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Abstract. The pavement crack identification performance of typical models or 
algorithms of transfer learning (TL), encoder-decoder (ED), and generative 
adversarial networks (GAN), were evaluated and compared on SDNET2018 and 
CFD. TL mainly takes advantage of fine-tuning the architecture-optimized 
backbones pre-trained on large-scale data sets to achieve good classification 
accuracy. ED-based algorithms can take into account the fact that crack edges, 
patterns or texture features contribute differently to the identification. Both TL and 
ED rely on accurate crack ground truth (GT) annotation. GAN is compatible with 
other neural network architectures, thus can integrate various frameworks (e.g., TL, 
ED), and algorithms, but the training time is longer. In patch classification, the fine-
tuned TL models can be equivalent to or even slightly better than the ED-based 
algorithms, and the predicting time is faster; In accurate crack location, both ED-
and GAN-based algorithms can achieve pixel-level segmentation. It is expected to 
realize real-time automatic crack identification on a low computational power 
platform. Furthermore, a weakly supervised learning framework (namely, TL-
SSGAN) is proposed, combining TL and semi-supervised GAN. It only needs 
approximately 10% 20% labeled samples of the total to achieve comparable crack 
classification performance to or even outperform supervised learning methods, via 
fine-tuned backbones and utilizing extra unlabeled samples. 
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1. Introduction 

Compared with contact detection techniques, such as non-destructive testing (NDT) [1] 
or structural health monitoring (SHM) [2], pavement crack identification with visual 
images via deep learning algorithms [3-6] has the advantages of not being limited by the 
material of object to be detected, fast speed and low cost. Thus, it has wide application 
prospects in routine inspection and other preventive detection or monitoring scenarios, 
where accurate classification and (patch- or pixel-level) segmentation can be obtained to 
identify the existence, topology, and even size of cracks. 
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Historically, hand-crafted feature engineering algorithms, include 
edge/morphology algorithms such as Canny, Sobel, HOG, LBP and feature 
transformation algorithms such as FHT, FFT, Gabor filters. These algorithms do not have 
to learn from a data set, and most computations are mathematics analytical, lightweight 
thus fast. However, the shortcomings are the weak generalization ability to various 
random variable factors, once the scenario or environment changes, the algorithms must 
be fine-tuned or redesigned, and even fail. 

Later on, machine learning (ML) algorithms, e.g., CrackIT [7], CrackTree [8], and 
CrackForest [9] were developed for pavement(concrete) crack image identification. 
Recently, deep learning (DL) has continuously achieved state of the art (SOTA) progress 
in various missions. DL extracts high-level features automatically from large-scale data 
sets mainly via non-convex optimization, with stronger generalization ability and higher 
accuracy, whereas ML is oriented towards lower-level features via convex optimization. 
However, the mathematical expression of ML is explicit and interpretable [10], [11], 
whereas that of most DL algorithms are still implicit, known as “Black Box” issue, 

though great efforts and progress [12-14] have been made to solve the interpretability 
problem. 

We focused on typical DL methods including transfer learning (TL) [15], [16], 
encoder-decoder (ED) [3], [4], and generative adversarial networks (GAN) [5], [6] for 
pavement(concrete) crack identification in this study. The main contents and 
contributions include: 

� The fundamental frameworks and characteristics of typical TL, ED, and GAN 
algorithms are presented. Recent developments of these algorithms on 
pavement crack identification are summarized. The common architecture, 
modules, and specific techniques that improve the identification performance 
are highlighted. 

� The patch sample classification performance, full-size image segmentation and 
detection effect were tested on public pavement crack data sets such as 
SDNET2018 and CFD. The performance of different neural network models of 
a certain algorithm, and various algorithms of DL methods, were evaluated and 
compared within and between categories. 

� A weakly supervised learning framework, named TL-SSGAN, combining TL 
and semi-supervised GAN, is proposed, which can maintain comparable crack 
identification performance to or even outperform the supervised learning 
algorithms while greatly reducing the number of labeled samples required, 
through the measures of (i) utilizing fine-tuned TL backbones, (ii) controlling 
the ratio of labeled and unlabeled samples, and (iii) adding extra unlabeled 
samples. 

2. Deep Learning Methods 

2.1.  Transfer Learning 

Overall Framework and Procedure of TL. TL learns the basic reusable features via 
CNN backbone models, which are typically SOTA models that have been architecture-
optimized and pre-trained on large-scale generic datasets (e.g., ImageNet). Then, the 
weight parameters of the upper and/or output layers are fine-tuned on a specific data set 
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(e.g., pavement crack dataset). TL is suitable for small datasets, easy to adjust, with good 
generalization performance, and provides fast training. The overall procedure and 
detailed data flow and steps of TL can refer to Fig. 8 of [16]. 

Common CNN Backbones.  The evolution of common CNN backbone networks 
and the top-1/top-5 accuracy performance on ImageNet of typical backbone models for 
TL were illustrated. 2 

2.2. Encoder-Decoder 

Motivation. The ED framework can compensate for the limitation of CNN [17] / FCN 
[18] algorithms for identifying complex crack topology (e.g., alligator cracks), that is, (i) 
pavement cracks have various morphology and topology. However, the CNN/FCN filters 
use specific kernels (3×3, 7×7, etc.), which limits the receptive field range and the 
robustness of crack identification. (ii) The fact that crack edges, patterns or texture 
features contribute differently to the identification has not been taken into account. 

Architecture and Mechanism of Typical ED models. ED-based FPCNet [3] is 
one of the models with excellent accuracy and speed. It includes two sub-modules: a 
multi-dilation (MD) module and SE-Upsampling (SEU) module. Another model, U-
HDN [4], similar to FPCNet [3], integrates MD module and hierarchical feature (HF) 
learning module based on U-net [19]. These two models are composed of similar or 
common sub-modules, such as the MD module (Fig. 1) based on the dilated convolution 
kernel operation, the SEU module (Fig. 2), and the U-net likewise main architecture (Fig. 
3 and Fig. 4). Dilated convolution [20] enlarges the kernel’s context window size, instead 
of using a sub-sampling operation or a larger filter with many more parameters. 

As shown in Fig. 1, the MD module concatenates six branches, i.e., four dilated 
convolutions (double operations per branch) with rates of {1, 2, 3, 4} / {1, 2, 4, 8} / {2, 
4, 8, 16}, which can be set according to the statistics of crack width, a global pooling 
layer, and the original crack multiple-convolution (MC) features. After concatenation, a 
1×1 convolution is performed to obtain the crack MD features, which represent 
contextual features ranging from pixel-level to global-level, thus can detect cracks with 
different widths and topology. 

 
Remarks: The MC features and global pooling branches in the dashed rectangular box can also be integrated 
into the ED main architecture such as the design in U-HDN [4]. 

Figure 1. Multi-dilation module [3], [4]. 

The SEU module, as shown in Fig. 2, performs up-sampling operations in the 
decoder to continuously restore the resolution of the MD feature to the original size of 
input image, so that pixel-level crack identification can be realized. Through the 
squeezing and excitation learning, the SEU module adaptively assigns different weights 

 
2https://github.com/mikelu-shanghai/Typical-CNN-Model-Evolution 
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to different crack features such as edges, patterns, and textures. The inputs of the SEU 
module are the MD features and MC features, and the output is the optimized MD 
features after weighted fusion. 

 
The detailed implementation remarks: (a) The SEU module first restored the resolution of MD features via 
transposed convolution. Then, MC features were added to MD features to fuse the associated crack information 
concerning crack edge, pattern, and texture, etc. (b) Subsequently, the SE operation was applied to the added 
MD features to learn the weights of the different features. Global pooling was first performed to obtain global 
information on C channels. After squeezing Fsq and excitation Fex (two fully connected layers), the weight of 
each feature for its channel was obtained. (c) Finally, each feature in the added MD features was multiplied by 
its corresponding weight Fscale. 

Figure 2. SE-Upsampling module [3]. 

The overall architectures of FPCNet [3] and U-HDN [4] are shown in Fig. 3 and 
Fig. 4 respectively. FPCNet [3] embedded the above MD and SEU modules into a 
common semantic segmentation network. U-HDN [4] integrated the MD module 
(bounded by the red dotted rectangular box in Fig. 4) and the HF learning module (in the 
yellow dotted box) based on the modified U-net architecture (in the blue dotted box), and 
zero filling was adopted during the up- and down-convolution paths. 

 
Implementation details: (a) four Convs (two 3×3 and ReLUs) + max pooling were used as the encoder to 
extract features. Next, the MD module was employed to obtain the information on multiple context sizes. 
Subsequently, four SEU modules were used as the decoder. (b) H, W indicate the original image size. The red, 
green, and blue arrows indicate max pooling, transposed convolution, and 1×1 convolution + sigmoid, 
respectively. MCF denotes the MC features extracted in the encoder and MDF denotes the MD features. 

Figure 3. Overall architecture of FPCNet [3]. 

 
Figure 4. Overall architecture of U-HDN [4]. 
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In addition, Li et al. [21], inspired by DenseNet, fused a densely connected 
convolution module and a deep supervision module to extract detailed crack features. Yu 
et al. [22] introduced CCapFPN, based on a capsule feature pyramid network (FPN) 
architecture. In summary, the aforementioned ED models [3], [4], [21], [22] contribute 
to common ideas, similar architectures, and fundamental modules. 

2.3. Generative Adversarial Networks 

Overview and Taxonomy. GAN makes the generated samples obey the distribution of 
real data via two networks (discriminator and generator) adversarial training. GAN has 
the advantages of (i) accurate estimation of the density function, (ii) efficient generation 
of required samples, (iii) elimination of deterministic bias, and (iv) good compatibility 
with various neural network architectures, algorithms, and techniques. Thus, GAN has 
received extensive attention and many GAN variants were derived [23-25]. The 
evolution diagram and main characteristics of some common GANs were shown in Fig. 
7 of 3. It can be used for hard sample mining in semi-supervised/unsupervised learning. 

Typical GAN algorithms for Crack Identification. ConnCrack [5] and 
CrackGAN [6] are representative GANs for highly accurate crack identification. 
However, the training and prediction times were longer in the earlier version. The 
improved CrackGAN [6], based on DCGAN and with encoder-decoder as the generator, 
proposed crack-patch-only (CPO) supervised adversarial learning and the asymmetric 
U-Net architecture to perform end-to-end training with partially accurate ground truth 
(GT) (i.e.1-pixel curve manual labeling) labeled in a labor-light manner. The overall 
architecture of Crack-GAN [6] is illustrated in Fig. 5. 

 
Remarks: (a) D is a One-class DCGAN discriminator that is pre-trained only by crack patches, which will 
enable the network to always generate crack images. It is a key module to conquer the All-Black” issue. (b) 

Pixel-level loss is used to make sure the crack pattern generated is just the same as the input patches, which is 
achieved by optimizing the L1 distance from Dilated Labor-light GT, e.g., 1 pixel dilated 3 times. The total loss 
is thus L1 distance + adversarial loss generated by the DCGAN. Transfer learning is employed to train the 
prototype of the encoding network and transfer the knowledge from DCGAN to provide generative adversarial 
loss for end-to-end training. (c) An asymmetric U-net network is introduced to balance the crack and non-
crack/background samples that are severely imbalanced. d) After the training, the generator G will act as the 
detection network for new samples. e) The whole network can handle arbitrary full-size images, since it’s a 

fully convolutional network (FCN). For more implementation details, refer to [6]. 

Figure 5. Overall architecture of CrackGAN [6]. 

CrackGAN [6] was developed to handle the practical problem named “All-Black” 
issue, i.e., the network converged to the state that the whole crack image was regarded 

 
3 https://arxiv.org/ftp/arxiv/papers/2112/2112.10390.pdf 
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as the background, which is caused by (i) the data imbalance of crack and 
background/uncrack samples; and (ii) blurred boundaries of tiny long cracks that per-
pixel accurate labeling is difficult or infeasible. CrackGAN [6] can significantly reduce 
the workload of GT labeling and achieve excellent performance when dealing with full-
size images for pixel-level crack segmentation. The computational efficiency is also 
greatly improved (predicting a 4096 2048 image takes approximately 1.6 s on an 
NVIDIA 1080Ti GPU). 

3. Evaluation and Comparison of the Crack Identification Algorithms 

3.1. Public Crack Datasets 4 

SDNET2018. It is a patch-level annotated dataset for training and benchmark test of 
crack-identification algorithms. There are 230 photographs, including 54 bridge decks, 
72 walls, and 104 sidewalks. Each photo was cropped into 256×256 patches. In total, it 
contains 56, 092 sample images. The crack sizes vary from 0.06 mm to 25 mm. Random 
variable factors (environmental, background, interference, etc.) in the images were listed 
5, and many positive (crack) and negative (uncrack) samples are difficult to be recognized 
by human eyes. 

Crack Forest Dataset (CFD). It is a pixel-level annotated pavement crack dataset 
that reflects the general situation of Beijing urban pavements. It is one of the benchmark 
baseline datasets. In total, 118 photos were collected and the samples contain noise or 
interference factors such as lane lines, shadows, and oil stains. 

3.2. Crack Patch Classification Evaluation 

The patch classification results of the TL algorithms were compared with FCN [18] (FCN 
is a one-stage pixel-level semantic segmentation algorithm that does not require window 
sliding), and the ED-based FPCNet [3], as listed in Table 1.  

Table 1. Patch classification test performance comparison. 

Algorithm/Model a Accuracy Precision Recall F1-score 
Predicting Time 
@ GTX1080Ti b 

TL-MobileNetV2 0.936 8 0.947 7 0.973 2 0.960 3 8.1 ms/patch 
TL-InceptionV3 0.941 0 0.952 4 0.980 6 0.966 3 16.1 ms/patch 
TL-Resnet152V2 0.956 1 0.961 3 0.981 7 0.971 4 50.2 ms/patch 
Original FCN [18] 0.965 8 0.972 9 0.945 6 0.959 0 19.8 ms/patch 
ED-FPCNet [3] 0.970 7 0.974 8 0.963 9 0.969 3 67.9 ms/patch 

a TL algorithms were tested on SDNET2018, whereas the FCN and ED algorithms were tested on CFD 
(statistical results at the pixel level), which is relatively more recognizable than SDNet2018. The results are 
the average of 10 runnings’. b The predicting time includes image loading, pre-processing, and inference time. 

It can be seen from Table 1 that: (i) the testing accuracy of TL algorithms on 
SDNET2018/CFD has exceeded the ImageNet baseline of the backbones. (ii) The 
performance of fine-tuned TL algorithms is close to or even slightly better than (e.g., on 
recall & F1-score) that of the FCN and ED algorithms, which is attributed to the 

 
4 Typical public pavement(concrete) crack datasets, their sample features, and download sources were 

collected and listed in [16]. 
5 https://arxiv.org/ftp/arxiv/papers/2112/2112.10390.pdf 
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architecture-optimized backbones pre-trained on large-scale datasets. Thus, the TL’s 

predicting time is much lower than the 67.9 ms of FPCNet [3]. 
The TL algorithms are trained and tested on patch samples cropped from the original 

images. Owing to the limitation of the minimum size of the patches, they have a poor 
perform on full-size image segmentation [26], so are generally used for classification. 
The crack segmentation relies mainly on the ED and GAN algorithms. 

On the other hand, the imbalance of crack and uncrack/background samples 
(SDNET2018 is approximately 1:5.6) may be compensated by the class weight or class-
balanced loss function. However, owing to the ambiguous boundary of the topological 
complex cracks and thin cracks (e.g., pavement crack images collected by high-speed 
vehicle cameras, and defect images of the industrial products on an automatic assembly 
line), accurately per-pixel annotation is labor-intensive and even impossible, thus crack 
GT semi-accurate annotation (i.e., 1-pixel curve labeling, with 2 pixels labeling error) is 
usually adapted in practice, which will lead to bias in the evaluation via accuracy, 
precision, recall, or F1-score, and even worse, may cause to encounter the ”All-Black” 

issue. Hence, the HD-score is advised as a quantitative evaluation indicator [6], [27] for 
crack pixel-level segmentation, with good discrimination when crack GT semi-accurate 
labeling [28]. 

3.3. Crack Segmentation Performance 

A patch-level RCNN based method proposed in [26], cannot accurately locate the crack 
location owing to the limitation of the patch size. The prediction of full-size images 
required the usage of a sliding window, which increased prediction time a lot. It took 
approximately 10.2s for a single CFD sample. FCN-VGG [15] is a pixel-level 
identification algorithm that implements end-to-end training relying on accurate GT 
annotation at each pixel. When there is a deviation in the GT, thin cracks will not be 
detected. DeepCrack [29] achieves good performance with multi-scale hierarchical 
fusion, with HD-score of 94 and prediction time of 2.4s, but it also relies on the accurate 
GT. 

As mentioned above (detailed in Fig. 5), by introducing CPO supervision and 
asymmetric U-net, CrackGAN [6] proposed a GAN architecture with a single-class 
discriminator. It successfully avoided the ”All-Black” problem caused by the inherent 

imbalance of positive and negative samples, and significantly improved the ability of 
accurate crack segmentation, with HD-score as high as 96, especially good at the 
identification of thin cracks. And it only takes approximately 1.6s to predict a 
4096×2048 image on an NVIDIA GTX1080Ti GPU. 

4. A Weakly Supervised Learning Framework: TL-SSGAN 

CrackGAN [6] utilized the semi-accurate labor-light annotation (i.e., 1-pixel curve 
manual labeling) to significantly reduce labeling difficulty and workload. On the other 
hand, semi-supervised GAN (SSGAN) can also significantly reduce the need for labeled 
samples from the perspective of semi-supervision [30], [31]. A weakly supervised 
learning framework (i.e., TL-SSGAN) that integrates TL and SSGAN, is proposed for 
classification, as shown in Fig. 6. TL backbone models can be pre-trained or fine-tuned. 
The ratio of labeled to unlabeled samples can be used as a variable parameter, and extra 
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unlabeled samples may also be added. The output of the TL-SSGAN is whether the test 
samples are generated or real, and whether a crack or not. 

 
Figure 6. Pipeline of semi-supervised GAN embedded TL models as encoder (Discriminator/Classifier). 

The evaluation tests were performed on SDNET2018, and results seen in Table 2. 

Table 2. Test performance of TL-SSGAN on SDNET2018. 

TL-SSGAN Framework with Different Models and Data 
Accuracy Precision Recall F1-score 

Row 
TL Backbone, fine-tuned 

or not 
Labeled Rate + Extra 
Unlabeled Samples 

1 Resnet152V2, pre-trained 1:30 0.888 6 0.926 7 0.945 3 0.935 9 
2 Resnet152V2, pre-trained 1:20 0.889 2 0.931 4 0.947 8 0.939 5 
3 Resnet152V2, pre-trained 1:10 0.905 9 0.939 6 0.955 3 0.947 4 
4 Resnet152V2, fine-tuned 1:30 0.901 6 0.929 3 0.956 7 0.942 8 
5 Resnet152V2, fine-tuned 1:20 0.906 5 0.930 0 0.958 9 0.944 2 
6 Resnet152V2, fine-tuned 1:10 0.924 5 0.941 9 0.974 9 0.958 1 
7 InceptionV3, fine-tuned 1:10 0.917 0 0.945 5 0.961 0 0.953 2 
8 MobileNetV2, fine-tuned 1:10 0.910 6 0.936 2 0.959 0 0.947 5 
9 Resnet152V2, fine-tuned 1:10 + Extra 10k samples 0.931 4 0.946 9 0.972 1 0.959 3 

10 Resnet152V2, fine-tuned 1:10 + Extra 20k samples 0.938 8 0.957 0 0.972 3 0.964 9 
11 Resnet152V2, fine-tuned 1:5 0.946 0 0.972 1 0.970 1 0.971 1 
12 Resnet152V2, fine-tuned 1:5 + Extra 10k samples 0.953 2 0.973 0 0.978 6 0.975 8 

(1) In general, models of TL-SSGAN achieved good patch classification 
performance on SDNET2018. The best accuracy, precision, recall, and F1-score were 
0.953 2, 0.973 0, 0.978 6, and 0.975 8 respectively when utilizing 1/5 labeled samples of 
the total plus extra 10k unlabeled samples via Resnet152V2, which can outperform the 
supervised TL and ED algorithms (refer to Table 1 & Table 2). 

(2) Both the backbone model and fine-tuning mechanism in the TL framework 
contributed significantly to the improvement of accuracy. For instance, all other factors 
and parameters being the same, Resnet152V2-based algorithm is 1.5%, 0.6%, 1.7% and 
1.1% better than MobileNetV2-based, respectively, on metrics of accuracy, precision, 
recall, and F1-score (i.e., Row 6 vs. 8 in Table ); while the results of the fine-tuned 
algorithm increase by approximately 1.5−2.1%, −0.2−0.3%, 1.2−2.1%, 0.5−1.1% 
respectively, compared to the pre-trained algorithm, when both with Resnet152V2 as the 
backbone (i.e., Row 4-6 vs. Row 1-3 respectively). 

(3) In the aspect of data usage, when the ratio of labeled/total sample number is 1:10, 
compared to 1:30 (Resnet152V2 as the backbone), the metric results increase by 
approximately 1.9−2.5%, 1.4%, 1.1−1.9%, 1.2−1.6% (i.e., Row 3 vs. 1 and Row 6 vs. 
4). By adding extra unlabeled samples up to 2 times, an increase of approximately 0.7% 
can be achieved (i.e., Row 10 vs. 6). Therefore, the weakly supervised mechanism of the 

2
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proposed TL-SSGAN framework not only reduces the dependence on labeled samples 
but also improves the classification performance by using incremental unlabeled samples. 

5. Conclusion 

In summary, the patch classification accuracy performance of the fine-tuned TL 
algorithms on public crack datasets (e.g., CFD, SDNET2018), is comparable to or 
slightly better than that of ED algorithms; and the predicting time cost is less 
(approximately 8.1 − 50.2 ms/patch). In accurate crack location, both the ED and GAN 
can achieve pixel-level segmentation, furthermore, CrackGAN can achieve high-
precision segmentation under labor-light partially accurate GT annotation (e.g., 1-pixel 
curve manual labeling). In terms of detection efficiency, CrackGAN only takes 
approximately 1.6 s to predict a 4096×2048 image on an NVIDIA GTX1080Ti GPU. It 
is expected to realize real-time crack detection on a low computational power platform. 

We proposed a weakly supervised learning framework TL-SSGAN combining TL 
and semi-supervised GAN, through the measures of (i) utilizing fine-tuned TL backbones, 
(ii) controlling the ratio of labeled and unlabeled samples, and (iii) adding extra 
unlabeled samples, which can maintain comparable crack classification performance to 
or even outperform the supervised learning while greatly reducing the number of labeled 
samples (approximately 1/10 ~ 1/5 of the total) needed. 

To conclude, the combination of various deep learning frameworks, such as TL, ED 
and GAN/SSGAN, can integrate the advantages of each mechanism and improve the 
performance of the overall architecture. Although pavement crack is taken as a case study, 
the algorithms discussed here can be easily modified for crack identification in other 
engineering structures. 
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