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Abstract. Quantitative inversion techniques have been widely used in many fields
where the electric or magnetic fields are sampled in a wide range of viewing an-
gles. In this paper, the quantitative inversion imaging scheme has been proposed
for remote sensing radar systems with multiview-multistatic sensing configura-
tion. The cross correlated contrast source inversion method is used in witch the
cross-correlated term has been used as a regularization technique for, to some ex-
tent, overcoming the ill-posedness. Preliminary simulation results demonstrate that
quantitative inversion radar imaging shows physical resolving ability for remote
sensing imaging. To the best of our knowledge, it is verified for the first time that
physical imaging is feasible with limited range of viewing angles (less than 65◦ in
this paper). Therefore, we remark that in remote sensing applications, the quantita-
tive inversion radar imaging scheme shows potential of identifying radar targets not
only with finer geometric resolutions but also in an additional physical dimension
of the electromagnetic characteristics. Extension of this inversion scheme to the
multibistatic sensing configuration will be more impressive in the field of remote
sensing radar imaging.
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1. Introduction

Electromagnetic (EM) inverse scattering is a procedure of recovering the morphologi-
cal or EM characteristics using scattered fields detected at variant spatial locations. The
forward and inverse scattering theory has important and extensive practical applications
in many practical applications (such as geophysical survey [1], medical diagnosis [2,3],
etc.). Inversion techniques have been investigated mainly in cases where the measure-
ment data is obtained from a full aperture setup in order to circumvent the occurrence of
local minima in the minimization process of the inversion.

In the classical radar signal processing theory, the point scattering center model is
assumed, based upon which non-linear inverse scattering problems can be mathemati-
cally simplified with a linear model. Classical radar imaging theory has perfectly bal-
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anced the available computing resources at that time and forms the mature and unified
radar language. Radar imaging methods based on matched filtering have been widely
used in practical applications due to their efficient implementation algorithms and sta-
ble imaging performance, among which are the back-projection (BP) method [4], the
Range-Doppler (RD) algorithm [5, Chapter 6], the range migration algorithm [6, Chap-
ter 10], the time reversal (TR) technique [7], and so on. As is well known, the theoreti-
cal resolution of classical radar imaging is inevitably limited by the diffraction limit [8].
As a variant of the TR technique, the time-reversed multi-signal classification method
(TR MUSIC) [9] enables finer resolution by exploiting the orthogonality of signal and
noise. Compressive sensing technique also provides high imaging resolution by means
of sparsity regularization with carefully selected trade-off parameters [10].

In contrast to the classical radar imaging theory, the EM inverse scattering theory
depicts the EM scattering mechanism according to the EM wave equations and retrieve
the EM characteristics of the scatterers by solving a nonlinear inverse problem. Inversion
methods can be grouped into different categories from different perspectives, such as
qualitative/quantitative inversion algorithms, local/global optimization algorithms, and
so on. Among them, the inversion method based on the optimization of surface structure
parameters [11,12] belongs to the qualitative inversion method. These methods require
prior information about the location and number of the scatterers. The representative
quantitative inversion methods include the contrast source inversion (CSI) method [13]
and the Born/Distorted Born iterative methods (BIM and DBIM) [14], all of which be-
long to local optimization algorithms. Diffraction tomography (DT) [15,16] solves the
nonlinear inverse scattering problem with Born approximation and the spatial spectrum
of the contrast is achieved by processing the scattered field data probed by the receiving
antennas in a certain way. In doing so, real-time inversion can be done with Fast Fourier
transform (FFT). More importantly, the concept of the spatial spectrum provides clear
insights into how the resolving ability of EM inversion is evaluated. The drawback of
DT is the limit of weak targets, and we refer to a recent study [17] for reconstructing
buried targets of high contrast with a modified DT method. In recent years, technologies
such as artificial intelligence have also been applied in the field of EM inverse scattering
[18,19,20], however relevant research is still in its infancy due to some fatal problems
such as the poor generalization of neural networks.

As aforementioned, inversion imaging based on EM inverse scattering theory is
mostly used in medical diagnosis and ground penetrating radar (GPR). In contrast to the
classical radar imaging technology [5] which has been fully developed, the EM inver-
sion technology based on the framework of EM inverse scattering theory has not been
well applied in the radar systems of remote sensing such as air/space target imaging and
etc., not to mention developing the inversion radar imaging systems. In this paper, we
proposed the quantitative inversion imaging scheme for the radar obsvervation mode,
and demonstrated (with preliminary simulation results) the better geometric and physical
resolving ability in comparison to classical radar imaging. Quantitative inversion radar
imaging is of physical resolving ability, because an quantitative inversion image consists
of a permittivity image and a conductivity one, while in classical radar images only the
relative magnitude of radar cross section (RCS) is given. Based on the above facts, we
remark that the quantitative inversion radar imaging scheme can expand the dimension of
information that can be obtained by remote sensing systems, and fundamentally improve
the ability of radar systems in the aspect of target recognition.
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The remainder of this paper is organized as follows: Section 2 gives the problem
statement of radar imaging within the frameworks of classical radar imaging and EM
inverse scattering theory, respectively; Section 3 introduces the inversion radar imaging
scheme; Simulation experiments are presented in Section 4; Finally, Section 5 gives our
conclusions.

2. Problem Statement

In general, radar imaging is a procedure of retrieving the 1-D, 2-D or even 3-D images of
radar targets with the EM echo data. In this section, the problem statement of radar imag-
ing is given within the frameworks of classical radar imaging and quantitative inversion
radar imaging, respectively. The time factor exp(iωt) is used and fixed for consistency
in the remainder of this paper.

2.1. Electromagnetic Inverse Scattering Theory

2.1.1. Scattered field equation

The physical principle of the EM scattering in the framework of the inverse scattering
theory is based on the EM wave equations, i.e., the Maxwell’s equations. Mathemati-
cally, the inversion radar imaging is implemented by solving the parameters of Maxwell’s
equations. For 3-D EM inverse scattering problems, the scattered field equation can be
obtained through the incident field equation and the total field equation, which can be
formulated as follows

∇×μμμ−1∇×EEEsct
p −ω2εεεbEEEsct

p = ω2χχχEEE tot
p , (1)

where, the subscript p represents the field generated by the p-th source; the scattered
field, EEEsct

p , is the difference of the total field and the incident field EEEsct
p = EEE tot

p −EEE inc
p , μμμ

represents the permeability of the background media, which can be reasonably assumed
as the permeability of free space, i.e., μμμ = μμμ0; ω is the angular frequency; εb represents
the complex permittivity in the form of εεεb = εεεb − iσσσb/ω , where, εεεb is the background
permittivity, σσσ b is the background conductivity, and χχχ represents the difference of the
complex permittivity of the scatterer and the background, which is referred to as the
contrast. The formula of the contrast is given by χχχ = (εεε − εεεb)− i(σσσ −σσσb)/ω .

The scattered field, EEEsct
p , is equivalent with the echo signal data out of the frequency

mixer in classical radar signal processing. In Cartesian coordinate system, if all parame-
ters are assumed as constants in z-axis direction, the 3-D inverse scattering problem de-
grades to a 2-D one in x-y plane. If only z-polarized electric line sources are considered,
we obtain the TM-polarized model of 2-D inverse scattering problems, for which only
z-component of the electric field exists and the electric field is a scalar. Considering the
stepped frequency signal as well, for a 2-D TM-polarized inversion radar imaging prob-
lem, the scattered field equation, Eq. (1), can be simplified as a scalar equation in the
form of

−∇2Esct
p,n − k2

nEsct
p,n = ω2

n μ0Jp,n (2)
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where, ∇2 is the Laplace operator, p = 1,2, · · · ,P, n = 0,1, · · · ,Nf −1 represents differ-
ent frequencies, kn = ωn

√εbμ0 is the wave number corresponding to the n-th frequency,
J is referred to as the contrast source, which is the multiplication of the contrast and the
total field. In the following of this paper, we shall firstly realize the inversion radar imag-
ing with ideal TM-polarized synthetic data. The inversion radar imaging performance is
quantitatively analyzed in comparison to the classical radar imaging.

3. Quantitative Inversion Radar Imaging

In inverse scattering problems, the inversion algorithms can be generally divided in the
two families — local optimization algorithms and global optimization algorithms. In the
remainder of this paper, a representative of local optimization algorithms — the cross-
correlated contrast source inversion method (CC-CSI) — has been used to implement the
quantitative inversion radar imaging scheme under the premise of zero prior information
of the targets.

3.1. Formulation

In the EM inverse scattering theory, the measurement equation is referred to as data equa-
tion because it is in the data domain S , and the data error equation is defined corre-
spondingly as

ρρρ p,n = yyyp,n −ΦΦΦp,nω2
n jjjp,n. (3)

In addition, the state equation is defined in the state domain D by

eeetot
p,n = eeeinc

p,n +MDAAA−1
n ω2

n χχχneeetot
p,n, (4)

where, MD is the matrix for zeroing all values not in the inversion domain, AAAn is the
stiffness matrix in the finite difference frequency domain (FDFD) scheme. The state error
equation is defined as

γγγ p,n = χχχneeeinc
p,n − jjjp,n +χχχnMDAAA−1

n ω2
n χχχneeetot

p,n, (5)

where, MD is a sampling matrix which constrains the state equation in the state domain.
In the classical radar imaging, the data equation is linearized due to the assumption of
the point scattering center model and then the solution is found which yields the relative
values of the RCS distribution. Inversion radar imaging studied in this paper is based on
the EM inverse scattering theory, and it solves the radar imaging problem not only with
the data equation but also with the constraint of the state equation. This explains well
why the former belongs to qualitative imaging, while the latter is able to do quantitative
imaging. In the CC-CSI method, a new error referred to as the cross-correlated error is
defined in the form of

ξξξ p,n = yyyp,n −ΦΦΦp,n

(
χχχneeeinc

p,n +χχχnMDAAA−1
n ω2

n χχχneeetot
p,n

)
(6)
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Figure 1. Basic diagram and data flow of a quantitative inversion radar imaging system.

The cross-correlated error is actually the mapping of the state error to the data domain.
Both the state error and the cross-correlated error can be taken as constraints in solv-
ing the inverse scattering problem. Finally, the inversion radar imaging problem can be
formulated as an optimization problem given by

CCC-CSI
(
χχχn, jjjp,n

)
=

Nf −1

∑
n=0

ηS
n

P

∑
p=1

∥∥∥ρρρ p,n

∥∥∥2

S
+

Nf −1

∑
n=0

ηD
n

P

∑
p=1

∥∥γγγ p,n

∥∥2
D
+

Nf −1

∑
n=0

ηS
n

P

∑
p=1

∥∥ξξξ p,n

∥∥2
S

(7)
where,

ηS
n =

(
P

∑
p=1

∥∥yyyp,n
∥∥2

S

)−1

, ηD
n =

(
P

∑
p=1

∥∥∥χχχneeeinc
p,n

∥∥∥2

D

)−1

(8)

are the weighting parameters in the data domain and the state domain, respectively; ‖·‖S
and ‖·‖D represent the 2-norm in the data/state domains, respectively. CC-CSI is based
on the gradient descent method in which the contrast source and the contrast are opti-
mized sequentially in each iteration. We refer to [21,22] for more details of CC-CSI.

3.2. Incident Field Modeling

In the radar observation mode, the measurement data is generally the spatial samplings
of the back-scattered fields. Since the TM-polarized 2-D radar imaging problem is con-
sidered in the following, the incident field modeling formula can be formulated as fol-
lows

E inc
p,n

(
rrr′,rrrp,kn

)
=

1
4

ωnμ0H(1)
0

(−kn
∥∥rrr′ − rrrp

∥∥) . (9)

Calibration is necessary to do exact inversion radar imaging. A complex factor is used to
calibrate the incident field model, which is calculated using the back-scattered measure-
ment data via the following equation
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αp,n =
y(rrr,rrrp,kn)

E inc
p,n (rrr,rrrp,kn)

. (10)

Here we remark that a quantitative inversion radar imaging system must consist of a
quantitative calibration module which gives real-time calibration factors for modeling the
incident field and calibrating the probed data. Transmitting/receiving antenna patterns
should be considered in the calibration module as well. Fig. 1 illustrates the diagram
and data flow of a quantitative inversion radar imaging system, from which one can see
that the design scheme of a quantitative inversion radar imaging system is an upgraded
modality of the classical radar imaging system. Therefore, a quantitative inversion radar
system is supposed to be of higher precision requirement than classical coherent imaging
radar systems. In addition, thanks to the nonlinear scattering model, quantitative inver-
sion radar imaging gives the fundamentally accurate understanding and interpretation of
the HH, HV, VH and VV polarized data, instead of a direct addition process normally
used in classical radar imaging.

4. Synthetic Data Inversion and Performance Analysis

In this section, we take the TM-polarized 2-D inverse scattering problem as an example
for implementing the inversion radar imaging and analyzing its potential of physically
classifying the target materials and the geometric resolutions in both range and azimuth
directions. The synthetic data is processed by a classical radar imaging method — the
BP imaging method — as well for comparison.

4.1. Simulation Experiment Parameters

The geometry of the 2-D simulation experiment is shown in Fig. 2. All the parameters
involved are invariant in the z-axis direction. The red dots aligned in the line y = 0 rep-
resent the z-polarized electric line sources, the intervals of which are uniformly set to
0.1 m. And the blue ones in between represent the receiving antennas. If the number of
the line sources is N, then there are N +1 receiving antennas in total. Stepped frequency
signal is used. The initial frequency is f0 = 1 GHz, the frequency step size is Δ f = 30
MHz which gives an unambiguous range of 5 m. If the frequency number is Nf , then
the bandwidth of the stepped frequency signal is B = 30

(
Nf −1

)
. In the experiment, the

multiple input multiple output (MIMO) measurement scheme is used, which means N
times measurements are carried out and (N + 1)×Nf complex data are sampled each
time. Finally, we get a measurement data matrix YYY ∈ C

N(N+1)×Nf .
The synthetic data is generated by solving a 2-D forward scattering problem with

an open source FDFD package [23] . Four perfectly matched layers (PMLs) are used
at the boundary of the experiment region in the x-y plane and the two interfaces in the
z-axis direction are set with periodic boundary condition (PBC). The spatial domain
is discretized by 5× 5× 5 mm3 cubes ensuring that the ratio of the least wavelength
( fmax = 2.35 GHz) and the grid side length is greater than 25.
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Figure 2. Geometry of the 2-D synthetic experiment scene with multiview-multistatic configuration.

4.2. Quantitative Imaging Results

Inversion radar imaging based on the EM inverse scattering theory belongs to quantitative
imaging. Therefore, it is supposed to possess the potential of material classification based
on the retrieved EM characteristics of the targets. In this subsection, we do inversion
imaging to a combination of hybrid targets.

In this part, we do imaging to hybrid targets with noisy data. The targets consist
of a square metallic cylinder of side length 0.3 m and a dielectric cylinder (εr = 10)
of radius 0.15 m. The imaging parameters are B = 1.35 GHz and La = 2.5 m, which
means we used 46 frequencies ranging from 1 GHz to 2.35 GHz and 24×25 transceivers.
Complex Gaussian white noise is added to the synthetic data of the scattered E-field. Let
us first process the synthetic data with SNR level of 10 dB, and Fig. 3(a) and (b,c) show
the imaging results of the hybrid targets by BP and CC-CSI, respectively. From Fig. 3
we see that BP imaging successfully retrieves the boundary contour of the front side of
the metallic square cylinder, however it fails to depict the arc contour of the dielectric
circular one. The square cylinder shows slightly stronger RCS than the circular cylinder,
but it exhibits no physical resolving ability. From Fig. 3(b) we see that the contour of
the two cylinders has been successfully reconstructed. In Fig. 3(c), the square cylinder
shows significantly higher conductivity (up to 200 mS/m) than the circular one, from
which one can judge that the material of the square cylinder belongs to metal or highly
lossy media. In the conductivity image of the circular cylinder, only a small fraction
overlaps with its permittivity contrast image and the conductivity value is much less than
the metallic one, indicating that the material of the circular cylinder belongs more likely
to dielectric media of high contrast. Fig. 4 gives the imaging results by processing the
noisy data of SNR = 0 dB, from which one can observe that quantitative inversion radar
imaging is to some extend tolerant of noise. Simulation results show that, with the same
sensing configuration and imaging parameters, the proposed quantitative inversion radar
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Figure 3. BP normalized amplitude image (a) and quantitative inversion images (contrast of permittivity (b)
and conductivity (c)) of a metallic (σ = ∞) square cylinder of side length 0.3 m and a dielectric (εr = 10)
circular cylinder of radius 0.15 m. Imaging parameters are B = 1.35 GHz and La = 2.5 m. SNR is 10 dB.

imaging scheme loses the physical resolving ability when SNR is less than −5 dB, and
geometric resolving ability when SNR is less than −10 dB; while the lower SNR limit
for BP imaging is −20 dB.

In the final, we remark that, on one hand, quantitative inversion radar imaging shows
advantages over classical radar imaging with finer geometric resolutions, lower sidelobe
levels and additional physical resolving ability; on the other hand, efforts are needed to
overcome the following limitations

1. Although it exhibits good performance with a lower SNR, the robustness of quan-
titative inversion radar imaging against noise disturbance is not as good as clas-
sical radar imaging.

2. It is a tough task to do the incident field modling in real applications.
3. In this paper, the feasibility of the physical imaging has been demonstrated. How-

ever, methods need to be developed for multibistatic cases, which are widely in-
volved in real applications.
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Figure 4. BP normalized amplitude image (a) and quantitative inversion images (contrast of permittivity (b)
and conductivity (c)) of a metallic (σ = ∞) square cylinder of side length 0.3 m and a dielectric (εr = 10)
circular cylinder of radius 0.15 m. Imaging parameters are B = 1.35 GHz and La = 2.5 m. SNR is 0 dB.

5. Conclusions

In this paper, the quantitative inversion imaging scheme has been proposed for the radar
observation mode. Preliminary simulation results demonstrate that quantitative inversion
radar imaging exhibits better (in comparison to classical radar imaging) and physical
resolving ability, and it is to some extent tolerant of noisy data. Therefore, it is impressive
to study the extension of quantitative imaging to multibistatic cases (such as Synthetic
Aperture Radar (SAR) and Inverse SAR (ISAR)).
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