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Abstract. We present an interactive music Al system that enables users to co-create
expressive performances of notated music using speech and gestures. The system
provides multi-modal interactive dialog-based control of performance rendering via
smartphones and is accessible to people regardless of their musical background.
We train a deep learning music performance rendering model on sheet music and
associated performances with notated performance directions and user-system in-
teraction data. Users have the opportunity to actively participate in the performance
process. A speech- and gesture-based feedback loop with interactive learning im-
prove the accuracy of performance rendering control. We believe that many people
can express aspects of music performance using natural human expressions such as
speech, voice, and gestures, and that by hearing the music follow their communi-
cated intent, they can achieve deeper immersion and enjoyment of music than oth-
erwise possible. With this work we pursue the goal of developing novel, fulfilling,
and accessible music making experiences for large numbers of people who are not
currently musically active.

Keywords. expressive music performance, human-computer interaction, mobile
interface, deep learning, interactive learning

1. Introduction

The development of artificial intelligence and deep learning models has led to the cre-
ation of a new paradigm of human-centered machine learning, which aims to improve
user experience and enhance human capabilities in various domains [1,2,3]. Music per-
formance is an art form that requires expertise, practice, and physical ability [4,5]. The
traditional paradigm of music interpretation and performance, where the musician inter-
prets a score and translates the intended expression into the control of the musical in-
strument, can be difficult for those without musical training. Artificial intelligence and
machine learning offer new approaches to music creation and performance [6,7], and
interactive music creation systems have become increasingly popular [8,9].

In this work, we present a system for interactive co-creation of expressive perfor-
mances of notated music using speech and gestures, which provides multi-modal inter-
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active dialog-based control of performance rendering via smartphones and is accessi-
ble to people regardless of their musical background. Our system is designed to allow
people to actively participate in the performance process by using their natural human
expressions such as speech, voice, and gestures to control the performance of existing
music. By hearing the music follow their communicated intent, they can achieve a deeper
immersion and enjoyment of music than otherwise possible [10,11].

To accomplish this, we draw inspiration from the practice of music conducting, in
which musicians translate the score and the conductor’s gestures, facial expressions, and
speech direction into music performance [12,13]. We focus on performance rendering for
notated music, which provides written performance direction markings that composers
use to communicate aspects of intended articulation to the musicians. We use existing
music performances to ground these labels in music performance practices and learn
their interpretations through a deep learning model to intuitively control performances.
Our system uses state-of-the-art transformers for modeling sequential musical patterns
[14] and variational autoencoders [15,16] that operate at different levels of the music
hierarchy to advance research in expressive music performance rendering. Building on
recent advances in multi-modal representation learning [17,18,19], we link user expres-
sion data in multiple modalities with music performance features and provide real-time
or near real-time interactive music co-performance.

This paper presents the ongoing development of a deep learning based system for
the interactive co-creation of expressive music performances for written music with:

real-time interactive music performance rendering;

human expression as performance control modalities;

accessibility to people without professional musical training and background;
maximum accessibility through inexpensive smartphone devices.

PR

Our goal is to provide a new kind of fulfilling, engaging, and accessible music mak-
ing experience, allowing people to perform great musical works using natural human
expression. Our main contributions:

1. We develop a method to interactively participate in and control music perfor-
mance rendering in real-time using speech and facial expressions;

2. We employ transformer models for controllable expressive music performance
rendering and build interpretable connections between learned performance em-
beddings and notated music performance directions;

3. We implement a mobile web interface with low hardware requirements for inter-
active co-creation of music performances.

The paper is organized as follows. In Section 2, we present related work on interac-
tive and deep learning-based music performance creation systems and how our work re-
lates to them. Then, in Section 3, we present the design of our system with a description
of its main parts: the music performance model, the interaction backend, and the mobile
web application. Section 4 describes the examples of interactivity implemented in the
system. Finally, we outline future work in Section 5 and make a conclusion in Section 6.
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2. Related Work
2.1. Human-Centered Machine Learning

Human-centered machine learning is an actively emerging research field that explores
the methods of aligning machine learning systems with human needs to make humans
more effective and efficient [1,2,3]. The applications include medicine [20], education
[21], music [9], art [22], software development [23], interactive and assistive technolo-
gies [24]. Recent work on tuning large-scale language models to build human-friendly
assistants shows the great potential of using deep learning as a human companion in ev-
eryday tasks [24]. Our primary goal is to make the music-making experience accessible
to more people through computational models. We develop a deep learning model with
the focus on interactive inference and fine-tuning based on user feedback.

2.2. Interactive Music Performance

Interactive music performance systems contribute to the emerging field of human-
centered machine learning [2,9]. They introduce new instruments for musical expression
[25,26,27] and interfaces for controlling a generative model [28,29,30]. Wekinator [25]
is a user-friendly computer application that learns to map camera-scanned sample in-
put, such as gestures or facial expressions, to specific music performance actions. Piano
Genie [27] is a machine learning controller that allows non-musicians to improvise on
the piano. CoCoCo [29] provides multi-example sampling with revision and Al steering
tools to control the diversity and high-level directions of a generative model. COSMIC
[30] provides a novel way to create music through a textual dialog system. Our work
follows the Wekinator approach and focuses on expressive performance rendering for a
fixed score and accessibility through a multi-modal mobile web interface.

2.3. Music Generation with Deep Learning

Deep learning is commonly used for music generation [8]. The most popular architec-
tures are transformers for learning long-term sequential musical patterns [31,32,33] and
variational autoencoders for unsupervised style encoding and control [34,35,36,37]. The
models provide offline control over performance style [35,32] or performance parame-
ters [36,37]. Recent works aim to generate music from descriptions [37] and text [38],
as an intuitive way for humans to express themselves musically. Our work builds on
these advances, focusing on real-time and interactive music performance generation that
allows humans to participate directly in the creative process.

2.4. Expressive Music Performance Rendering

Expressive music performance models render performances for written musical scores
[7,39], either through rule-based [40,41] or machine learning approaches [42,43,44]. The
latter mainly consist of variational autoencoders [15] for performance style encoding and
control, and recurrent neural networks [45] for expressive performance representation.
Our music performance model uses a transformer architecture [14] to improve long-term
music dependency modeling and maps learned style representations to human expressive
control inputs. In addition, in contrast to offline control of performance generation, we
aim for interactive controllable generation and model fine-tuning.
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Figure 1. Interactive system for real-time co-creation of expressive music performances using speech and
facial expressions. The user interacts with the music performance model through a mobile web application and
interaction backend. The rendered music performance is played back to the user in the mobile application.

3. Interactive Music Performance Rendering System

We develop an interactive learning system for real-time co-creation of expressive music
performances, shown in Figure 1. Its main components are:

1. Music Performance Model;
2. Interaction Backend;
3. Mobile Web Application.

The Music Performance Model enables the controllable creation of expressive per-
formances for written music. The model learns from examples of human performance
and is fine-tuned with user feedback to provide human-like musical expressiveness sat-
isfying user requests. By automatically performing the written notes, the model removes
the need for a user to play a musical instrument in order to perform a piece of music.

The Interaction Backend and Mobile Application connect users to the computational
music performance model and allow interactive manipulation of the performance. By
offering real-time performance rendering, we provide users with online interaction and
immediate response. The speech and gestures allow users to express creative ideas using
intuitive concepts such as text and emotion.

The following subsections describe the technical details behind the performance
rendering model, interaction backend and mobile application.

3.1. Music Performance Model

Music Performance Model is a deep learning model for controllable expressive music
performance rendering illustrated in Figure 2. It combines transformers [14] for sequen-
tial data modeling and variational autoencoders [15] for encoding performance style at
different levels of the musical hierarchy. The building blocks are: performance encoder,
performance decoder, and performance direction classifier.

Performance Encoder computes performance style representations at the note,
beat, and bar levels. The transformer encoder [14] takes a sequence of score and perfor-
mance features as input and outputs an embedding for each note. The embeddings are
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Figure 2. Music Performance Model. The performance encoder computes performance style embeddings on
bar, beat, and onset levels. The performance decoder outputs performance features given score note features,
past performance, and encoded style representations. The direction classifier associates the performance con-
text with a set of performance direction labels.

averaged over bars, beats, and onsets (chords, or notes at the same position) and passed
through a linear layer to compute latent bar-, beat-, and onset-level performance style
embeddings, optimized using maximum mean discrepancy objective [16,46].

Performance Decoder operates with the score features (notes to play), the previous
performance context (performance history), and the combined multi-level performance
style embeddings computed by the Performance Encoder (style input). The decoder is a
decoder transformer model autoregressively predicting the expressive performance fea-
tures of the currently played note. The model is trained by maximizing the likelihood of
the performance features.

Performance Direction Classifier learns an association between the performance
embeddings and performance directions written in musical scores. It aims to provide an
intuitive interpretation of the learned control space to be used to control the performance
generation. The Direction Classifier classifies a local context of bar, beat and onset em-
beddings into performance direction classes:

* dynamic: degrees of piano and forte;

* dynamic changes: crescendo and diminuendo;

* tempo: adagio, largo, presto, etc.;

* tempo changes: accelerando, ritardando, a tempo, etc.;
* articulations: legato, staccato, fermata, etc.

The classifier predicts the likelihood of a direction being performed in a given per-
formance context. Differences between embeddings with high and low likelihoods pro-
vide a direction for moving the generation toward a specified performance marking. We
map these quantified per-direction embedding differences to natural language commands
such as “play more piano here” or “switch to largo” to control performance rendering.
This interaction is implemented in the interaction backend and application interface.

For model training, we preprocess the MIDI files from the ASAP dataset of aligned
scores and piano performances [47]. The score features are note pitch, duration, bar,
position in bar, time signature, and inter-onset position shift. The performance features
are local performance tempo, note onset deviation, performed duration, and velocity.
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During inference, the randomly sampled or modified existing performance embed-
dings can be used to generate and control music performances. Since the embedding
space is optimized with the decoder performance generation objective, the latent space
encodes features relevant for performance reconstruction. By connecting the classifier in-
terpretation of the performance embedding with natural language instructions, we enable
an intuitive controllable music performance rendering.

The initial model is trained isolated from the target user and generated music per-
formances might be far from the user needs. To improve the quality of the model, we
fine-tune it on the user-model interaction data. Currently, the active learning framework
involves the offline periodic fine-tuning of the model on feedback scores. Given a set of
performance-feedback score pairs, the performance decoder is optimized with an addi-
tional loss function maximizing the positive feedback per input performance sequence.
In the future, we plan to implement fully interactive and online model updates.

3.2. Interaction Backend

Interaction Backend comprises multiple micro-services responsible for different tasks,
such as handling the client connection, audio transcription, video analysis, audio render-
ing, etc. Services are implemented in different languages (Python, C++ and Go) and may
be restarted, updated and rolled back independently. They all communicate via a mes-
saging bus. A database stores scores, past performances, user feedback and performance
directions which we use to optimize the performance model.

The JavaScript client connects to a multi-user WebRTC backend and establishes a bi-
directional data channel and audio stream as well as a video stream from the client. Audio
and video streams are analyzed in real-time. Audio is transcribed to text using Whisper
[19], which is forwarded to GPT-3 [17] for intent extraction. The intent extractions works
with input in multiple languages.

Currently, the system is sequencing and rendering MIDI performances to audio. In
the future, we plan to generate audio directly through a deep learning model. The MIDI
sequencer gets its cues from the gesture and intent recognition services and renders MIDI
performances live. The MIDI stream is sent to the audio rendering node. Its audio output
is sent back to the WebRTC server process that handles the client connection, and from
there the music audio is sent back to the web interface and the user.

3.3. Mobile Web Application

Mobile Web Application® connects users to the interaction backend and the deep learn-
ing based music performance rendering system. The application requires a smartphone
with a stable internet connection, camera and voice recorder. The web interface wel-
comes users and prompts them to turn on their camera and microphone to start interactive
communication with the music performance model. Once the permissions are granted
and the WebRTC connection is established, the user sees the camera image in the top
half of the screen and the interaction button in the bottom half. The button allows the
user to indicate that the system should pay attention to their input: audio, or video. The
next section provides an overview of the mechanics of interacting with the system.

3Demo: https://d3dbzxyywswxzm.cloudfront.net.
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4. Interaction with the System

Our application uses two primary intuitive interaction modalities which can be combined
to create a highly expressive and dynamic musical performance:

1. Speech: the system analyzes the input audio stream and recognizes speech-
specific phrases. The text embeddings of speech transcription are mapped to per-
formance direction control embeddings as described in Section 3.1.

2. Gestures: the system processes the video stream and extracts facial expressions.
The expression embeddings are mapped to performance direction classes and
pre-defined user-system actions.

The web interface greets the user and prompts them to turn on their camera and
microphone to begin interacting with the music performance model. Once permissions
are granted, the user sees the camera image in the top half of the screen and the interaction
button in the middle of the bottom half. Initially, the system selects a random musical
composition from the database and begins rendering an arbitrary performance for this
written music. The user can press the button and ask the system to do any of the following
within a single phrase:

1. select a composition
- “Let’s play Chopin’s Mazurka in D major”
2. pause or stop the performance
- “Please stop”
3. navigate to a different place in the score
- “Let’s play again from the beginning”
4. provide feedback on the current performance
- “That was still a bit too slow and too much staccato”
5. ask the system to play in a particular way
- “Could you play this like a mother singing a lullaby to her child?”
6. show the system non-verbally how to play using facial gestures, for example
making a blissful expression.

The interaction button relieves us of the need to continuously evaluate user input
and judge whether it is intentional or accidental (the user does not intend to direct the
performance, but moves or says something). While the button is pressed, the system con-
tinuously evaluates the video input and applies the analysis results to the performance.
Audio input is not evaluated until the button is released. However, if a voice activity de-
tector (VAD) detects speech, we immediately lower the volume of the performance to let
the user know that we are listening and to make it easier to understand the speech.

The information we are looking for, such as navigation directions, feedback on past
performance, and directions for future performance, is extracted from the transcribed
speech using GPT-3. This allows us to successfully process free-form speech in multiple
languages and provides great flexibility during development, at a cost in reliability and
latency that we are currently willing to accept.

The interaction data and feedback are stored in the database for tuning the music
performance model in subsequent iterations. Specifically, the backend stores the com-
pressed video frame representations, the verbal commands and their embeddings, and
the rendered performances. These features are then used to fine-tune the performance
rendering model according to the desired input control as discussed in Section 3.1.
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5. Future Work

As discussed throughout the paper, our main goal is to make musical expression acces-
sible to people with no prior musical experience by designing simple interfaces and ma-
chine learning models. Currently, we support limited modalities for controlling music
performance, namely speech and gesture. Our long-term goal is to integrate all forms
of human expression used in musical contexts, such as conducting, teaching, and play-
ing together, into our system. For example, using vocalization and full-body gestures to
enhance interaction, allowing the user to modulate tempo, dynamics, and articulations.

Another important aspect of the human-computer interaction paradigm is personal-
ization, the alignment of generated results with human requests and wishes. Understand-
ing user intent, whether or not they provide control input, whether they are engaged in
following the music rather than trying to direct its performance, is critical. We will study
how different people describe and demonstrate music in relation to their expectations of
the system’s behavior. Our goal is to provide a personalized experience for each user,
while collecting music descriptors that will help improve the system over time. Extensive
human evaluation of the system is an important part of future research.

Regarding the technical solution, there are several points to consider. Currently, there
are rare glitches in the rendered music performances coming from the trained deep learn-
ing model. We plan to solve them by collecting more data and using feedback to tune the
models. Other shortcomings include support for piano music only and no control over
the acoustic sound properties of the music, as the backend synthesizes rendered MIDI
performances. We plan to perform music performance rendering in the audio domain
using a deep learning model. Finally, we intend to improve the user interface to make
it more user-friendly, robust, and inviting while keeping it simple. Various visualization
options will complement and frame the musical functionality of the application.

6. Conclusion

In this work, we have presented a user-friendly interactive system for the co-creation of
expressive music performances using speech and gestures. Through a mobile web appli-
cation, it allows users to interact with an autonomous deep learning-based performance
rendering model in real time. Our approach incorporates both verbal and non-verbal hu-
man expressive capabilities, allowing individuals to project emotions and affects through
music using natural expressive language. This makes our system accessible to people
without musical training or the ability to play musical instruments, and makes complex
musical works more widely available for performance and interpretation.

We believe that this work will contribute to the fields of human-computer interac-
tion, human-centered machine learning, and interactive music creation and performance,
and will allow a greater number of people to experience the joy of musical expression.
We hope that the system can be used in educational contexts to make musical tradition
and practice more accessible, tangible, and engaging for young people. Since the web
application does not require any setup on the part of the user, our system is easy to try
out. If it produces interesting results right away, it has a chance of being used by many
people. In future work, we will continue to incorporate different ways of interacting with
the system to provide a complete, intuitive, and accessible musical experiences.
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