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Abstract. We study the periodic solutions of a discrete neuron model for period
two or period three of the parameter (internal decay rate) (βn)

∞
n=0. The novelty of

this research is finding a chaotic attractor for certain interval, outside the defined
interval the solution goes to positive infinity or to negative infinity. The investiga-
tion can be useful in the design of chaos-based neural networks architecture.
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1. Introduction

In [1], the authors investigated the delayed differential equation

x′(t) =−g(x(t− τ)), (1)

that is used to model a single neuron, where g : R→ R is signal function and τ ≤ 0 is
a synaptic transmission delay. A more historical insight into this equation can be found
in [2]. From Eq. (1) a model for a single neuron is obtained x′(t) = −g(x[t])), where [t]
denote a greatest integer function. When we integrate this equation from n to t ∈ [n,n+1]
we get x(t) = x(n)− ∫ t

n g(x([s]))ds = x(n)− g(x(n))(t − n). By letting t → n+ 1 and
denoting x(n) = xn a difference equation is obtained xn+1 = xn−g(xn). This equation is
generalized for a discrete-time network of a single neuron model ([3]):

xn+1 = βxn−g(xn), n = 0,1,2, ..., (2)

where β > 0 is an internal decay rate and the signal function g is the following piecewise
constant function with McCulloch-Pitts nonlinearity:

g(x) =
{

1, x≥ 0,
−1, x < 0. (3)
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Several authors investigated Eq. (2) ([3,4,5,6,7,8], etc.). Difference equations have
been used as mathematical models for applications including neurons (see [9]).

The novelty of the authors of this article is the proposal to view the internal decay
rate β as a sequence of periodic numbers (βn)

∞
n=0. In [10,11,12], the authors investigated

the periodic solutions of a discrete neuron model when (βn)
∞
n=0 is periodic with periods

two and three. The existence of periodic points is different for sequences with period two
(even number) and three (odd number). In [13], the authors consider the situation when
the sequence is periodic with period 2 and show that at certain values of the coefficients
β0 and β1 a chaotic attractor is formed. It could be said that we deliberately create such
data (big data) that could be used to achieve certain goals.

In this article, we will focus on the sequences with period 3. We study the following
non-autonomous piecewise linear difference equation:

xn+1 = βnxn−g(xn), (4)

where (βn)
∞
n=0 is a periodic sequence with period three where

βn =

⎧⎨
⎩

β0, if n = 3k,
β1, if n = 3k+1,
β2, if n = 3k+2,

k = 0,1,2, ... ,

β0 > 0, β1 > 0, β2 > 0, all βi, i = 1,2,3, are not equal, with function g in form Eq. (3).
If we consider the right side of difference Eq. (4) as a function h : R → R and

let xn = hn(x0), x0 ∈ R, n = 1,2, ..., then we obtain the first order difference equation
xn+1 = h(xn) with initial condition x0 ∈ R. From the definition of Eq. (4), it follows that

first iteration of function h is in the form: x1 = h(x0) =

{
β0x0−1, x0 ≥ 0,
β0x0 +1, x0 < 0. Depending

on the circumstance, sometimes it is more convenient to describe the dynamics more
easily with the behavior of a function, and at other times with a difference equation.

In general, we consider a first order difference equation (see [14]) xn+1 = f (xn),
where f : R → R. Then the orbit of a point x0 ∈ R is defined to be the set of points
{x0,x1= f (x0),x2= f ( f (x0))= f 2(x0), ...,xn= f n(x0), ...}. A point x∗ is said to be a fixed
point of the map f or an equilibrium point of equation xn+1 = f (xn) if f (x∗) = x∗.

The concept of periodicity is one of the most important notion in the field of dy-
namical systems. Its importance follows from the fact that many physical phenomena
have certain patterns that repeat themselves (for example, the motion of a pendulum, the
motion of planets, the population size of blowflies or other insects at time n, the price of
commodity at time n).

Let x be in the domain of a mapping f . A point x is said to be a periodic point of f
with period k if f k(x) = x for some positive integer k. Note that x is a periodic point with
period k if it is a fixed point of the map f k.

We organize our paper as follows. In the next section we present results about Eq.
(4). In section 3 we analyze the Lyapunov exponent and find this exponent for our dy-
namical system. We show that for certain values of coefficients βi there exists a chaotic
attractor. At the end we give some concluding remarks, applications and future ideas.
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2. Some results about difference equations with period three coefficients

In this chapter, we refer to some of the most important results of article [11].
We remark that Eq. (4) with g in form Eq. (3) has no equilibrium points.

Theorem 1 The equation (4) has no periodic orbits with periods 3n+ 1 and 3n+ 2,
n = 0,1,2, ....

The number of periodic orbits depends on the relationship between the parameters β0, β1
and β2. In case with two periodic coefficients what both less than 1 exist only periodic
solution with period two but in case with three periodic coefficients what all three are
less than 1 not exist periodic solution with period three, in this case exist only periodic
solution with period six.

If the product of the coefficients β1β2β3 is strictly greater than 1 then there are
always solutions with period three.

Theorem 2 If β0β1β2 > 1 then initial conditions

x0 =
β1β2 +β2 +1

β0β1β2−1
and x0 =−β1β2 +β2 +1

β0β1β2−1

form periodic solutions of equation (4) with period three; all points of orbit are positive
in first case and negative in second case and both orbits are unstable.

If β0β1β2 > 1, then we have observed that our difference equation exhibits unbounded
solutions. Observe that in the conditions of the next theorem, the inequalities include the
initial points of a cycle with period three (Theorem 2).

Theorem 3 If β0β1β2 > 1 and x0 >
1+β2 +β1β2

β0β1β2−1
, then x0 forms unbounded solutions of

Eq. (4) - going to +∞. If β0β1β2 > 1 and x0 <−1+β2 +β1β2

β0β1β2−1
, then x0 forms unbounded

solutions of Eq. (4) - going to −∞.

3. Chaotic attractor

In this chapter, we will prove that the Eq. (4) (we can also say the function h) forms a
chaotic attractor in the set [−1, 1] under the condition 1 < βi ≤ 2, i = 0,1,2.

First, our aim is to determine the invariant interval (a set I ⊂ X is said to be invariant
under the map f : X → X if f (I) = I).

The invariant interval must contain the entire interval [−1, 1].
Now suppose that x0 ∈ [−1, 1]. Then the following statements hold true:
a) if 0≤ x0 ≤ 1, then −1 = 0−1≤ h(x0) = βix0−1≤ 2 ·1−1 = 1, i = 0,1,2,
b) if−1≤ x0 < 0, then−1 = 2 · (−1)+1≤ h(x0) = βix0+1 < 0+1 = 1, i = 0,1,2.

Definition 1 The Lyapunov exponent λ (x0) of the orbit {x0, x1, x2, ...} is defined as

λ (x0) = lim
n→∞

1
n

n−1

∑
k=0

ln | f ′(xk)|,
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provided that the limit exists.

In [14], the authors showed that if the Lyapunov exponent λ > 0, then the sensitivity
dependence on initial conditions exists. The Lyapunov exponent at a point x measures
the growth in error per iteration. As the Lyapunov exponent becomes larger, the magni-
fication of error becomes greater.

Theorem 4 If β0β1β2 > 1, then function h have a positive Lyapunov exponent.

Proof. For every β0 > 0, β1 > 0, β2 > 0 and arbitrary initial point x0 (what is not point
of discontinuity) the Lyapunov exponent is

λ (x0) = lim
n→∞

1
n

n−1
∑

k=0
ln |h′(xk)|=

= lim
n→∞

1
n (lnβ0 + lnβ1 + lnβ2 + ...+ lnβ0 + lnβ1 + lnβ2 + i1 · lnβ0 + i2 · lnβ1) =

= lim
n→∞

1
n

(
ln(β0β1β2)·(n−i1−i2)

3 + i1 · lnβ0 + i2 · lnβ1

)
= ln(β0β1β2)

3 > ln1
3 = 0,

where

i1 =
{

0, if n = 3m,
1, if n = 3m+1 or 3m+2, i2 =

{
0, if n = 3m or 3m+1,
1, if n = 3m+2, m ∈ N.

We will show that for certain values of the coefficients β1, β2 and β2 Eq. (4) forms
a chaotic system.

A Discrete Dynamical System, denoted by DDS for short, is the description of an
evolutive phenomenon in terms of a map f whose image is contained in its domain X .
Then the pair {X , f} is called DDS.

Definition 2 ([15], see [16]) A set A ⊂ I is called an attractor for a DDS {I, f} if the
following conditions hold:
1) A is closed;
2) A is invariant;
3) there exists η > 0 such that, for any x ∈ I fulfilling dist(x,A) < η , we have
lim
k→∞

dist( f k(x),A) = 0;

4) A is a minimal, that is there are no proper subsets of A fulfilling 1), 2) and 3).

Definition 3 ([15]) If A is an attractor of function f , then the set
{

x ∈ R| lim
k→∞

f k(x) ∈ A
}

is called an attraction basin of attractor A.

Definition 4 ([16]) An invariant set A is called a chaotic attractor provided it is an
attractor and f has sensitive dependence on initial conditions on A (or f have a positive
Lyapunov exponent on A).
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Theorem 5 Let 1 < β0 ≤ 2, 1 < β1 ≤ 2, 1 < β2 ≤ 2 and at least two from them
are different. Then [−1, 1] is a chaotic attractor of function h and attraction basin is]
−β1β2+β2+1

β0β1β2−1 , β1β2+β2+1
β0β1β2−1

[
.

Proof. In case 1< β0≤ 2, 1< β1≤ 2, 1< β2≤ 2 and at least two from them are different,
the interval [−1, 1] is an invariant set for the function h and the Lyapunov exponent is
positive by Theorem 4. Thus [−1, 1] is a chaotic attractor of function h.

Since 1 < β0 ≤ 2, 1 < β1 ≤ 2, 1 < β2 ≤ 2 and

β1β2 +β2 +1≥ β0β1β2−1⇔ 2≥ β0β1β2−β1β2−β2 = β2(β1(β0−1)−1)

then β1β2+β2+1
β0β1β2−1 ≥ 1. Similarly, it can be proved that all points of a cycle with period three

are greater than 1, that is, also β0β2+β0+1
β0β1β2−1 ≥ 1 and β0β1+β1+1

β0β1β2−1 ≥ 1.

Let β1β2+β2+1
β0β1β2−1 > 1. Our aim is to show that for all

x0 ∈
]
−β1β2 +β2 +1

β0β1β2−1
,

β1β2 +β2 +1
β0β1β2−1

[
\ [−1, 1]

the orbit by the function h eventually falls in the interval [−1, 1]. We consider only the
case when 1 < x0 <

β1β2+β2+1
β0β1β2−1 . The case when−β1β2+β2+1

β0β1β2−1 < x0 <−1 is similar and will
be omitted.

If 1 < x0 <
β1β2+β2+1
β0β1β2−1 , then

0 < β0−1 < x1 = β0x0−1 <
β0(β1β2 +β2 +1)

β0β1β2−1
−1 =

β0β2 +β0 +1
β0β1β2−1

.

If 0 < x1 ≤ 1, then the proof is complete. If this is not the case, then 1 < x1 <
β0β2+β0+1
β0β1β2−1 and therefore

0 < β1−1 < x2 = β1x1−1 <
β1(β0β2 +β0 +1)

β0β1β2−1
−1 =

β0β1 +β1 +1
β0β1β2−1

.

If 0 < x2 ≤ 1, then the proof is complete. If this is not the case, then 1 < x2 <
β0β1+β1+1
β0β1β2−1 and therefore

0 < β2−1 < x3 = β2x2−1
β2(β0β1 +β1 +1)

β0β1β2−1
−1 =

β1β2 +β2 +1
β0β1β2−1

.

Provided that xn /∈ [−1, 1], by induction we then conclude that

1 < x3k = β k
0 β k

1 β k
2 x0−β k−1

0 β k
1 β k

2 −β k−1
0 β k−1

1 β k
2 − ...−β2−1 < β1β2+β2+1

β0β1β2−1 ,

1 < x3k+1 = β k+1
0 β k

1 β k
2 x0−β k

0 β k
1 β k

2 −β k
0 β k−1

1 β k
2 − ...−β0−1 < β0β2+β0+1

β0β1β2−1 ,

1 < x3k+2 = β k+1
0 β k+1

1 β k
2 x0−β k

0 β k+1
1 β k

2 −β k
0 β k

1 β k
2 − ...−β1−1 < β0β1+β1+1

β0β1β2−1 ,

k = 0,1,2, ... .
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Next note that the difference between the iterations x3k and x3k+3 is

x3k−x3k+3 = β k
0 β k

1 β k
2 x0−(β k+1

0 β k+1
1 β k+1

2 x0−β k
0 β k+1

1 β k+1
2 −β k

0 β k
1 β k+1

2 −β k
0 β k

1 β k
2 ) =

= (β0β1β2)
k (β0β1β2−1)

(
β1β2+β2+1
β0β1β2−1 − x0

)
, k = 0,1,2, ... .

Since all multipliers are positive and lim
k→∞

(β0β1β2)
k = +∞ then the difference between

x3k and x3k+3 increases and we then get x0 > x3 > x6 > ... > x3k > x3k+3 > .... Thus we
conclude that there exists k ∈ N such that x3k ≤ 1.

Similarly, the difference between iterations x3k+1 and x3k+4, x3k+2 and x3k+5 in-
creases and we get x1 > x4 > x7 > ... > x3k+1 > x3k+4 > ... and x2 > x5 > x8 > ... >
x3k+2 > x3k+5 > .... Thus we conclude that there exists k1 ∈ N such that x3k1+1 ≤ 1 and
there exists k2 ∈ N such that x3k2+2 ≤ 1.

Example 1 Suppose that β0 = 1.92, β1 = 1.26 and β2 = 1.5. We obtain the follow-
ing period-3 cycle {1.669963481, 2.206329884, 1.779975654} and the following basin
of attraction ]−1.669963481, 1.669963481[. If we start with initial condition x0 = 1.66
(a point close to the boundary of the interval), then we observe the situation described in
Theorem 5, where the first ten iterations of the solution are greater than 1 (see Fig. 1).
Then x11 = 0.628189142 < 1 and all other points of the solution are in the interval
[−1, 1]. In Fig. 1 we see that

x0 > x3 > x6 > x9 > x12, x1 > x4 > x7 > x10 > x13, x2 > x5 > x8 > x11.

The behavior of the other points cannot be clearly described, but all other points are
located in the invariant interval (attractor) [−1, 1].

Figure 1. First 140 values of solution of difference equation (4) if β0 = 1.92, β1 = 1.26 and β2 = 1.5, and
x0 = 1.66.

4. Conclusion

In this article, we have shown a new example of a chaotic attractor. The novelty is based
on the use of periodicity. It could be that at certain values of the parameters βi, i = 0,1,2,
which are not all in the interval ]1;2], there exist some other chaotic attractors. The case
with β0 = 1, β1 = 2 and β2 = 3 mentioned in the article [11] is interesting. Although
there could be an invariant interval [−2, 2] here, numerical experiments show that all
solutions are periodic or eventually periodic.

The properties of chaos (sensitivity to initial conditions) can be used in random
number generation (see, for example, [17]) as well as in cryptography (see, for exam-
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ple, [18]). An important role here is played the uniform distribution of elements of the
solution. For example, the histogram of the solution of the difference equation (4) with
β0 = 2, β1 = 1.8 and β2 = 2 with the initial condition x0 = 0.6 is shown in Fig. 2. The
larger the values of βi, i= 0,1,2, the greater the sensitivity to the initial conditions (larger
Lyapunov exponent), the more appropriate the histogram looks.

Figure 2. The histogram of the solution (first 1000 values) of the difference equation (4) with β0 = 2, β1 = 1.8,
β2 = 2 and initial condition x0 = 0.6.
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