon T, and Bollegala D. Explanation in AI and law: Past, present and future.

Artificial Intelligence. 2020; 289:103387.

[2] Li P-H, Fu T-J, and Ma W-Y. Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case

of NER. Proc. of the 33rd AAAI Conference on Artificial Intelligence. 2020; p. 8236‒8244.

[3] Mumford J, Atkinson K, and Bench-Capon T. Machine learning and legal argument. Proc. of the 21st

Workshop on Computational Models of Natural Argument. 2021; p. 47‒56.

Y.-T. Huang et al. / Toward an Integrated Annotation and Inference Platform 285

