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Abstract. The stability of computational intelligence based subset feature selection
(CI-SFS) has not been explored. In this study, 44 methods are evaluated on BCDR-
F03 using 5 stability estimators. Experimental results identify 3 methods achieving
0.55 or higher scores from two estimators, 7 methods leading to good classification
(area under the curve ≥ 0.80) and 4 potential signatures helping cancer diagnosis.
Conclusively, most of the CI-SFS methods seem sensitive to data perturbation and
different estimators cause inconsistent results. In future work, attention should be
paid to developing robust fitness functions to enhance feature preference and de-
signing advanced estimators to quantify the feature selection stability.
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1. Introduction

Own to the dramatic increase of variable dimension, feature selection (FS) is growingly
important in pattern analysis [1–3]. To choose most relevant features, computational in-
telligence based subset feature selection (CI-SFS) algorithms have been developed [4],
and their purpose is to imitate swarming behaviour, social hierarchy, foraging strategy
and hunting mechanisim to select a subset of features for user preference.

This study investigates CI-SFS stability on feature preference. Stability is important
in machine learning, since it is correlated with experiment-level repeatability and pattern
analysis [5]. Meanwhile, CI-SFS has made big progress in the past decades [4]. Thus, it
is meaningful to present an evaluation of CI-SFS stability.

Few studies concern FS stability. In [6], algorithms are analyzed using correlation
coefficient and Jaccard index. In [7], stability is assessed using two similarity-based es-
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timators. In [8], stability is estimated via adapted Tanimoto distance and correlation co-
efficients. In [9], stability is quantified via relative weighted consistency and correlation-
based measures. In [10], 23 FR algorithms are evaluted using an advanced estimator.
These studies pave the way for understanding the FS stability.

In this study, using 5 estimators, we investigate the stability of 44 CI-SFS algorithms
on the BCDR-F03, a medical dataset with sufficient instances. The contributions of this
study come from several points. Above all, the stability of a large number of bio-inspired
CI-SFS algorithms is quantified. Secondly, five estimators are used to show experimental
cues on estimator application. Thirdly, on BCDR-F03, several potential signatures are
discovered that benefit medical image analysis and cancer diagnosis.

2. Materials and Methods

2.1. Data collection

BCDR-F03 [11] includes 230 benign and 176 malignant breast lesions of 736 mam-
mograms2. For representation, p = 17 features are computed from intensity (i mean,
i median, i std dev, i max, i min, i kurtosis and i skewness), shape (s area, s perimeter,
s x center, s y center, s circularity, s elongation and s form) and texture (t contrast,
t correlation and t entropy). Since 310 cases are imaged twice [12], to avoid one lesion
with multiple records, the first one of each lesion is used and 406 feature records remain.

Table 1 shows the dataset, and 141 records of each group are used in the variable
selection procedure. Notably, t-test is conducted, and the features (i min, i kurtosis and
s x center) with no significant difference are removed.

Table 1. Summary of the dataset BCDR-F03 used in this study

benign (train/test) malignant (train/test) p source

BCDR-F03 230 (141/89) 176 (141/35) 17 (14) mammogram

2.2. CI-SFS algorithms

Forth-four algorithms are evaluated that use different heuristic optimization strategies3,
including artificial bee colony (ABC) [13], artificial butterfly optimization (ABO) [14],
ant colony optimization (ACO) [15], ant colony system (ACS) [16], atom search opti-
mization (ASO) [17], bat algorithm (BA) [18], butterfly optimization algorithm (BOA)
[19], cuckoo search (CS) [20], crow search algorithm (CSA) [21], differential evolution
(DE) [22], equilibrium optimizer (EO) [23], emperor penguin optimizer (EPO) [24], fire-
fly algorithm (FA) [25], fruit fly optimization algorithm (FFOA) [26], flower pollination
algorithm (FPA) [27], genetic algorithm (GA) [28], genetic algorithm tournament (GAT)
[29], generalized normal distribution optimization (GNDO) [30], gravitational search al-
gorithm (GSA) [31], grey wolf optimizer (GWO) [32], henry gas solubility optimiza-
tion (HGSO) [33], Harris hawks optimization (HHO) [34], human learning optimization

2http://bcdr.inegi.up.pt
3https://github.com/JingweiToo/Wrapper-Feature-Selection-Toolbox
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(HLO) [35], harmony search (HS) [36], Jaya algorithm (JAYA) [37], Monarch butterfly
optimization (MBO) [38], moth-flame optimization (MFO) [39], marine Predators Algo-
rithm (MPA) [40], Manta ray foraging optimization (MRFO) [41], multi-verse optimizer
(MVO) [42], poor and rich optimization algorithm (PARO) [43], pathfinder algorithm
(PFA) [44], particle swarm optimization (PSO) [45], simulated annealing (SA) [46],
satin bowerbird optimizer (SBBO) [47], sine cosine algorithm (SCA) [48], slime mould
algorithm (SMA) [49], symbiotic organisms search (SOS) [50], salp swarm algorithm
(SSA) [51], tree growth algorithm (TGA) [52], tree-seed algorithm (TSA) [53], whale
optimization algorithm (WOA) [54], and weighted superposition attraction (WSA) [55].

2.3. Experiment design

Figure 1 shows stability estimation and classification performance. In each iteration, a
dataset {(X ,y)} is divided for training {(Xtrain,ytrain)} and testing {(Xtest ,ytest)}, a CI-
SFS yields a binary vector �fi (�fi =< fi,1, ..., fi,k, ..., fi,p >) after the ith run of p features.
Specifically, fi,k = 1 indicates the kth feature is selected, and classification metrics are
computed. After N = 500 iterations, S values are estimated, and metrics are averaged.

Figure 1. The procedure of estimating stability and classification performance.

2.4. Stability estimator

Five estimators are employed [56]. The computatation of similarity based estimators Jac-

card, Dice and Ochi are defined as J =
�fi∩�f j
�fi∪�f j

, D =
2×(�fi∩�f j)
�fi+�f j

and O =
�fi∩�f j√
�fi×�f j

respectively,

in which ∩ and ∪ correspond to intersection and union parts of �fi and �f j. To the entropy
estimator, it computes the normalized frequency of features, finds out the features with
non-zero frequency p̂(si) and quantifies the entropy as E =−∑ p̂(si)log2 p̂(si). The sta-
bility estimator (Nogueria) recasts the stability measure procedure as an estimation of a
random variable [5], and allows for reliable comparison across different procedures.
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2.5. Classification performance metrics

Three metrics of the area under the receiver operating characteristic curve (AUC), sen-
sitivity (SEN) and specificity (SPE) are used to evaluate the performance of tumor clas-
sification [3]. Given the ground truth and predicted labels, AUC reveals the capacity of
tumor differentiation based on the curve of prediction probability, SEN reflects the abil-
ity of a model to correctly recognize malignant lesions, and SPE shows the ability of a
model to identify benign cases correctly. To each metric, a higher value indicates a better
performance. In this binary problem (y ∈ {0,1}), the label of malignant cases is y = 1.

3. Results

3.1. Estimated stability

Figure 2 shows the stability values of CI-SFS algorithms. The horizontal axis lists CI-
SFS names, and the vertical axis is S values. It shows 3 algorithms achieve stable feature
preference (DE, S ≥ 0.58; FFOA S ≥ 0.55; WSA, S ≥ 0.60) identified by DICE (pink)
and Ochi (black). The values using entropy- and Nogueria-based estimators are low.

Figure 2. Stability values of CI-SFS algorithms from five estimators.

3.2. Prediction performance

Figure 3 shows the performance of tumor classification. The horizontal axis shows the
CI-SFS names, the vertical axis shows the AUC values, and KNN is the classifier. It is
observed that CI-SFS algorithms lead to good performance (AUC ≥ 0.70) and 7 algo-
rithms (ABC, FA, HLO, HS, MPA, PFA and SOS) achieve AUC ≥ 0.80.

3.3. Potential signatures

Figure 4 shows the signagures discovered by CI-SFS algorithms. In the N = 500 itera-
tions, when a feature is selected more than 250 time (i.e., ≥ 50% chance of selection),
it is defined as a potential signature. Further, the number of CI-SFS algorithms that de-
fine features as signatures is summarized. It is observed that there are 44, 42, 28 and 34
algorithms that respectively identify s circularity, s y center, t contr and s form as the
potential signatures in BCDR-F03 data analysis, followed by i skewness with 15 times
of selection, and the other features are selected less than 6 times.
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Figure 3. AUC values of CI-SFS-guided classification results.

Figure 4. Potential signagures discovered by different CI-SFS algorithms.

4. Discussion

On the BCDR-F03 dataset with 406 samples of lesion cases, up to 44 CI-SFS algorithms
are investigated using 5 stability estimators, and the breast tumor classification perfor-
mance is also explored. All the algorithms achive good prediction with AUC ≥ 0.70, 4
potiential signatures are identified consistently, while only 3 algorithms achieve stable
feature preference (S ≥ 0.55) when using Dice and Ochi as the estimator.

This study concerns CI-SFS stability. Five previous studies [6–10] explore the sta-
bility of FS methods by using different estimators. Notably, [10] focuses on FR stability,
23 methods are explored, while unfortunately, 3 methods generate stable feature ranks
when using Nogueria [5] as the estimator. In this study, 44 algorithms have been eval-
uated, and few methods (DE [22], FFOA [26], WSA [55]) shown in Figure 2 yield ro-
bust feature preference when using estimator Dice or Ochi [56]. The studies reveal that
stability is an important characteristic and more attention should be paid to this topic.

Two similarity-based estimators (Dice and Ochi) identify three CI-SFS algorithms
achieving good stability (S ≥ 0.55, Figure 2). Firstly, 44 methods are evaluated using 5
estimators. Both the number of methods and estimators surpass that of previous studies
[6–10]. Secondly, two similarity-based estimators find 3 stable algorithms. In details,
among the five estimators, two estimators reveal the stability values of two methods are
less than 0.2, and the Jaccard values of methods show similar value pattern as Dice and
Ochi but much lower. It indicates that gaps exist among different estimators that should
be well addressed in the future work.

CI-SFS algorithms lead to good prediction (Figure 3). These algorithms result in
AUC values larger than 0.70, close to the baseline work [11]. Moreover, ABC [13],
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FA [25], HLO [35], HS [36], MPA [40], PFA [44] and SOS [50] achieve AUC values
larger than 0.80, better than the baseline [11]. It reveals that stability and effectiveness
are important yet different characteristics of feature preference.

Moreover, four features are recognized as potential signatures by most CI-SFS al-
gorithms (Figure 4) that may help cancer diagnosis and precision medicine. Among
the four features, three features describe shape information (s circularity, s y center and
s form), and one feature quantifies mass lesion texture (t contr). In clinical practice, the
breast imaging-reporting and data system descriptor (BI-RADS) recommends malignant
lesions in MAM images are prone to show irregular shapes and inhomogeneous contrast,
indicating that signatures discovered in the present study is in accordance to clinical
guidelines [57].

Several limitations exist in the present study. Firstly, CI-SFS algorithms are inves-
tigated on one dataset, and for comprehensive stability analysis, more medical datasets
should be used. Secondly, five estimators are used to quantify the CI-SFS stability, while
the results from two estimators are much lower, that may induce controversy among dif-
ferent estimators [5]. Last but not the least, besides handcrafted features, deeply learned
features will be studied in our future work to improve network explainability, robustness
and generalization capacity [58].

5. Conclusions

Forty-four CI-SFS algorithms have been investigated on the BCDR-F03 dataset by using
five stability estimators, and three algorithms are identified consistently exhibiting good
stability from two similarity-based estimators, while the gap among different estimators
should be considered in estimator design.
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