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Abstract. We introduce WeHeart, a personalized recommendation device that aims
to gradually increase physical activity levels in cardiac rehabilitation. The impor-
tance of physical activity in cardiac rehabilitation as a means of reducing associ-
ated morbidity and mortality rates is well-established. However, forming physical
activity habits is a challenge, and the approach varies depending on individual pref-
erences. Our solution employs a Random Forest classification model that combines
both measured and self-reported data to provide personalized recommendations.
We also propose to make use of Explainable AI to improve transparency and foster
trust.

Our Contibutions: We introduce WeHeart, a personalized recommendation device
that aims to gradually increase physical activity (PA) levels in cardiac rehabilitation. The
importance of physical activity in cardiac rehabilitation as a means of reducing associ-
ated morbidity and mortality rates is well-established. Our solution employs a Random
Forest classification model that combines both measured and self-reported data to pro-
vide effective recommendations for physical activity. We also propose to make use of
Explainable AI to improve transparency and foster user trust.

Our Solution and Results: Our system consists of a recommendation model and a
physical prototype called “WeHeart” (see Figure 1 for its graphical visualization2). We
make use of PMData [4], a publically available dataset containing logging data measured
with a Fitbit Versa 3 smartwatch and self-reporting of 16 healthy adults over a period of
5 months. The dataset was split into a training set (80%) and a testing set (20%).

Our model makes use of the step count, active minutes, sleep indicators, and self-
reported data (consisting of fatigue, mood, stress etc) as input variables. The PA score is

1Corresponding Author: Rosa van Tuijn, r.c.m.m.v.tuijn@student.tue.nl.
2For more details including that of the physical prototype, click here.
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Figure 1. Input and output of the classification model.

calculated in Equation (1) using the moderately active minutes based on a recommenda-
tion of the World Health Organization [3].

score =
sum of the moderately active minutes of the past 7 days

150
∗100% (1)

The model is trained using the collected data and the calculated data to predict
the category of recommended exercise for each observation: Enough, Light exercise,
Medium exercise and Intense exercise. We compared three algorithms: Decision Tree
classifier, Decision Tree regressor, and Random Forest classifier. As seen in Figure 2, the
Random Forest classifier has the highest accuracy of 0.86.

Explainable AI: Considering the importance of these recommendations, it is cru-
cial that the users can trust the employed recommendation system. To achieve trust, we
adopted the Shapley Values to visually explain the predictions by calculating feature im-
portance, which provides a framework to interpret Decision Trees and Ensemble Tree
models. WeHeart uses the global interpretability of the Shapely Additive exPlanations
(SHAP) model [1] to demonstrate the extent to which each input variable contributes
positively or negatively to the output. This greatly increases the transparency of our pro-
posed model by explaining to users why they received a particular recommendation and
the extent to which various factors influenced the recommendation.

Current Limitations and Future Work: Firstly, the dataset for this model contains
data from healthy adults. To further evaluate the model’s effectiveness, data should be
collected from cardiac rehabilitation patients. Secondly, instead of classifying if some-
one did or did not do enough exercise, other models such as a regression model could be
used to actually predict someone’s progress and improvements. Reinforcement learning
(RL) can address some of the these limitations by recommending gradual improvements,
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(a) Decision Tree classifier;
Accuracy: 0.80.

(b) Random Forest classifier;
Accuracy: 0.86.

(c) Decision Tree regressor;
Accuracy: 0.81.

Figure 2. Confusion matrices of the different classification models.

considering long-term effects and capturing dynamic sentiments of the users (which tra-
ditional recommendation systems fail to consider)[2,5].
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