
Helping Code Reviewer Prioritize: Pinpointing Personal
Data and its Processing⋆

Feiyang Tang1, Bjarte M. Østvold1, and Magiel Bruntink2

1 Norwegian Computing Center, Oslo, Norway
2 Software Improvement Group, Amsterdam, The Netherlands

Abstract. Ensuring compliance with the General Data Protection Regulation (GDPR)
is a crucial aspect of software development. This task, due to its time-consuming na-
ture and requirement for specialized knowledge, is often deferred or delegated to
specialized code reviewers. These reviewers, particularly when external to the de-
velopment organization, may lack detailed knowledge of the software under review,
necessitating the prioritization of their resources.
To address this, we have designed two specialized views of a codebase to help code re-
viewers in prioritizing their work related to personal data: one view displays the types
of personal data representation, while the other provides an abstract depiction of per-
sonal data processing, complemented by an optional detailed exploration of specific
code snippets. Leveraging static analysis, our method identifies personal data-related
code segments, thereby expediting the review process. Our approach, evaluated on
four open-source GitHub applications, demonstrated a precision rate of 0.87 in iden-
tifying personal data flows. Additionally, we fact-checked the privacy statements of
15 Android applications. This solution, designed to augment the efficiency of GDPR-
related privacy analysis tasks such as the Record of Processing Activities (ROPA),
aims to conserve resources, thereby saving time and enhancing productivity for code
reviewers.

Keywords: Personal data processing · GDPR analysis · Static analysis · Code re-
view.

1 Introduction

In the 21st century, companies have been collecting and distributing massive amounts of per-
sonal data [1]. The sheer volume and capacity to access and integrate data in unprecedented
ways is novel [14]. To protect individual rights, the European Union’s General Data Protec-
tion Regulation (GDPR) requires substantial data protection, posing both challenges and
opportunities for global software companies and imposing severe fines for non-compliance [7].
Article 30 of the GDPR necessitates the creation of a detailed document, the Records of
Processing Activities (ROPA), to ensure GDPR compliance. This document, which must
be readily accessible to the supervisory authority, can be challenging to construct. Code
reviewers often play a crucial role in this process, tasked with analyzing extensive codebases
for GDPR-relevant aspects. Their findings not only help ensure compliance but also assist
in the formation of the intricate ROPA, a task that can be quite demanding.

While the manual identification of personal data and its processing in the codebase is
an inevitable part of a code reviewer’s work, our goal is to facilitate the rapid pinpointing
and understanding of relevant code fragments. To this end, we propose an approach that
identifies and abstracts both personal data and its processing in the codebase. Our solution

⋆ This paper has been accepted at the 22nd International Conference on Intelligent Software
Methodologies, Tools and Techniques (SOMET2023).

ar
X

iv
:2

30
6.

11
49

5v
1

 [
cs

.S
E

]
 2

0
Ju

n
20

23

2 F. Tang et al.

provides two specialized views: one that emphasizes the types of personal data, and another
that outlines an abstract perspective of data processing flows.

These views aim to empower code reviewers by streamlining the task of locating and
comprehending personal data processing within the software. By providing a focused di-
rection, highlighting key code fragments, and supplying task-specific information through
different views, our approach conserves time and effort. This multi-faceted assistance greatly
simplifies GDPR-related tasks, such as the formation of a ROPA.

The three main components of our approach are:

– A set of adaptable static analysis rules for pinpointing personal data and its processing
in source code. (Refer to Section 3.1, identification in Figure 1)

– A collection of flow patterns derived from large-scale analysis, which simplifies identified
code fragments containing a data flow into abstracted code snippets. These snippets cap-
ture the context and manner in which personal data is processed. (Refer to Section 3.2,
abstraction in Figure 1)

– Two specialized views provide code reviewers with options for displaying information
about personal data or flow-specific information, depending on their specific task, thereby
reducing manual work. (Refer to Section 3.3, presentation in Figure 1)

We demonstrate the effectiveness of our approach by 1) achieving high precision and
generating corresponding ROPAs compared to published privacy statements for four trend-
ing GitHub projects and 2) evaluating the accuracy of privacy statements provided by 15
popular Android applications from the Google Play store.

2 Challenges in Personal Data Identification

Identifying personal data within extensive codebases poses a significant challenge for code
reviewers, especially given the diversity of personal data types and the lack of standardized
patterns for their identification. This issue is further complicated by the reality that per-
sonal data may be either directly or indirectly associated with an individual, a relationship
that can vary across cultural, linguistic, and domain-specific contexts. Privacy statements
often describe personal data collection and processing in broad terms, making it difficult to
pinpoint what data is collected and how it is processed within the source code.

When reviewing code for GDPR-relevant aspects, code reviewers often resort to manual
techniques such as keyword searching, filtering, and grepping to identify potential areas of
concern. However, these methods can be time-consuming and often yield an overwhelming
number of results, making it challenging to discern the key areas of focus. There is a clear
need for a more abstract, categorized view of the results that could help reviewers identify
and focus on the most relevant code fragments.

User Requirement Study In order to grasp the challenges faced by code reviewers in GDPR-
related tasks, we undertook a user requirement study with six experienced code reviewers
from a medium-sized European software company. They were selected based on their ex-
perience, familiarity with GDPR tasks, and diverse European representation. The research,
primarily focused on European data formats, did not consider formats outside the EU. The
interviews elicited key issues in privacy analysis tasks, preferred presentation formats, and
the potential of an abstract view of results.

During the structured interviews, participants discussed the most challenging facets of
their privacy analysis tasks, the desired format for the presentation of findings, and their
views on the possible advantages of having an abstract, categorized overview of the results.
The study highlighted that identifying personal data within source code remains a signif-
icant hurdle for reviewers. This challenge arises primarily due to the fluctuating context

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 3

and semantics. Participants voiced a preference for a results presentation that offers ample
context and underscores potential areas of concern, such as personal data processing.

There was unanimous agreement among participants about the potential benefits of
incorporating an automated, abstract presentation of the results into their workflows. They
preferred comprehensive coverage, even if it occasionally introduced false positives, on the
condition that their manual examination could be concentrated on a smaller, more relevant
segment of the software. While this study has certain limitations, such as a smaller sample
size and potential bias due to the limited participant selection, it does provide valuable
initial insights into the needs and preferences of code reviewers tasked with GDPR-related
duties in Europe.

Presentation Design Current static analysis tools offer some flexibility in results grouping
and presentation. For instance, tools like FindBugs and ESLint allow results to be grouped
by various criteria, such as bug category/name, code location, and bug ranking. However,
these tools often lack the ability to provide a task-specific view that aligns with the code
reviewers’ current analysis focus. Such a view could allow reviewers to focus on personal data
and its processing, thereby simplifying the analysis process and making it more efficient.

2.1 The Role of Code Reviewers in ROPA Creation

In the context of GDPR compliance, code reviewers often play a crucial role in creating a
Record of Processing Activities (ROPA). A ROPA should contain detailed information about
personal data processing, such as the categories of individuals and personal data, recipients
of personal data, details of transfers to third countries, retention schedules, and technical
and organizational security measures. Code reviewers, through their thorough analysis of
the codebase, contribute significantly to the collection of this information, thereby helping
to ensure GDPR compliance.

3 Constructing Task-Specific Views for Code Reviewers

We propose an approach that creates two distinct views, providing code reviewers with vary-
ing levels of information about personal data types and their processing within the codebase.
Our approach employs static analysis to identify personal data and the source code where
the processing of such data occurs. The result of the static analysis comprises identified
code fragments that match the specified patterns. We introduce an abstracted flow repre-
sentation that simplifies each identified code fragment, capturing the essence of personal
data processing. This flow representation not only translates effectively into a more compre-
hensible format but also facilitates labeling and grouping of code fragments, presenting the
results to code reviewers in a unified and efficient manner for analysis.

Figure 1 presents an overview of our approach, which consists of three major phases:
pattern matching with static analysis, abstraction of code fragments to generate flow repre-
sentations, and creation of the two task-specific views for code reviewers.

3.1 Pattern Matching on Source Code

The first phase of our approach involves static analysis to pinpoint code fragments that
contain or process personal data. For this task, we employ Semgrep, a powerful static anal-
ysis tool well-regarded for its flexibility and efficiency in analyzing voluminous source code
files [9]. Semgrep’s multi-language support and local data flow analysis capabilities are in-
strumental to our endeavor. This section elaborates on our rules for identifying personal
data sources and sinks, and the subsequent extraction of flows.

4 F. Tang et al.

Source code Code fragments
with flows

Simplified
Code snippets

Two views:
personal data
and processing

identification
(Section 3.1)

abstraction
(Section 3.2)

presentation

(Section 3.3)

Fig. 1: Overview of our approach

Identification of Personal Data and Processing The concept of sources and sinks
is vital to our approach. In the context of our analysis, sources refer to personal data,
while sinks represent different forms of personal data processing. We define personal data
as 1) literal personal data in source code text (constants identified via real values), and 2)
variables (identified via name identifier). As for personal data processing, it refers to any
distinct action or operation performed on personal data. Our rules for identifying personal
data and its processing currently support Java, JavaScript, and TypeScript. Nevertheless,
our rules applicable to plain-text personal data can be extended to the majority of Semgrep-
supported languages. Semgrep parses the source code to build an abstract syntax tree (AST)
for taint analysis, similar to how ESLint processes JavaScript code. This method enables
us to efficiently identify sources, sinks, and data types. We further augment Semgrep’s
identification process with pattern matching.

Crafting Identification Rules Literal personal data identification relies on matching spec-
ified regular expressions, such as the syntax of national ID numbers. For variable sources, we
have established a default list of personal data identifiers, covering data from 10 categories:
Account, Contact, Personal ID, Online identifier, Location, Feedback, Health, National ID,
Technical, and Financial.

These distinct identifiers are used to construct Semgrep rules with regular expressions
(regex). To reduce false positives and enhance recall, we apply restrictions to the regex rules.
For instance, to identify all human names in source code, we improve precision and cover first,
last, and full names by using regex such as (?i).(?:first|given|full|last|sur(?!geon)
)[s/(;)|,=!>]name).

Simultaneously, we identify potential sinks, which represent distinct actions of personal
data processing. We utilize the majority of verbs from Section 3 of the Data Privacy Vo-
cabulary (DPV) [10] to identify relevant processes. These verbs are utilized to generate
corresponding regex for our taint analysis rules, and specific conditions are incorporated to
pinpoint relevant sinks in the code effectively.

APIs are extensively used to implement functionalities in current software development.
We performed a simple static analysis on the 20 most popular libraries each from Maven
and npm (40 in total), followed by a manual inspection to filter out false positives. The
resulting list consists of potential sink methods, predominantly related to databases from
prominent providers such as AWS and Google Firebase. These API methods, akin to the verb
identifiers, serve as sinks for our analysis. We categorize sinks into six classes: Manipulation,
Transportation, Creation/Deletion, Database, Encryption, and Log.

Flow Extraction and Semgrep Output Once sources and sinks have been identified, we
need to understand how personal data flows from the former to the latter. A flow represents
a sequence of operations, starting from a source, moving through intermediate nodes (if

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 5

Table 1: Source and sink category abbreviations
Source type Abbreviation Sink type Abbreviation

Account ACC Manipulation M
Contact CON Transportation T
Personal ID PID Creation/Deletion C/D
Online identifier OID Database D
Location LOC Encryption E
Feedback FEE Log L
Health HEA
National ID NID
Technical TEC
Financial FIN

any), and ending at a sink. We extend Semgrep’s capabilities to not only identify but also
comprehend these flows.

Semgrep’s output typically includes the code fragment where the flow ends, i.e., the
statement that processes personal data. However, we have customized Semgrep to provide
more detailed information, such as the precise location and name of the source and sink,
along with the code fragment. This information is vital for code reviewers, helping them
quickly locate and comprehend personal data processing within the software.

Example: Application on ToolJet To illustrate the effectiveness of our approach, we applied
our rules to ToolJet, a low-code, open-source framework for creating and deploying internal
tools. ToolJet was selected because of its popularity and extensive use of personal data,
making it a representative case study. The ease of access to its source code also facilitated
our analysis.

Figure 2a depicts an example of a rule we created to identify flows of account-specific
data into a manipulation sink in ToolJet. The corresponding identified code snippet, an
output of Semgrep that includes both the code fragment and key information about the
source and sink, is shown in Figure 2b.

3.2 Flow Patterns: Abstracting Personal Data Flows

A critical aspect of our approach is the abstraction of identified personal data flows into
more manageable and comprehensible representations. This step facilitates the review and
understanding of these flows, offering a more streamlined approach to software privacy anal-
ysis. Here, we introduce the concept of flow patterns, which are simplified, standardized
representations of personal data flows, distilled from the identified code fragments.

Semgrep outputs a statement of code, which corresponds to a chunk of a code fragment
that could span multiple lines in the source code, where the personal data flow culminates.
The value at the sink within this statement may not necessarily be the original source, yet it
definitely encapsulates the value originating from the source. However, such code fragments
can be intricate and challenging to comprehend. In our work, we address this by abstracting
each result we capture, which represents a flow from a personal data source to a processing
sink. Our abstraction combines this code fragment with source and sink information to
depict the flow in a simplified form.

We applied our pattern-matching rules to over 20 open-source software projects on
GitHub (the top 20 trending ones across three languages: JavaScript, TypeScript, and Java)
and identified a vast number of personal data flow instances. From these instances, we gen-
eralized the structure of more than 150,000 detected code snippets into a set of eight distinct
flow patterns.

6 F. Tang et al.

(a) Sample identification rule to find flows
between account data and manipulation sink

Semgrep output:

return update(_comments);
Message: Flow identified from user.id to update

(b) Code fragment identified using the rule
illustrated in Figure 2a. In this case, the flow
originates from the source user.id and ends
at the sink update(). Along with the code
fragment, Semgrep provides an accompany-
ing message that details the names of both
the source and the sink involved in the flow.

Fig. 2: An example of pattern matching on ToolJet

Defining Flow Patterns The flow patterns, collectively denoted as F , abstractly represent
various forms of personal data flows from a source to or via a sink. Each pattern in F
reflects a typical flow type, and Table 2 presents these flow patterns alongside their English
interpretations. The table also introduces syntactic conventions for meta-variables used in
the following discussion. E ranges over expressions, m ranges over methods, and v ranges
over source variables. An expression with an underscore as an argument, E[_], signifies that
the expression is not significant in terms of personal data processing — it is neither a source
nor a sink, nor does it contain a value from a source.

In a flow pattern E1
m−→ E2, a solid arrow → indicates that a value on the left-hand side

(LHS) contributes to the value on the right-hand side (RHS). If we are uncertain whether a
value flows from the LHS to the RHS, such as when the LHS value is processed and merely
outputs a Boolean to the RHS, we use a dashed arrow 99K to indicate that the LHS value
may not fully reach the RHS. Each pattern’s interpretation in English is also provided in
Table 2.

The flow patterns in F abstract the flows between sources and sinks occurring in the
identified code snippets. Table 3 offers eight examples illustrating the code snippets corre-
sponding to flow patterns, ordered according to the flow patterns in Table 2.

These examples represent the different types of flows that may occur when processing
personal data in code snippets. By identifying, analyzing, and categorizing these flows into
simplified flow patterns, we can provide a uniform view of the data flows in code, capturing
the properties of sources and sinks in a single flow, the pathway from source to sink, and any
other involved values. This abstraction step is crucial in creating an intuitive and efficient
approach to understanding personal data flows, thereby enhancing privacy protection in
software systems.

3.3 Specialized Views for GDPR Analysis Tasks

As GDPR compliance tasks can vary in their requirements, we provide specialized views
to assist code reviewers in understanding and analyzing personal data handling within the
system. An overview of personal data types and their distribution is useful when developing
a broad understanding of personal data usage, while a detailed analysis of each data flow is

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 7

Table 2: The collection of flow patterns F
Flow Patterns Translation to English

E[_]
m−→ v A non-personal data value flows via sink m into a source v.

v2 + E[_]
m
99K v1 Value from source v2 and non-personal data are both processed by sink m and the result flows into source v1.

v2(E[_])
m−→ v1 Value from source v2 flows via sink m into source v1.

v
m
99K E[_] Value from source v gets processed by sink m and the result flows into a new expression.

v
m−→ E[_] Value from source v flows via sink m into a new expression, making it a new source.

v1 + v2
m→ v1 Value from source v2 flows via sink m declared by v1 into source v1.

v + E[_]
m→ v Value from source v and non-personal data are both processed by sink m and the result flows into itself.

v
m→ m(v) Value from source v flows into sink m.

Table 3: Examples demonstrating the relationship between code snippets and their corre-
sponding flow pattern instances in F . The examples are related to the flow patterns listed
in Table 2.

Code Snippet Flow Pattern Instance

full_name = retrieve(record_data,2) E[_] retrieve→ full_name

isFemale = check(user_detail,’F’) user_detail+ E[_]
check
99K isFemale

first_name = UserInfo.get(2) UserInfo(E[_]) get→ first_name

choice = match(name,list) name
match
99K choice

choice = UserInfo.retrieve(2) UserInfo retrieve→ choice
AccountInfo.update(userId,index) AccountInfo + userId update→ AccountInfo
AccountInfo.update(index) AccountInfo + E[_] update→ AccountInfo
print(SSN) SSN print→ print(SSN)

required for tasks like constructing a Record of Processing Activities (ROPA) or assessing
the risk of personal data handling. By providing these specialized views, we aim to support
reviewers in efficiently and effectively performing GDPR compliance tasks.

Personal Data Type View The Personal Data Type View presents an overview of per-
sonal data identified in the source code. This view is a hierarchical representation that
illustrates the distribution of personal data types. The tree-like structure is automatically
generated based on our static analysis findings, categorizing personal data identifiers by
their nature such as account information or personal ID. For instance, all source names with
a stem-identifier like email_addr, email_id, e-mail, and email are grouped together. This
overview provides users with a clear image of the types of personal data and their respective
identifiers present in the source code. See Figure 3 for an example.

Detailed Flow View For tasks requiring a deeper understanding of specific personal data
flows, we provide the Detailed Flow View. This view presents comprehensive information
about each identified flow, including the file path, source and sink names and types, and
abstract flow patterns. Furthermore, it offers the ability to link to the actual location of
the code fragments, supporting a deeper contextual analysis when necessary. Features for
filtering and ranking the identified flows are also included, allowing reviewers to focus on
specific flows or those of high potential risk. An example of the Detailed Flow View is
provided in Table 4.

These specialized views are designed to be flexible and adaptable to various GDPR
compliance tasks. We incorporate grouping functionalities based on feedback from potential
users, allowing results to be organized by specific source identifiers, file locations, or other
relevant criteria. This flexibility is designed to make our approach practical, user-friendly,
and adaptable to various GDPR compliance tasks.

8 F. Tang et al.

Fig. 3: Personal Data Type View of ToolJet

Table 4: Detailed Flow View grouped by identifier ‘email’ in ToolJet (top 7 results dis-
played)
Path Source Sink Sink Type Flow Pattern Instance

server/src/services/organizations.service.ts users.email_addr createQueryBuilder DB users.email_addr createQueryBuilder→ query
server/src/services/group_permissions.service.ts users.email createQueryBuilder DB users.email createQueryBuilder→ query
server/src/services/users.service.ts email this.usersRepository.findOne DB email+_ findOne→ UserInfo
server/src/services/organizations.service.ts email_addr this.usersService.create C/D email_addr+_ create→ UserInfo
server/ee/services/oauth/oauth.service.ts email this.usersService.findOrCreateByEmail C/D UserInfo+email findOrCreateByEmail→ UserInfo
server/src/services/users.service.ts email user.organizationUsers.sendData T email sendData→ sendData(email)
server/src/services/organizations.service.ts email_addr this.usersService.update M UserInfo+email_addr update→ UserInfo

In a Detailed Flow View, we present key information such as file path, source and sink
names and types, and flow pattern instances, which are displayed by default. For example,
Table 4 shows the Detailed Flow View for all source identifier email identification results.
This information can be used to construct a ROPA using the official template provided by
data protection authorities or a research semantic model like CSM-ROPA [13]. By traversing
flow pattern instances in Table 4, users can generate a list of processing related to personal
data “email” and identify their location.

To better assist GDPR compliance, our Detailed Flow View should not be limited to
a fixed presentation style. Based on feedback and recommendations from potential users,
we incorporate grouping to simplify GDPR compliance. We also refer to the ICO’s ROPA
template [8], which specifies the information required for GDPR compliance mentioned in
Section 2.1, such as the categories of individuals and personal data, categories of recipients
of personal data, transfer details to third countries, retention schedules, and technical and
organizational security measures. Thus, we group the results by various attributes such as
source and sink categories and their distinct identities, which can help users answer ROPA
queries.

Moreover, users can experiment with different grouping criteria while examining the code.
For example, they can group the results by a specific source identifier or file name/location of
interest. We aim to incorporate GDPR-related grouping criteria to ease GDPR compliance
and make our approach more useful.

3.4 Implementation

In recognizing the contextual nature of personal data, we have designed a flexible system
allowing users to customize pattern-matching rules via a Python script. This script simplifies
the definition of flow syntax and the addition of new identifiers. All our identification rules
are open-source to encourage collaborative enhancement of the system’s capabilities. The
results of our analysis are produced in the Standard Static Analysis Results Interchange

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 9

Format (SARIF), facilitating easy filtering and sorting based on parameters such as rules or
file locations.

For visualizing the findings, we employ the Mermaid diagramming tool to automatically
generate a personal data distribution graph. This visual representation aids in the identi-
fication and selection of specific source identifiers for further examination. Finally, we’ve
adopted a SARIF viewer for filtering and sorting functionalities, and designed an interac-
tive interface for the Specialized Views, offering users an adjustable and task-specific data
exploration experience.

4 Experiment

To assess our approach, we focus on open-source software that processes personal data. The
experiment consists of two parts. In the first part, we analyze popular open-source projects
from GitHub, manually evaluating the true positives (TP) and false positives (FP) in the
results to validate our approach. We illustrate the usefulness of our two specialized views
by aligning them with the published privacy statements of four validation applications,
showcasing how these views can guide the creation of a ROPA. In the second part, we apply
our approach to 15 popular Android applications on Google Play, scrutinizing the accuracy of
the information given in the “Data collected” section of Google Play’s “Data safety” section.

4.1 Validation: Analyzing Trending GitHub Applications

Since we have used ToolJet in the previous sections as an example, here we select our analysis
target from the trending repositories on GitHub list. Among the repositories captured from
the GitHub monthly trending list (accessed on 6/Dec/2022) under three different languages:
Java3, JavaScript4, and TypeScript5, we selected the top four complete applications, that
are not a framework, an add-on, or a tutorial: Rocket Chat6, Telegram7, Odoo8, and Joplin9.
We now refer to them as validation applications.

We display the time taken to complete the identification task on validation applications
and the number of identified flows in Table 5.

Table 5: Identified code snippet count and the time consumed for each application
Time No. of Code Snippet

Rocket Chat (TypeScript) 397 s 6,935
Telegram (Java) 562 s 16,963
Odoo (JavaScript) 916 s 25,653
Joplin (TypeScript/JS) 694 s 17,299

For large projects such as Odoo and Telegram, our analysis takes about 15 minutes
to analyze 2,285 files (Odoo) using 70 static analysis rules. Odoo is the business content
management system with the highest number of identified personal data flows among the
3 https://github.com/trending/java?since=monthly
4 https://github.com/trending/javascript?since=monthly
5 https://github.com/trending/typescript?since=monthly
6 https://github.com/RocketChat/Rocket.Chat
7 https://github.com/DrKLO/Telegram
8 https://github.com/odoo/odoo
9 https://github.com/laurent22/joplin

https://github.com/trending/java?since=monthly
https://github.com/trending/javascript?since=monthly
https://github.com/trending/typescript?since=monthly
https://github.com/RocketChat/Rocket.Chat
https://github.com/DrKLO/Telegram
https://github.com/odoo/odoo
https://github.com/laurent22/joplin

10 F. Tang et al.

(a) Rocket Chat (b) Telegram (c) Odoo (d) Joplin

Fig. 4: The overview statistics of identified flow under all possible combinations of source
and sink types as illustrated in heatmaps.

four validation applications, indicating that it processes a substantial amount of personal
data.

Next, we validate our approach in two steps. First, we manually examine the precision of
identified code snippets, assessing whether they are related to personal data processing. Fig-
ure 4 and a Personal Data Type View figure (akin to Figure 3) form the initial perspective
of our generated views. The four heatmaps present overview statistics of the different cate-
gories of personal data and its processing in the four validation applications. The overview
statistics indicate that all four applications collect a significant quantity of account and
contact information, which is understandable as they function as identifiers for system users
and communication mediums. However, we observe that certain applications gather more
categories of personal data from users, such as Telegram, which collects nine categories of
personal data, with the majority stored in databases.

Table 6 summarizes the results of the code snippet detection in each example application,
as well as the precision calculated through manual inspection for each identified flow provided
in the Detailed Flow View. Given that this evaluation requires manual inspection and we
need to avoid false negatives, we examine the code snippets identified by the static analysis
using the following criteria to determine their precision score10:

– Do the source and sink identifiers match their respective categories? For instance, if the
analysis intended to match “log” but instead matched “login”, which is irrelevant to
the context.

– Do the source and sink matches qualify as personal data processing? For instance,
“noreply@test.org” was detected as a clear-text result for explicit personal data in
the system, although it is not personal data.

Our main objective is to lessen the manual workload for code reviewers in identifying
and analyzing personal data flows, though we recognize that manual scrutiny continues to
play a crucial role. A high level of precision in our flow identification technique indicates
that we can conserve resources by directing code reviewers to potential areas of concern, and
offering guidance on the potential data flow paths and locations within their applications.
This aligns with our specialized views approach, enhancing the efficiency and efficacy of
GDPR compliance tasks.

For the manual analysis, we conducted a thorough evaluation of a representative sample
of the identified code snippets to estimate the precision, rather than individually checking
all code snippets identified. Table 6 shows that the majority of flow types have a precision
of at least 0.8, with an average of over 0.9 for categories with more than 500 identified flows.
Some categories of flows that have a smaller sample size have a lower precision, ranging from
0.65 to 0.75. Although a precision of 0.8 might result in 5K false positives for an application
10 Precision = TP/(TP+FP), where True Positives (TP) are identified results that meet both of

our criteria, while False Positives (FP) are identified results that do not meet one of our criteria.

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 11

Table 6: Statistics showing the precision of different types of flows detected. ‘-’ marks the
labels for which our approach detected less than 20 results. Sink types are: data creation/dele-
tion (C/D), data manipulation (M), data transportation (T), database (DB), encryption
(E) and log (L). Source types are: account (ACC), contact (CON), personal ID (PID), on-
line identifier (OID), location (LOC), feedback (FEE), health (HEA), national ID (NID),
technical (TEC), and financial (FIN).

Application Source Basic Sink Special Sink
C/D M T DB E L

Rocket Chat ACC 0.80 0.95 0.94 0.97 - -
CON 0.85 0.88 0.95 0.96 - -
PID 0.83 0.92 0.95 0.96 - -
OID - 0.73 0.88 - - -
FEE - 0.82 0.91 - - -
LOC - - 0.89 - - -

Joplin ACC 0.88 0.93 0.96 - 0.89 0.95
CON 0.93 0.81 0.92 - 0.92 0.98
PID 0.81 0.89 0.95 - - -
OID 0.79 0.87 0.84 - - -
FEE 0.84 0.95 0.8 - - -
LOC 0.91 0.86 0.89 - - -
TEC - 0.71 - - - -

Telegram ACC 0.89 0.92 0.96 0.87 0.86 0.96
CON 0.90 0.96 0.94 0.93 0.91 0.92
PID 0.84 0.93 0.89 0.86 - -
OID 0.70 0.73 0.81 - - -
FEE - - - - - -
LOC 0.92 0.90 0.95 - - -
TEC - - - - - -
FIN - 0.94 0.97 - - -
NID 0.86 0.96 0.94 0.88 0.91 -

Odoo ACC 0.91 0.86 0.98 0.94 - 0.95
CON 0.84 0.87 0.93 0.92 0.92 0.96
PID 0.82 0.95 0.97 0.96 - -
OID - 0.66 0.63 - - 0.82
FEE - - 0.72 - - -
TEC - 0.89 0.95 - - -
FIN 0.88 0.92 0.94 0.95 0.90 0.95

with 25K identified snippets (e.g., Odoo), our approach aims to assist developers and code
reviewers in finding possible directions and locations for personal data processing, thereby
reducing the overall time and effort spent on manual analysis.

Note that we do not include the number of occurrences of literal personal data identified
by the pattern matching, as their precision is typically less than 0.6. A precision of less than
0.6 indicates that developers and code reviewers still need to devote considerable effort to
exclude literal identification results that are not relevant. Identifying literal personal data is
difficult due to its ambiguous and highly contextual nature.

Next, we leverage the attributes available in the detailed Detailed Flow View to evaluate
existing privacy statements. Figure 5 depicts an instance of a flow identified through our
Detailed Flow View (similar to Table 4). This flow was identified by a rule pinpointing
the flow of location data into a transportation sink. When a flow is selected for deeper
scrutiny, crucial information such as the file location, rule type and name, abstract flow
pattern (displayed under “Rule Description”), source/sink identifiers, and the original code
are readily accessible.

12 F. Tang et al.

By integrating the Detailed Flow View with the provided statistics and heatmaps from
the Personal Data Type View, we can guide ROPA development and verify the accuracy of
existing privacy statements. For mobile applications, we additionally examine the accuracy
of personal data processing disclosures made to platforms like Google Play or Apple’s App
Store. In situations where a comprehensive privacy statement is absent, such as with Joplin11,
we illustrate how our views can be employed for ROPA creation.

Fig. 5: Example of an identified flow in the Detailed Flow View for Rocket Chat

In order to establish a connection between ROPA requirements and our specialized views,
we reference Table 7 which addresses four critical requirements outlined in Section 2.1. These
can subsequently be incorporated into a comprehensive ROPA. Furthermore, we juxtapose
our results with the published privacy statements of the chosen four applications.

Rocket Chat’s detailed and well-structured privacy statement12 aligns closely with our
Personal Data Type View and Detailed Flow View. Telegram and Odoo also offer compre-
hensive and lucid privacy policies. However, our experiment uncovered that Telegram collects
user feedback and financial data, an activity not explicitly mentioned in their privacy state-
ment. On the other hand, Joplin’s privacy statement13 is brief and lacks specificity on the
types of personal data collected, except for geolocation data. We also discovered instances
where some personal data is temporarily stored without being disclosed in the statement.

Our approach demonstrated its effectiveness in covering personal data and its processing
in the selected validation applications, as compared to their published privacy statements.
Nonetheless, we also found instances where the applications collected personal data beyond
their disclosed policies. Personal data logging is a sensitive matter and should be meticulously
inspected and documented.

11 https://joplinapp.org/privacy/
12 https://docs.rocket.chat/legal/privacy
13 https://joplinapp.org/privacy/

https://joplinapp.org/privacy/
https://docs.rocket.chat/legal/privacy
https://joplinapp.org/privacy/

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 13

Table 7: Fact-check the published privacy statements of the four applications using the
information supplied by our two specialized views. The missing information is highlighted.

Application Data Captured via Views Aligned with
ROPA

Published Privacy Statement/Policy

Rocket Chat

– Categories of personal data: ACC, CON,
PID, OID, FEE, LOC.

– Categories of processing: basic process-
ing: C/D, M, and T. Minor logging per-
sonal data identified.

– Transfer to a database or third-party
APIs: own database access identified on
ACC, CON, and PID data, minor on
OID, FEE, and LOC data, no third-party
database API detected.

– Data encryption or anonymization: En-
cryption on ACC, CON, PID, OID, FEE
data. No anonymization was identified.

– Categories of personal data: personal ID (PID,
CON), account data (ACC), usage data (OID,
FEE), location data (LOC), cookie data (OID)

– Categories of processing: for contact/identifi-
cation: PID, CON; for market/communication:
PID, CON; for registration: ACC; for mainte-
nance/tech support/monitoring: OID, FEE; for
functionalities: OID, LOC, OID.

– Transfer to a database or third-party APIs: no
third-party services mentioned, data outside of
the USA might be transferred to services in the
USA.

– Data encryption or anonymization: relevant se-
curity measures were taken into account.

Telegram

– Categories of personal data: ACC, CON,
PID, OID, FEE, LOC, TEC, FIN, NID

– Categories of processing: basic process-
ing: C/D, M, and T. Major logging ACC
and CON data identified.

– Transfer to a database or third-party
APIs: there are database calls for ACC,
CON, PID, and NID data identified to
both internal and external databases.

– Data encryption or anonymization: there
is major encryption on NID, ACC, and
CON data.

– Categories of personal data: account data
(ACC, PID), contact data (CON, ACC, NID),
location data (LOC), chats (OID), and cookies
(TEC, OID)

– Categories of processing: for identification/ac-
count purposes (ACC, PID, NID); for commu-
nication (CON, ACC); for improving services
(TEC, OID); for functionalities (LOC, TEC,
OID).

– Transfer to a database or third-party APIs:
data is saved in third-party provided data cen-
ters in the Netherlands for European users, and
end-to-end chats are not transmitted out of the
device

– Data encryption or anonymization: “All data is
stored heavily encrypted so that local Telegram
engineers or physical intruders cannot get ac-
cess.”

Odoo

– Categories of personal data: ACC, CON,
PID, OID, FEE, TEC, FIN

– Categories of processing: basic process-
ing: C/D, M, and T. Major logging ACC,
CON, and FIN data identified.

– Transfer to a database or third-party
APIs: there are database calls for ACC,
CON, PID, and FIN data identified to
both internal and external databases.

– Data encryption or anonymization: there
is encryption on ACC, CON, PID, and
FIN data.

– Categories of personal data: account & con-
tact Data (ACC, CON), job application data
(CON, PID), browser data (FEE, TEC), cus-
tomer databases (ACC, CON, PID, FIN), free
trial session recording (FIN, TEC, OID, FEE),
In-App Purchase transaction data (FIN)

– Categories of processing: for the recruitment
process (ACC, CON, PID); for maintaining
and improving services (FEE, TEC, OID); for
providing services (ACC, PID), answering re-
quests (CON), and for billing management
(FIN, CON, ACC)

– Transfer to a database or third-party APIs:
“customer databases are hosted in the Odoo
Cloud Region closest to where they are based,
and can request a change of region”

– Data encryption or anonymization: “info is se-
curely processed, stored and preserved from
data loss and unauthorized access”.

Joplin

– Categories of personal data: ACC,
CON, PID, OID, FEE, LOC, TEC

– Categories of processing: basic process-
ing: C/D, M, and T. Major logging con-
tact data identified.

– Transfer to a database or third-party
APIs: Almost none, only less than 5
identified for ACC and LOC data to
be passed into a local temporary data
model.

– Data encryption or anonymization: There
are encryption measures on ACC and
CON data identified.

– Categories of personal data: It is not mentioned
in the privacy policy, only explicitly mentioned
geo-location data.

– Categories of processing: Not mentioned.
– Transfer to a database or third-party APIs:

Only mentioned: “Any data that Joplin saves,
such as notes or images, are saved to your own
device and you are free to delete this data at
any time.”

– Data encryption or anonymization: Not men-
tioned.

14 F. Tang et al.

Table 8: Identified personal data types, their quantity, and how they are covered by Google
Play’s privacy policies. In column ‘Coverage’, ‘-’ indicates the types of personal data iden-
tified by our approach but not covered in the privacy statement; ‘+’ implies that there is
coverage of all identified personal data types in the privacy statement.
Android Apps ACC CON PID OID LOC FEE HEA NID TEC FIN Coverage Logging

Discord 1621 791 31 399 159 107 - - 87 9 + 41
Kik 2065 1923 17 817 51 39 - - 46 31 -ACC, -LOC 133
Viber 1823 2093 101 740 219 42 - - 71 16 -ACC, -OID, -FEE, -TEC 82
Amazon 905 2762 1025 1623 634 198 42 - 231 129 -ACC 162
AliExpress 1244 2381 1730 2094 841 217 - - 309 261 -LOC, -FEE 217
Shein 1072 1967 965 978 409 96 - - 160 373 -LOC 62
The Weather Channel 239 2384 1291 1328 2623 172 - - 16 22 + 76
AccuWeather 176 2137 1102 1736 3321 98 - - 5 9 -PID, -OID, -ACC, -CON 41
Windy 312 246 567 803 1196 - - - - 14 -LOC 22
SamSung Health 273 182 31 98 685 44 1027 - 28 21 + 10
Google Fit 105 49 14 6 271 19 580 - 9 4 + 7
My Fitness Pal 328 209 19 113 902 75 721 - 47 69 -PID 89
Uber 1497 1054 298 835 2094 511 - - 814 427 + 294
Trainline 469 107 244 54 626 - 4 82 562 -NID 104
Omio 724 151 457 72 729 - 12 205 710 -ACC, -NID, -OID 71

4.2 Application: Assessing Google Play Data Safety Statements

To further highlight the applicability of our approach, we examined the top three Android
applications from Google Play (accessed on 8/Dec/2022, from the U.S. store14) in five differ-
ent categories: communication, online shopping, weather, fitness/health, and transportation.
As the decompilation process generated some noise, potentially distorting the count of data
processing flows, we focused on assessing the categories and distributions of personal data
collected by the applications.

In our evaluation, we verified the “Data Safety” statements of 15 applications against
the Personal Data Type View and Detailed Flow View generated by our approach. Table 8
presents the results, including the number of identified flows for each personal data category,
the coverage of their data safety statements in Google Play, and the amount of personal data
logged.

We found that our approach detected certain types of personal data not disclosed in the
Google Play data safety section. While Google allows exceptions for “on-device access/pro-
cessing” and “end-to-end encryption”, we found instances where data left the device without
being disclosed. For example, location data in the online chatting app Kik and national ID
data in the transportation app Omio are transmitted outside the device, but this was not
stated in their respective Google Play disclosures.

Interestingly, we observed that applications across various domains commonly collected
account and contact data, with additional domain-specific types. For instance, weather ap-
plications gathered significant location data, while transportation/ticketing applications ac-
quired national ID data from users. Consistent with the GitHub projects evaluated earlier,
all the apps logged personal data. This assessment underscores the utility of our approach in
helping apps improve the accuracy of their data safety statements and increase transparency
in their data handling practices.

4.3 Threats to Validity

Our approach does not offer a fully automated solution for GDPR compliance tasks, such as
generating a ROPA, due to the lack of a natural language processing module. This limitation
makes it challenging to directly generate or verify statements based on the output of our
approach, which consists of code snippets, fragments, labels, and additional details. As a
14 https://play.google.com/store/apps?gl=US

https://play.google.com/store/apps?gl=US

Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing 15

result, manual effort is required in our experiments, which consequently restricts the number
of applications we can feasibly validate (four in this study). Each application must be open-
source, widely used, gather diverse types of personal data, and possess a publicly available
privacy statement.

The primary threat to the validity of our experiments is the difficulty in establishing
a ground-truth set of actual data processing activities within the source code. This is due
to the necessity of domain knowledge from the original development team, which is typ-
ically inaccessible. Consequently, it is not feasible to accurately measure the recall value
(TP/(TP+FN)) for our approach.

In the context of fact-checking Google Play data safety statements, we are unable to
verify which types of personal data are sent outside of the device. This limitation prevents
us from fully assessing the accuracy of these statements.

5 Related Work

Existing research on incorporating privacy-by-design (PbD) into the software development
life cycle lacks concrete tools to assist software developers in designing and implementing
GDPR-compliant systems [3]. Moreover, such PbD-created systems lack standards for map-
ping particular legislative data protection obligations, such as the GDPR.

Ferrara et al. propose a framework to adopt static analysis to assess GDPR compli-
ance [4]. However, this approach requires compiled bytecode, which may not always be
readily available during the development process. Arfelt et al. provide a formal logic for
monitoring GDPR compliance [2] and a functional tool was developed by [6] for analyzing
cross-border data transmission in Android applications, which is limited in scope to a specific
platform.

Some existing research focuses on the identification of personal data but does not consider
broader GDPR compliance aspects. Fugkeaw et al. [5] design a technique to let enterprises
automatically detect and handle personal data stored in the local file system. ReCon [12]
uses machine learning to detect possible breaches of personal data by monitoring network
traffic, requiring a pre-trained ML model. van der Plas [11] identifies personal data in Git
commits using CodeBERT, a transformer model similar to RoBERT, but this approach only
focuses on the presence of personal data.

Our work aims to address these research gaps by providing a comprehensive solution
that does not rely on compiled bytecode, pre-trained ML models, or platform-specific tools,
and goes beyond merely identifying the presence of personal data to ensure broader GDPR
compliance during the software development process.

6 Conclusion and Future Directions

Ensuring GDPR compliance demands detailed information on personal data processing,
often requiring significant manual effort. Our work strives to lessen this burden by offering
two specialized views — Personal Data Type View and Detailed Flow View, facilitating
code reviewers in identifying potential data processing locations and providing necessary
information. Our approach, leveraging static analysis, has shown an average precision of
0.87 in our experiments, demonstrating its effectiveness.

However, our approach has limitations. Currently, it is based on Semgrep for static anal-
ysis, which captures intra-procedural data flows, leaving inter-procedural flows unaccounted
for. The adoption of the Semgrep Pro Engine, offering inter-procedural analysis, could en-
hance our approach’s precision.

In conclusion, our approach presents specialized views, aiding in GDPR compliance tasks,
such as ROPA production, by reducing manual effort. With further improvements, such as

16 F. Tang et al.

incorporating the Semgrep Pro Engine and refining our identification rules, we aim to make
the process of privacy analysis more efficient and manageable for code reviewers.

Acknowledgement

This paper is an extended version of work published in [15]. We would like to extend our
sincere gratitude to Rob van der Veer for his valuable insights and contributions to this
research. This work is part of the Privacy Matters (PriMa) project. The PriMa project
has received funding from European Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie grant agreement No. 860315.

References

1. Alharthi, A., Krotov, V., Bowman, M.: Addressing barriers to big data. Business Horizons
60(3), 285–292 (2017)

2. Arfelt, E., Basin, D., Debois, S.: Monitoring the GDPR. In: European Symposium on Research
in Computer Security. Springer (2019)

3. Baldassarre, M.T., Barletta, V.S., Caivano, D., Scalera, M.: Integrating security and privacy in
software development. Software Quality Journal 28(3), 987–1018 (2020)

4. Ferrara, P., Spoto, F.: Static analysis for gdpr compliance. In: Italian Conference on Cyberse-
curity (2018)

5. Fugkeaw, S., Chaturasrivilai, A., Tasungnoen, P., Techaudomthaworn, W.: Ap2i: Adaptive PII
scanning and consent discovery system. In: 2021 13th International Conference on Knowledge
and Smart Technology (KST). pp. 231–236. IEEE (2021)

6. Guamán, D.S., Del Alamo, J.M., Caiza, J.C.: Gdpr compliance assessment for cross-border
personal data transfers in android apps. IEEE Access 9, 15961–15982 (2021)

7. Huth, D., Tanakol, A., Matthes, F.: Using enterprise architecture models for creating the record
of processing activities (Art. 30 GDPR). In: 2019 IEEE 23rd International Enterprise Dis-
tributed Object Computing Conference (EDOC). pp. 98–104. IEEE (2019)

8. ICO: How do we document our processing activities? information commis-
sioner’s office. https://ico.org.uk/for-organisations/guide-to-data-protection/
guide-to-the-general-data-protection-regulation-gdpr/documentation/
how-do-we-document-our-processing-activities/, (Accessed on 04/29/2023)

9. Naik, A., Mendelson, J., Sands, N., Wang, Y., Naik, M., Raghothaman, M.: Sporq: An in-
teractive environment for exploring code using query-by-example. In: The 34th Annual ACM
Symposium on User Interface Software and Technology. pp. 84–99 (2021)

10. Pandit, H.J., Polleres, A., Bos, B., Brennan, R., Bruegger, B., Ekaputra, F.J., Fernández, J.D.,
Hamed, R.G., Kiesling, E., Lizar, M., et al.: Creating a vocabulary for data privacy. In: OTM
Confederated International Conferences" On the Move to Meaningful Internet Systems". pp.
714–730. Springer (2019)

11. van der Plas, N.: Detecting PII in Git commits. Master’s thesis - TU Delft (2022)
12. Ren, J., Rao, A., Lindorfer, M., Legout, A., Choffnes, D.: Recon: Revealing and controlling PII

leaks in mobile network traffic. In: Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services. pp. 361–374 (2016)

13. Ryan, P., Pandit, H.J., Brennan, R.: A common semantic model of the gdpr register of processing
activities. arXiv:2102.00980 (2021)

14. Solove, D.J.: Access and aggregation: Public records, privacy and the constitution. Minn. L.
Rev. 86, 1137 (2001)

15. Tang., F., Østvold., B., Bruntink., M.: Identifying personal data processing for code review.
In: Proceedings of the 9th International Conference on Information Systems Security and
Privacy - ICISSP. pp. 568–575. INSTICC, SciTePress (2023). https://doi.org/10.5220/
0011725700003405

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/documentation/how-do-we-document-our-processing-activities/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/documentation/how-do-we-document-our-processing-activities/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/documentation/how-do-we-document-our-processing-activities/
https://doi.org/10.5220/0011725700003405
https://doi.org/10.5220/0011725700003405
https://doi.org/10.5220/0011725700003405
https://doi.org/10.5220/0011725700003405

	Helping Code Reviewer Prioritize: Pinpointing Personal Data and its Processing

