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Abstract. Nowadays, voice interaction is increasingly applied to smart home 
appliances. There are various types of noises in our real lives, which requires 
speech enhancement technology to deal with multiple noisy speech scenarios and 
to process them in real-time. Traditional technologies of speech noise reduction 
require estimating the noise power spectrum first, then estimating the spectrogram 
gain value of noise reduction, such as minima controlled recursive averaging 
(MCRA), which can only deal with stationary environmental noises but cannot 
estimate noises with serious fluctuations of the power spectrum within quite 
limited durations. A highly complicated deep-learning model can estimate the 
power spectrum of various types of noise, but it cannot meet the requirement of 
real-time processing due to the large number of parameters of these general 
models. In this paper, we proposed a method combining deep-learning 
technologies with traditional signal processing techniques to estimate the power 
spectrum of various types of noises by designing a new model with fewer 
parameters, tiny deep convolutional recurrent network (TDCRN), and computing 
the speech gain value with the power spectrum. The result of our experiment 
indicates that, compared with the traditional technology and complicated deep-
learning model, the proposed method, with only 0.29M parameters, increases the 
PESQ by more than 0.6, the STOI by more than 0.2 and the wake-up rate by more 
than 6%. 

Keywords. deep learning, real-time speech enhancement, noise power spectrum 
estimation, convolutional encoder-decoder 

1. Introduction 

The speech processing technology is increasingly applied in hearing aids, automatic 

speech recognition, and audio/video calls. Due to the interference of noise in actual 

scenarios, the quality of signals received by microphones is degraded, which seriously 

affects the subsequent use. Speech enhancement technologies can be used to improve 

the acoustic quality and speech intelligibility of speech signals whose quality has been 

degraded due to additive noise. 

Traditional speech enhancement technologies include spectral subtraction [1], 

Wiener filter [2] and estimation based on noise spectrum [3], among which the more 
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well-developed and widely-used is the estimation based on noise spectrum. Cohen 

assumes that the Fourier transform of clean speech and noise satisfies a Gaussian 

distribution, using the optimally-modified log-spectral amplitude (OM-LSA) with 

minimum Bayesian estimation to solve for the optimal gain, during which the noise 

power spectrum is estimated with improved minima controlled recursive averaging 

(IMCRA) [4]. 

Recently, deep learning has made great achievements in the application of speech 

enhancement. The mainstream approach is to carry out speech enhancement in the TF 

domain. Xu[5] proposed the method of using DNN to directly learn the spectral 

mapping between the noise speech and the clean speech so as to obtain a clean speech 

spectrum, the training of which can be divided into two parts: the pre-training and the 

refined adjustment based on MMSE. One method is to conduct speech enhancement by 

masking[6][7][8]. We assume that both noise signal and speech signal exist in the noisy 

speech signal, and the speech signal can be left after masking out the noise signal. 

Currently, there are two masking methods: ideal binary mask (IBM) and ideal ratio 

mask (IRM). Recently, complex networks have also become popular, which can exploit 

phase information and have higher upper-performance limits theoretically[9][10][11] 

compared to real networks, but also require a large number of parameters. 

The traditional technology cannot eliminate the noise that has a greater fluctuation 

in the power spectrum and short duration. Using deep learning to estimate the IRM, the 

enhanced signal obtained has speech distortion and aberration. If complex networks are 

used, a large number of parameters are required, which cannot meet the requirements 

of real-time processing. In this paper, we proposed a new method of speech 

enhancement, which is inspired by the method of speech processing based on DNN-

mask[6][7][8]. The noise-reduction method we proposed introduces deep learning into 

the estimation of noise spectrum, using networks to output the mask value of noise 

components in the noisy speech signal, and making further estimation on priori SNR 

and posteriori SNR of the speech as well as the missing probability of priori speech, so 

as to obtain speech presence probability. As for the model result, we adjusted the 

CRN[12] structure and incorporated a convolutional encoder-decoder and long short-

term memory. Compared with the LSTM model, CRN has better performance in 

objective speech intelligibility and quality. 

The arrangements of this paper are as follows. In Section 2, we formulate the 

problem of speech noise reduction. In Section 3, we review the noise reduction method 

based on OM-LSA and IMCRA, and also describe its features and limitations. Section 

4 introduces the noise-reduction method that we proposed. Section 5 provides the 

experimental results, and demonstrates the improvement of ASR by the noise-reduction 

method that we proposed in a real noise environment. Last but not least, we put our 

conclusions in Section 6. 

2. Problem Formulation 

In this section, we describe the problem of speech noise reduction in the TF domain. 

�(�) and �(�) stand for speech signal and additive noise signal respectively, and signal 

received by microphone  �(�) can be expressed as ���� = ���� + �(�). With a short-

time Fourier transform, it can be expressed as ���, 	� = 
��, 	� + �(�,	) , among 

which � and 	 stand for frame index and frequency bin index respectively. 
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As long as an accurate gain value ���, 	� can be obtained, an estimated clean 

signal 
��, 	� can be obtained as well. 


��, 	� = ���, 	����, 	� (1) 

2.1. Spectral Gain 

The computing criterion of OM-LSA is to minimize the error in the optimally-modified 

log-spectral amplitude of actual clean speech and estimated clean speech 

� �����|
(�, 	)| −  ����
(�, 	)����. Assuming the statistical independence of spectral 

components[13], the log-spectral amplitude of clean speech is 

�
��, 	�� = ���������|
(�, 	)|� | �(�, 	)�. (2) 

A binary hypothesis model is set, and ����, 	� and ����, 	� stand for the non-

presence and presence of the speech respectively. 

����, 	�:���,	� = �(�, 	) ,  

����, 	�:���, 	� = 
��, 	� + ���, 	�. (3) 

The spectrogram gain value of OM-LSA[3] can be calculated as: 

���, 	� = ������, 	�����,	
���
�����,	


,  

�����,	� =
�(�,	)

���(�,	)
���  �

�
! ���

�
���

�(�,	)
". (4) 

In the above equation, #(�, 	) ≜
��(�,	)

��(�,	)
, $��, 	� ≜

|���,	
|�

����,	

, %(�, 	) ≜

���,	
�(�,	)

���(�,	)
. 

#(�, 	) and $��, 	� stand for priori SNR and posteriori SNR respectively. &�(�, 	) and 

&(�, 	) stand for the power spectrum of clean signals and noise signals respectively. 

�(�, 	) and '��, 	� stand for the priori probability of speech presence and non-presence 

respectively. 

2.2. Speech Presence Probability 

Assuming that the short-time Fourier transform coefficients of speech and noise 

conform to the complex Gaussian distribution and are incoherent, according to Bayes 

theorem, the presence probability of conditional speech is 

�(����, 	�����, 	�) =
�

��
���,	


�����,	

×����(�,	)�×��� {��(�,	)}

. (5) 

 

Among which priori SNR can be estimated based on historical smoothing 

information, 
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#*��, 	� = +���
��� − 1, 	�$�� − 1, 	� + �1 − +�,-��$��, 	� − 1,0�. (6) 

The first term on the right of Eq. (6) can be interpreted as the estimation of priori 

SNR on the last frame, the second term can be interpreted as the estimation of priori 

SNR on the current frame, and the final estimation of priori SNR can be obtained by 

smoothing the above two parts. 

3. Conventional Method 

To solve for the final spectrogram gain value ���, 	�, it is necessary to accurately solve 

for the spectrogram gain value when the speech is present �����, 	�, as well as the 

presence probability of conditional speech �(����, 	�����, 	�), during which the most 

vital unknown parameter is noise power spectrum &(�, 	). 

3.1. Formulation 

The commonly used method for noise spectrum estimation, MCRA[3], combines 

recursive averaging and minimum value tracking to roughly estimate the speech 

presence probability based on minimum value tracking, eliminate the frequency points 

with high speech probability, filter out the noisy segments, and then update the noise 

spectrum only in the noisy segments. Cohen proposed to improve MCRA[4] by 

determining the frequency points with higher speech probability that need to be 

eliminated by two iterations, expanding the historical window of minimum tracking, 

and empirically compensating for the final estimated noise spectrum. 

&*��, 	� = +.��, 	�&*�� − 1, 	� + (1 − +.��, 	�)|���, 	�|� (7) 

The noise spectrum estimation in Eq. (13) is all obtained by smoothing the 

historical power spectrum by adjusting the smoothing parameter based on the speech 

presence probability, and +.  is the smoothing factor obtained based on the speech 

presence probability. 

3.2. Limitations of Conventional Method 

The MCRA method of estimating the noise spectrum has the following limitations: 1. 

The problem of convergence; 2. It can only be used for estimating environmental 

noises which are rather smooth. 

+.��, 	� = + + �1 − +��(�, 	) (8) 

In the above equation, + is a smoothing coefficient, and also a constant. 

When the noise environment changes, the method of recursive averaging requires 

a certain number of frames to reach convergence. In Eqs. (6), (7), and (8), smoothing 

methods are used in estimating priori SNR, noise spectrum, and smoothing coefficient 

of the noise spectrum. Moreover, in the method of IMCRA, when tracking the 

minimum value of the power spectrum by two iterations, the minimum power spectrum 

saved during the smoothing process is calculated in the first iteration. In the second 
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iteration, the amount of windows D is divided into U shares, each with V sampling 

points, which also calculates the minimum power spectrum of the U shares. While this 

method improves the accuracy of noise spectrum estimation and eliminates those 

relatively strong speech components, it also increases the convergence time.  

The accuracy of noise spectrum estimation depends on the estimation of the 

smoothing coefficient +.. The most ideal scenario is the frequency band with a high 

noise component and a small value of +.��, 	�. The first term on the right of Eq. (7) 

has a small proportion of historical values, and the second term has a large proportion 

of current noise spectral components. Frequency bands with higher speech components 

have higher values of +.��, 	�, and the accuracy of +.��, 	� value depends on �(�, 	). 

In the method of IMCRA, Eq. (5) is used to estimate �(�, 	), and the minimum power 

spectrum /��  estimated with secondary iterations is regarded as & . /��  calculates 

the minimum value of the power spectrum after time and frequency smoothing, and the 

computed �(�, 	) can only distinguish the frequency points with greater fluctuations 

in the power spectrum. We consider these points to be the frequency points with a 

higher probability of speech. The noise power spectrum &��, 	� obtained by Eq. (7) is 

rather smooth in the time dimension. Therefore, the method of OM-LSA & MCRA can 

only suppress the environmental noise that is relatively smooth, and cannot eliminate 

the noise that has a greater fluctuation in the power spectrum and short duration, such 

as keyboard tapping, knocking on tables and chairs, frying in the kitchen, etc. 

4. Proposed Method: CRN-based Noise Spectrum Estimation 

4.1. The Proposed Network Architecture 

In order to solve the above problems, we proposed a new computing method to 

estimate the required noise power spectrum & , instead of using the methods of 

recursive averaging and minimum tracking. Specifically, we proposed to use deep 

learning to estimate & and apply it to estimate the priori SNR #, so as to compute the 

spectrogram gain value of noise reduction. 

The CRN network structure proposed by Tan[12] uses CED (convolutional 

encoder-decoder) and long short-term memory (LSTM) in the model structure, which 

can be used for the real-time processing of speech signals. Choi[11] proposed a small 

UNET network that implements CED with one-dimensional convolution to reduce the 

number of trainable parameters. 

In this paper, we proposed the tiny deep convolution recurrent network (TDCRN) 

based on previous network structures, using the loss function of mean squared error 

(MSE) to perform network optimization. This network model effectively combines the 

advantages of UNET and CRN methods, using LSTM to model the temporal 

dependencies. The encoder and decoder are implemented by one-dimensional 

convolution in the time domain, which can effectively reduce the number of trainable 

parameters and computing overhead. 

A. Model input and output 

The division of Bark band utilizes the perceptual characteristics of human ears to 

meticulously detail the low-frequency components of the signal. Setting fewer Bark 

bands can reduce the amount of computation and memory. The scale of Bark domain 
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nonlinearly maps frequencies to the perception domain of human ears. b stands for 

critical frequency band, and its relation with frequency f is, 

0 = 13 × arctan�0.76 × 1� + 3.5 × arctan  �

�.�
"
�

. (9) 

The amplitude spectrum of noisy speech signal is mapped to the Bark domain, and 

used as model input. Model output is the ratio of amplitude spectrum of clean signal to 

that of noisy signal in the Bark domain. 2(∙)  stands for model output, and ℱ���� 
denotes the value mapped from the bark domain to the frequency domain. The 

estimated noise amplitude spectrum is, 

&*��, 	� = ℱ����|���, 	�|�.                                                                                 
(10) 

B.  Model structure 

 
Figure 1. Flow Chart of TDCRN Estimation Noise Spectrum 

The flow chart of our proposed TDCRN model for estimating the noise spectrum 

is shown in Figure 1. In this paper, we set up 3 layers of convolutional networks in 

encoder and decoder respectively, as shown in Figure 1. The output of each layer of 

encoder is used as part of the input of decoder layer with the method of res-net. 

Compared with [9][12], we use one-dimensional convolution instead of two-

dimensional convolution. The convolution direction of [11] is the frequency direction 

of a frame, while the convolution direction that we proposed is the frame direction. 

What is shown in Figure 2 is the computing method of a convolution kernel in one-

dimensional convolution. We set in_channels, a one-dimensional convolution 

parameter, as the feature number of input, and out_channels as the feature vector of 

output. This convolutional approach can extend the perceptual field of the network, and 

also count the influence among frequencies. 

 
Figure 2. One-dimensional Convolution Diagram 
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4.2. Advantage of Proposed Method 

Compared with the traditional method of estimating the noise spectrum, a major 

advantage of using the deep learning method to estimate the noise power spectrum & 

is that it can estimate the change of noise in time and greatly reduce the convergence 

time of noise reduction. Besides, a reasonably trained model can learn the power 

spectrum of a wide variety of noises, and noise reduction is no longer limited to 

environmental noise that is rather smooth.  

If the model output is used as the final output, a large number of parameters are 

often required to reduce speech distortion and aberration, which cannot meet the 

demand of real-time processing. In contrast, the method of combining TDCRN with 

OM-LSA only requires TDCRN to estimate the noise spectrum, without the need to 

consider the complex information of speech spectrum structure, so that it is advisable 

to design the model structure with fewer parameters. 

Rnnoise [14] is a hybrid method based on the improved traditional methods. In 

order to ensure the real-time performance of the algorithm, the network output is the 22 

band in the bark domain. Although the computing resource of this method is low and 

the noise reduction ability is increased, the network output dimension is too small, 

some details are missing, and the speech distortion is relatively serious.  

5. Experiment 

5.1. Datasets 

In the experiment, there are 62,810 noise data from Interspeech2021 DNS 

Challenge[15] dataset in the noise dataset, as well as 6.2 hours of free-sound noise and 

42.6 hours of music in MUSAN[16] dataset. Besides, we recorded the 100-hour noise 

from an actual kitchen scenario with a microphone, including noises from frying and 

chopping food, hood, high-speed blender, etc. 

In the clean speech dataset, there are 178 hours of human voice recorded by 

AISHELL-1[17]. We used the method of IMAGE to generate 1,000 rir with the clean 

data from Interspeech2021 DNS Challenge, and get the human voice date through 

convolution. Moreover, we also recorded 100 hours of human voice in an anechoic 

chamber with a microphone. 

We generated 100,000 mixed data as the training dataset, each with 4s, which were 

111 hours in total. We set SNR as {-5,0,5,10}dB. We generated 15,000 as the test 

dataset, and 7,500 as the validation dataset, in which the percentage of real data is 

increased. 

5.2. Training Setup and Baselines 

The data are all with 16000Hz sampling rate, 32ms of STFT window length, 16ms of 

frameshift, and 512 of FFT length. The model was trained by Pytorch, optimizer Adam, 

with 0.001 initialized learning rate and 64 batch size. 

The details of parameters of TDCRN model are shown in Table 1, with feature 

dimension of model output as 128, and the Hyper-parameters in Encoder and Decoder 

denote [in_channels, out_channels] and [kernel_size, stride, padding] respectively. In 
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Encoder, we chose to discard the first layer of data due to the output of T+1 per layer of 

zeros_padding. Similarly, in Decoder, we conducted zero-padding at the first layer due 

to the output of T-1 per layer of zeros_padding. The number of parameters for the 

whole model is 0.29M. 
 

Table 1. Proposed TDCRN Structure. T stands for frames, and B stands for batch 

size. 

 Layer name Input size Hyper-parameters Output 

size 

 Stft [B, time] [B, F,T] 

 Frequency to Bark [B, F,T] [B, 128,T] 

Encoder Conv1d_1 [B, 128,T] [128,96],[4,1,2] [B, 96,T] 

Conv1d_2 [B, 96,T] [96,64],[4,1,2] [B, 64,T] 

Conv1d_3 [B, 64,T] [64,48],[4,1.2] [B, 48,T] 

RNN Lstm_1 [B, T,48] [48,64] [B, T,64] 

Lstm_2 [B, T,64] [64, 48] [B, T,48] 

Decoder Conv1dTranspose_1 [B, 48,T]+ [B, 
48,T]

[48+48,64],[4,1,2] [B, 64,T] 

Conv1dTranspose_2 [B, 64,T]+ [B, 
64,T]

[64+64,96],[4,1,2] [B, 96,T] 

Conv1dTranspose_3 [B, 96,T]+ [B, 
96,T] 

[96+96,128],[4,1.

2]

[B, 128,T] 

 

We respectively chose IMCRA and LSTM models as the baselines. 

LSTM: A semi-causal model consists of two LSTM layers, each containing 128 

units. The output layer is a 128-unit fully connected layer with sigmoid activation 

function. The number of model parameters is 0.27M. 

IMCRA: The coefficients are set according to[4]. 

At last, we compared the algorithm performance of IMCRA&OMLSA, LSTM out, 

TDCRN out, and TDCRN & OMLSA, among which LSTM out and TDCRN out 

models were trained when the target was with clean signals. 

5.3. Results and Discussions 

In this paper, we use PESQ and STOI and wakeup rate as evaluation metrics. The main 

purpose of the development of this algorithm is to be applied to noise reduction in 

kitchen scenarios of a smart home. We tested the effect of the algorithm in two scenes, 

All test dataset and Kitchen most, respectively. When testing PESQ, we used the above 

test dataset with 15,000 data. When testing the wakeup rate, we recorded the real-world 

data of a wakeup word with Smart Home Brain Screen2. The wakeup word is a two-

syllable Chinese pronunciation (“xiao U xiao U”), and the test dataset of wakeup words 

has ~56.3k positive examples (~30h) and ~60.4k negative examples (~72h). 

 

 

 

 

 
2 https://www.haier.com/business/smarthome/product/znckmb/20220610_182324.s

html?from=search&spm=cn.31493_pc.product_20200325.1 
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Table 2. Performance of PESQ on Test Dataset 

Evaluation metrics PESQ STOI (Acc. %)KWS 

Rate 

Noise type All test 

dataset 

Kitchen 

most 

All test 

dataset 

Kitchen 

most 

All test 

dataset 
Kitche

n most 

Origin 1.55 1.69 0.60 0.64 84.5 87.1 

IMCRA&OMLSA[4] 1.668 1.94 0.63 0.69 89.1 89.9 

LSTM out 2.03 2.11 0.71 0.73 92.3 93.7 

TDCRN out 2.18 2.37 0.75 0.76 94.5 96.4 

TDCRN & OMLSA 2.32 2.64 0.82 0.85 95.3 97.6 

 

PESQ on the test dataset was calculated with different algorithms respectively, as 

shown in Table 2. Due to the concentration of the test, the short-time environmental 

noise which is smooth accounts for a relatively small percentage, mostly the type of 

noise with large power spectrum variation and short duration, which IMCRA cannot 

accurately estimate, and the enhancement of PESQ and STOI is minimized. The direct 

output of TDCRN has better performance than that of LSTM, indicating that the 

inclusion of CED results is favorable to complex target training. Although the direct 

output of the model improves PESQ and STOI to some extent, the speech quality can 

be further enhanced after being processed with OM-LSA. 

Using the same wakeup engine, we set the false alarm to 1 time/24 hours, and 

distribute the wakeup rate of sound signals processed with different algorithms. Due to 

the poor performance in noise reduction of IMCRA, the result of wakeup rate is also 

unqualified. Although the direct output of the model can improve wakeup rate to some 

extent, it will lead to the loss, distortion, and aberration of noise speech. After being 

processed by OM-LSA, the wakeup rate can be continuously improved. 
 

Table 3. PESQ on Test Dataset with different SNR 

Evaluation metrics -5dB 0dB 5dB 10dB Avg. 

Origin 2.20 2.31 2.36 2.52 2.35 

IMCRA&OMLSA[4] 2.25 2.39 2.56 2.74 2.49 

LSTM out 2.32 2.57 2.72 2.96 2.64 

TDCRN out 2.38 2.62 2.77 3.03 2.70 
TDCRN & OMLSA 2.47 2.70 2.85 3.10 2.78 

 

PESQ on the test dataset with different SNR was calculated with different 

algorithms respectively, as shown in Table 3. It can be found that the performance of 

TDCRN&OMLSA is better than that of baseline IMCRA&OMLSA and LSTM, which 

proves the effectiveness of signal processing method combined with deep learning 

method. 
 

Table 4. Calculation Cost of different algorithms 

Evaluation metrics Para.(M) Time(ms)

IMCRA&OMLSA[4] - 0.09

LSTM out 0.27 0.34

TDCRN out 0.29 0.31

TDCRN & OMLSA - 0.36
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With 2.90GHz i7-10700 CPU as the test machine, we calculate the average 

computation time of 200 audio files processed by different algorithms. Each file is 4 

seconds long with 250 frames. As shown in Table 4, TDCRN runs 0.03ms faster than 

LSTM, indicating that although TDCRN parameters are slightly more than LSTM, its 

computation is slightly less than LSTM. The average time of TDCRN & OMLSA is 

0.36ms per frame, which can be processed in real-time. 

It is worth noting that the model proposed in this paper only supports 16000Hz 

data, and its effective frequency range is 0-8000Hz, which meets most use scenarios. 

For audios with other sample rates, we need to modify the model input dimension or 

resample the original data, which will increase the workload of model adaptation. Later, 

we consider that the model can be applied to data with different sample rates. 

6. Conclusions 

In this paper, we introduce deep learning into the estimation of noise spectrum, and use 

the conventional method of signal processing to estimate the spectrogram gain value of 

noise reduction, which can be used to suppress noises with greater fluctuations of the 

power spectrum and shorter durations. The TDCRN model implements one-

dimensional convolution in the frame direction and achieves information exchange 

among frequencies by setting the number of output channels, which has better 

performance with fewer parameters. OMLSA&TDCRN that we proposed can achieve 

better performance than other algorithms in terms of PESQ and wakeup rate while 

satisfying the condition of real-time processing. In the future, we will deploy the 

proposed algorithm on smart devices, and also consider using the TDCRN model to 

improve the ability of noise rejection under reverberation conditions. 
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