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Abstract. We introduce our workflow that integrates the steps of annotation and 

classification, and hope that the end products are helpful for improving the 

justifications for legal reasoning and for recommending similar civil cases.  

Keywords. technology-assisted annotation, annotation and prediction and inference, 

system integration, machine learning, natural language processing 

1. Overview 

Convincing justifications strengthen the usability of the legal recommendations and 

decisions that are produced by algorithmic computations [1][3]. A legal informatics 

system may offer similar cases for preparing cross-examinations in courts, and may even 

attempt to predict the sentences against the defendants. Such assistive systems, which 

are constructed by the machine learning (ML) approaches, typically rely on training data 

to learn to select the recommendations and decisions. An ML-based predictive procedure 

that aims to offer satisfactory recommendations and decisions would be more useful if 

we can associate their outputs with appropriate supporting evidences. 

We believe that such supporting evidences require at least a few high-quality 

annotated data for training the predictive procedure. Given a collection of original 

judgment documents, we use existing tools for lexical, syntactical, semantic, and even 

pragmatic analysis to mark the texts. Human experts can verify and correct the raw 

annotations. Our system also allows the annotators to read, find and mark the statements 

for high-level legal factors for specific categories of lawsuits. The annotated data will be 

used to train a new generation of tools, hopefully improving the quality of future 

annotations.  

Currently, we use the open judgment documents of the courts in Taiwan in our 

system. We believe that the system architecture can be adopted by systems of legal 

informatics in any other languages. If the proposal is accepted, we will show the current 

operations of the annotation system both on site and online during the Conference. 
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2. Architecture and Raw Data Selection 

Figure 1 shows the system architecture for the integrated system. To modularize our 

presentation, we show the architecture in four blocks, which are indicated on the left 

margin in Figure 1.  

 

The block b3 shows that we need an annotated dataset, m_dataset, to support the 

machine-learning approaches to train a classifier, MIG. We split the annotated dataset 

into two parts for training and test to produce the classifier.  

In order to obtain the annotated dataset, we first need to extract appropriate files 

from a large collection of judgment documents. In our current work, we use the open 

data repository of the Judicial Yuan of Taiwan as the main source. We show this 

repository as TWJY in block b1. There are about 17.6 million documents in TWJY as of 

April 2022. Assuming that our research focuses on a specific category of cases, say 

burglary. We can use “burglary” as a keyword in criteria_1, and let the retriever extract 

documents that are related to burglary from TWJY. The resulting raw data set usually 

includes some documents that do not really fit the research requirements from the legal 

informatics perspective. Hence, we would consult the expertise of legal experts, and use 

the filter to remove some files from the raw data set based on criteria_2 to produce the 

refined data set. After this step, our system offers an interface via which a human expert 

can select to read a specific document to determine whether to annotate a file in the set. 

Depending on the research issues of the researchers, the size of refined data set may 

not be large, even though we have millions of documents in TWJY. TWJY includes 

documents for lawsuits of all possible criminal, civil, and other special cases of between 

1996 and April 2022. Some types, e.g., burglary and gambling, can be relatively common, 

but some are relatively infrequent, e.g., verification of presumption of paternity. 

 
Figure 1. System architecture. 
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3. The Annotation Procedure 

The block b2 shows the main steps for the annotation task. Usually, the human annotator 

chooses to annotate one file, r_file (“r” for raw and refined), from the refined data set at 

a time. In fact, depending on the needs of the research, an annotator may just need to 

examine some specific parts (sections) of the documents, e.g., the facts and reasons, and 

do not need to inspect the whole judgment document. If you may find the “理由” in 

eighth line of the center window of Figure 2, that is the Chinese word for reasons. 

 

Figure 2 shows a sample of a_file (“a” for annotated) and the current implementation 

of the human annotator assistant. In the center of Figure 2 is a sample of a_file. The 

selected r_file was annotated by the algorithmic annotator. The algorithmic annotator 

uses the tools that are set up in the tools component (to be explained shortly). In this 

example, the tools component is just the named entity recognition (NER) component of 

the CKIP toolset [2]. It is our software that colors the outputs of the CKIP-NER by the 

types of entities, and coverts the file format for the reading and annotation interface. The 

current CKIP-NER identifies seven categories, as is shown on the upper right corner of 

Figure 2, where “ORG” and “GPE” refer to organizational and geographic entities, 

respectively. The categories of the words in the text are indicated by their colors. 

We can equip the human annotator assistant with multiple functions. The most 

basic ones include allowing the annotators to create, update, and delete the annotations 

that are suggested by the algorithmic annotator, whose suggestions may not be perfect. 

It is evident that the seven categories of entities that the CKIP-NER attempts to 

identify is insufficient for the needs of legal reasoning. For the cases of burglary, it might 

be preferable to annotate the places of the events, the thief, the stolen objects and their 

values, and perhaps whether the thief is armed. An annotator can add such additional 

categories in the box on the upper right corner of Figure 2, where we put a “TEST” box 

as an example. An annotator can add a new tag, then chooses texts in the center window, 

and labels the chosen texts with the new tag. More than one tag can be added in a session. 

 
Figure 2. A sample of a_file and the current human annotator assistant.  
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The RELabel button leads the annotators to enter an interface for editing regular 

expressions to define patterns. A pattern can represent an established way to express a 

legal notion in the text, and will be assigned a tag. Defining patterns for legal notions in 

regular expressions allows the software to identify the patterns automatically for us. A 

more complex system for annotation could offer a mechanism for the annotators or the 

research team to maintain and share useful domain-dependent regular expressions. The 

RELabel button in Figure 2 offer the annotators to try their instincts for automatic 

annotations on the fly. 

The Download button allows the annotators to save the results of the current 

annotation, i.e., m_file in Figure 2. A previously annotated file can also be uploaded to 

the annotation system again so that the annotators can revise the annotations. To protect 

the previously annotated results from being overwritten, the algorithmic annotator will 

be suppressed for reloaded files.  

4. Progressively Powerful Models 

We gather a sufficient number of m_files to obtain the m_dataset in b3, and run whatever 

types of machine learning procedures we plan to. In b4, we show that we may use 

whatever software tools as the algorithm annotator, including JIEBA, spaCy, Stanford 

NLP tools (STFNLP in Figure 1). 

Whenever possible and desirable, we may use our own model, MIG, as one of the 

possible tools to annotate the documents. This is not only possible but should be more 

reasonable when the size of the refined data set is large such that it is unreasonable and 

inefficient to expect human experts to inspect and annotate all of the data files all at once. 

Assume that we have � files in the refined data set and that � is large. We can split 

the refined data set into � parts, each having �
�
 files. Assume further that, we choose one 

of the tools in b4, but not MIG, as the algorithmic annotator to annotate an installment 

of  
�

�
 files in the first iteration. The annotator may examine, check, and revise annotations 

of these  
�

�
 files. We can use these files to train an MIG, and use this MIG in the next run. 

 Assume that the MIG can perform better than the other choices, because it is directly 

trained with our annotated data, but the other tools do not have this privilege. Hence, 

starting from the second iteration, we choose MIG as the algorithmic annotator. In the 

second run, we use the second installment of 
�

�
 files. Since MIG is a better model, we 

expect the quality of the annotations in the a_file is better than before. As a result, it is 

easier for the human annotator to create, update, and delete labels this time. This type of 

improvement can continue in the following runs at least on average. Hence, splitting � 

files in the refined data set into parts can make our annotation process more efficient.  

We have assumed that the MIG we obtained in the first iteration will outperform the 

other tools. If this is not true, we may wait until MIG can outperform others before we 

switch to our own MIG in b4. If MIG continues to underperform, we probably should 

improve our machine learning procedure in block b3 first.  

5. Concluding Remarks 

We have used our own annotation tools for our work on classifying statements by their 

functions in judgment documents for civil cases. Statements for civil cases typically are 

more indecisive than those for criminal cases, so the availability of human annotations 

is more helpful and necessary. We attempt to identify the statements of the requests of 
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the plaintiffs, of the responses of the defendants, and of the viewpoints and decisions of 

the judges. More importantly, we attempt to automatically find the conflicting issues 

between the plaintiffs and the defendants. Based on these results, we hope to find “similar” 

civil cases. The results of this application-oriented research remain promising.   
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