
Action-Failure Resilient Planning
Diego Aineto, Alessandro Gaudenzi, Alfonso Gerevini *, Alberto Rovetta, Enrico Scala and Ivan Serina

Department of Information Engineering, University of Brescia, Italy

Abstract. In the real world, the execution of the actions planned
for an agent is never guaranteed to succeed, as they can fail in a
number of unexpected ways that are not explicitly captured in the
planning model. Based on these observations, we introduce the task
of finding plans for classical planning that are resilient to action ex-
ecution failures. We refer to this problem as Resilient Planning and
to its solutions as K-resilient plans; such plans guarantee that an
agent will always be able to reach its goals (possibly by replanning
alternative sequences of actions) as long as no more than K failures
occur along the way. We also present RESPLAN, a new algorithm
for Resilient Planning, and we compare its performance to meth-
ods based on compiling Resilient Planning to Fully-Observable-Non-
Deterministic (FOND) planning.

1 Introduction

A solution to a classical planning problem is a plan of actions that
when executed from the problem initial state is expected to reach a
final state where the problem goal holds [6, 9]. Solution plans can be
proven correct with respect to an abstract model of the world given in
some planning formalism [14]. However, because planning is done at
an abstract level, when actions do get executed in the real world they
can still fail in unexpected ways. These unforeseen action failures
may depend on a number of reasons, such as a deranging exogenous
event, a malfunction of the necessary equipment, the lack of a re-
source that was assumed to be available, or an incomplete/incorrect
abstract model of the action preconditions. An example is an action
moving a vehicle between two connected locations across some road
that, at execution time, cannot be performed because the connecting
road is temporarily blocked by a car accident or some (unknown)
road maintenance. Another example is a refuel action at a certain gas
station that, during plan execution, we discover to be not operational
(e.g., for lack of gasoline or interruption of the ATM payment ser-
vice) only when we are at the gas station.

In the propositional setting of classical planning models, these
kind of action failures leave the current state unaltered, since none
of the effects in the model of the failed action occur. Moreover, an-
ticipating such possible failures at planning time by means of more
detailed planning models can hardly capture all possible situations in
which a planned action is unexecutable, or can make the state/action
models much more complex (e.g., we need to model the status of
the ATM service at each gas station). On the other hand, one could
reasonably expect that a rational plan-based agent incurs into action
failures at most a bounded number of times along the way to reach its
goal (e.g., we don’t encounter many car accidents or non-operational
gas stations during the same trip.)

∗ Corresponding Author. Email: alfonso.gerevini@unibs.it.

In automated planning, a typical way to handle action failures is
interleaving plan execution and replanning from the state where a
failure occurs [9], possibly by repairing the current plan instead of
replanning from scratch (e.g., [1, 5, 8, 20]). However this online ap-
proach does not always guarantee that the plan under execution can
be fixed achieving the original problem goal. For instance, consider a
robotic domain involving path planning on a map of locations mod-
elled by a directed graph. A valid plan going from the current loca-
tion to the goal location involves executing a path of moves on such
a graph connecting the source and target locations. Suppose that, at
execution time, one of the plan moves is blocked by some unforeseen
event or obstacle, leaving the robot at the same location/graph node.
If from such a location there is no alternative path to reach the target
location/graph node, then the original plan cannot be repaired.

In this paper, we propose a complementary method aimed at gen-
erating plans that have repair guarantees in case action failures will
happen at execution time. We introduce the task of finding solutions
to classical planning that are resilient to action failures. We refer to
this problem as Resilient Planning and to its solution plans as K-
resilient plans. Such plans guarantee that an agent will always be
able to reach its goal (possibly by replanning online alternative se-
quences of actions) as long as no more than K action failures occur
along the way to the goal. If more than K action failures occur when
executing a K-resilient plan, any successive failure can still be han-
dled by the execution-and-plan-repair approach but, at this point in
the execution, without any guarantee that a state satisfying the prob-
lem goal can be reached.

While in general an action failure can be modeled in different
ways, here we assume that it does not modify the current (abstract)
state of the world. Moreover, in this work we consider stronger re-
silience guarantees by imposing that if an action fails, it cannot be
re-applied again. We propose a new algorithm for action-failure re-
silient planning, called RESPLAN, that works under these assump-
tions. RESPLAN generates plans for classical (propositional) plan-
ning problems that are resilient to a bounded number of action exe-
cution failures. The algorithm exploits a new notion of bounded re-
silient states, and searches for solution plans that are constrained to
cross only such states.

As we show in the paper, an instance of resilient planning can be
reformulated as a particular instance of fully observable nondeter-
ministic (FOND) planning [2, 3, 6]. In this compilation, the effects
of any action are either the set of all its nominal effects (i.e., those of
the classical planning model) or the empty set (modeling the action
failure). In addition, the models of the states and action precondi-
tions/effects are revised using additional fluents to take account of
the assumption that at most K action failures can occur.

Resilient Planning resembles Fault Tolerant (FT) planning [4, 15],

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230252

44

which can be reformulated as another special variant of FOND Plan-
ning. FT planning models and handles action failures differently
from us, and our RESPLAN algorithm substantially differs from ex-
isting techniques for FT planning.

We experimentally evaluate RESPLAN on a set of known domains
for classical planning, and we compare it with a compilation-based
approach using two state-of-the-art FOND planners [17, 7].

In the remainder of the paper, after a formal description of Re-
silient Planning, we present our algorithm and the results of the ex-
perimental evaluation. Then we discuss the related work in more de-
tail and give the conclusions.

2 Background

A classical planning problem is a tuple Π = 〈F,A, s0, G〉 whose
components are defined as follows. F is a finite set of literals induc-
ing a set S of states. A state s ∈ S is a subset of F . If an element
f ∈ F is in a state s then f is true in s; otherwise f is false in s
by the closed world assumption. s0 is the initial state. G ⊆ F is
the problem goal denoting the literals that should hold in any goal
state. A is a set of actions; each action a ∈ A is specified by the pair
a = 〈pre(a), eff(a)〉 where pre(a) ⊆ F is the precondition of a, and
eff(a) the effect of a formed by subsets of positive and negative liter-
als over F , that are denoted with eff(a)+ and eff(a)−, respectively.
An action a is applicable in state s iff pre(a) ⊆ s, and we denote the
set of actions applicable in state s with A(s). The application of an
action a ∈ A(s) in s generates a state s′ = s[a] such that, for every
fluent f ∈ F , f is in s′ iff f ∈ (s \ eff(a)−) ∪ eff(a)+.

A plan π is a sequence of actions in A, i.e., π = (a1, . . . , an).
Given a planning problem Π = 〈F,A, s0, G〉, τ = (s0, s1, · · · , sn)
is the trajectory of states induced by applying π in s0, i.e., si =
si−1[ai] for i = 1, · · · , n. A plan π = (a1, . . . , an) is a so-
lution for Π = 〈F,A, s0, G〉 iff the induced trajectory of states
τ = (s0, s1, · · · , sn) is such that for all i ∈ [1, n] it holds that
pre(ai) ⊆ si−1 and G ⊆ sn.

FOND planning is an extension of classical planning where an
action can have multiple alternative effect, and the state generated by
its execution depends on the triggered effect. A solution to a FOND
planning problem is a strong (possibly cyclic) policy that guarantees
reaching the goal no matter the outcome of an action execution.

3 Planning for Resilient Solutions

Resilient planning aims at generating plans that are robust up to a
given number of failures during execution. The execution of a gener-
ated plan can fail due to the abstract model used to compute the plan
not fully capturing the dynamics of the domain (e.g., incorrect or
incomplete action preconditions), outside interventions that impact
on the possible execution of an action, or simply because an action
did not have the intended outcome. Resilient planning describes the
world through a (classical) planning problem but explicitly considers
at planning time that actions can fail at execution time. As discussed
above, we abstract the failure and recovery of actions by assuming
that failures do not modify the state of the world and cannot be reap-
plied in the same resilient planning episode.

Our formalisation of resilient planning and its solutions rely on the
following notion of resilient states.

Definition 1 (k-Resilient State). Let Π = 〈F,A, s0, G〉 be a plan-
ning problem, S the state space induced by F , and k a non-negative
integer.

A GB

C

D

E

F

Figure 1. Navigation problem with seven locations (squares) and three
types of connections: road (solid), railway (dashed), and flight (dotted).

(i) A state s ∈ S is 0-resilient in Π iff there is a plan from s that
achieves G (i.e., 〈F,A, s,G〉 is solvable);

(ii) A state s ∈ S is k-resilient in Π if s |= G;
(iii) A state s ∈ S such that s �|= G is k-resilient in Π for k ≥ 1 iff

there exists an action a ∈ A(s) such that (1) s[a] is k-resilient
in Π and (2) s is (k − 1)-resilient in 〈F,A \ {a}, s0, G〉.

A state s is k-resilient in a planning problem 〈F,A, s0, G〉 if the
goal G can be achieved from s even after k action failures occur
along the way of a plan from s to G. Def. 1 formalizes this notion
by considering that the execution of an action a applicable in s can
either succeed or fail. Action success is captured by Condition (1)
of the case (iii), stating that the successor state s[a] needs to be k-
resilient. Action failure in s is captured by Condition (2) of the case
(iii), requiring that s is (k−1)-resilient in the same planning problem
but without action a, since after the failure of a we remain in state s
and a should never be retried along the way from s to G. Notice that
condition (iii)-(1) of Def. 1 makes the definition recursive, and case
(ii) guarantees that the recursion ends in a state that is k resilient and
entails the problem goals.

Let us illustrate the notion of a resilient state through the exam-
ple of Figure 1. This figure presents a navigation problem with seven
locations, representing states, and three types of connections, repre-
senting actions. The initial state of the problem is location A and the
goal is to reach location G. Following Def. 1, we have that states A,
B, D and G are 2-resilient, states C and E are 1-resilient, and state F
is 0-resilient. To see this we can reason backwards starting from the
goal state G, which is resilient for any value of k by definition. For
example, consider state F. We can use train(F,G) to move to G
but, if this action fails, there is no other way to reach the goal which
makes F a 0-resilient state. Next, let us consider state D. This state
is 2-resilient because we can move from D to G using car(D,G),
if car(D,G) fails we can use train(D,G) and finally, if both
car(D,G) and train(D,G) fail, we still can travel through F.

We can see that the definition of k-resilient state implies that there
exists a trajectory from the state to the goal where all states are k-
resilient. This observation takes us to our next definition.

Definition 2 (k-Resilient Plan). Given a planning problem Π =
〈F,A, s0, G〉, a solution plan for Π that induces a state trajectory
(s0, s1, . . . , sn) is k-resilient for Π if, for all 0 ≤ i < n, it holds
that si is k-resilient in Π.

By the previous definitions, a k-resilient plan π has the property
that, if during the execution of π any action a fails in a state s, it will

D. Aineto et al. / Action-Failure Resilient Planning 45

still be possible to achieve the problem goal from s by an alternative
plan π′ that does not use a and is resilient to k − 1 failures. In our
example of Figure 1, we have two 2-resilient plans. Both plans fol-
low the path A-B-D-G and only differ in whether we use car(D,G)
or train(D,G) to move from D to G. There are also several
1-resilient plans like (plane(A,C),car(C,E),plane(E,G))
and (car(A,B),car(B,C),car(C,D),train(D,G)) and, of
course, any path from A to G corresponds to a 0-resilient plan.

Definition 3 (Resilient Planning). Given a planning problem Π and
an integer K ≥ 0, Resilient Planning is the computational prob-
lem of finding a K-resilient plan for Π, if one exists, and returning
“unsolvable” otherwise.

A resilient planning problem is a pair 〈Π,K〉 where Π is a plan-
ning problem and K is an non-negative integer (classical planning
is a special case of resilient planning with K = 0). A solution for
〈Π,K〉 is a K-resilient plan for Π.

The next theorem states a property about the resilience of the prob-
lem initial state that is exploited by our planning algorithm presented
in the next section.

Theorem 1. Let 〈〈F,A, s0, G〉,K〉 be a resilient planning problem.
State s0 is K-resilient for 〈F,A, s0, G〉 if and only if there exists a
solution for 〈〈F,A, s0, G〉,K〉.
Proof. By Definitions 2-3, if 〈〈F,A, s0, G〉,K〉 is solvable, then s0
must be K-resilient for 〈F,A, s0, G〉. Def. 1 guarantees that s0 is
k-resilient only if there exists a plan from s0 that reaches the goal G
and generates a trajectory of states that are all k resilient, i.e., only if
〈〈F,A, s0, G〉,K〉 has a solution.

4 An Algorithm for Resilient Planning

This section proposes a novel algorithm for Resilient Planning called
RESPLAN. Intuitively, RESPLAN computes resilient plans for clas-
sical planning problems by iteratively using a classical planner to
prove whether the initial state of the problem is resilient or not.

4.1 The RESPLAN Algorithm

RESPLAN takes as input a resilient planning problem
〈〈F,A, s0, G〉,K〉, and outputs a K-resilient plan πK for
〈F,A, s0, G〉 if it exists and unsolvable otherwise. RESPLAN

leverages the theoretical result of Theorem 1 to pose the problem
of finding the solution K-resilient plan as the problem of proving
that the initial state s0 is K-resilient. The recursive nature of the
definition of k-resilient state means that, in order to achieve this,
we will have to prove the resilience of many other states. That is, to
prove that a state s is k-resilient, we need to find a successor state
s′ = s[a] that is also k-resilient, and we also need to show that
s is still (k − 1)-resilient without using action a. The RESPLAN

algorithm does this by performing a search for resilient states over
an augmented state space that combines to the classical state with
the number of failures detected so far and the faulty actions. Nodes
in this augmented space are tuples of the form 〈s, k, V 〉 where s is
a state, 0 ≤ k ≤ K, and V ⊆ A are faulty actions that cannot be
used again. Implicitly, a node 〈s, k, V 〉 represents the problem of
deciding whether s is a k-resilient state in 〈F,A \ V, s0, G〉.

The pseudocode of RESPLAN is reported in Algorithm 1, which
we describe in the following. RESPLAN maintains a Last-In-First-
Out (LIFO) list Open and two sets, R↑ and R↓, all containing nodes

Algorithm 1 RESPLAN

Input Resilient Planning problem 〈Π = 〈F,A, s0, G〉,K〉
Output K-resilient plan πK if it exists; unsolvable, otherwise

1: Open := {〈s0,K, ∅〉}; R↑ := ∅; R↓ := ∅;
2: while Open �= ∅ do

3: 〈s, k, V 〉 := Open.pop()
4: if 〈s, k, V 〉 �∈ R↑ ∪R↓ then

5: if RCheck(s, k, V,A,G,R↑) then

6: R↑.add(s, k, V)
7: else

8: Π′ := 〈F,A \ V, s,G〉
9: S↓ := {s′ | 〈s′, k, V 〉 ∈ R↓}

10: π, τ := ComputeP lan(Π′, S↓)
11: if π = null then

12: UpdateNonResilient(s, k, V,R↓)
13: else if k ≥ 1 then

14: for i = 1 to i = |π| do

15: Open.push(τi−1, k, V)
16: Open.push(τi−1, k − 1, V ∪ {πi})
17: R↑.add(τ|τ |, k, V)
18: else

19: for i = 1 to i = |π|+ 1 do

20: R↑.add(τi−1, 0, V)

21: if 〈s0,K, ∅〉 ∈ R↑ then

22: πK := ExtractSolution(Π,K,R↑)
23: return πK

24: else

25: return unsolvable
26:
27: function RCheck(s, k, V,A,R↑)
28: for a ∈ A(s) \ V do

29: if (〈s[a], k, V 〉 ∈ R↑ ∧ 〈s, k − 1, V ∪ {a}〉 ∈ R↑ then

30: return True
31: return False
32:
33: function ExtractSolution(〈F,A, s0, G〉,K,R↑)
34: s := s0
35: πK := ()
36: while s �|= G do

37: for a ∈ A(s) do

38: if 〈s[a],K, ∅〉 ∈ R↑ then

39: s := s[a]
40: πK .append(a)
41: break

42: return πK

〈s, k, V 〉. The Open list stores all nodes that still need to be eval-
uated. Each of these nodes will be either moved to R↑, if proven
resilient, or to R↓ if proven non-resilient. Notice that R↑ and R↓ are
complementary sets that can be understood as a sort of closed list in
our algorithm. Since the aim is to prove the initial state K-resilient,
we initialize Open with 〈s0,K, ∅〉.

Main loop (lines 2-20): In each iteration, the main loop pops a
node 〈s, k, V 〉 from Open (line 3) and determines whether it belongs
to either R↑ or R↓ already. RESPLAN first checks if the node can al-
ready be proven k-resilient by calling the RCheck function which
verifies that case (iii) of Def. 1 is satisfied. If RCheck returns True,
the node is added to R↑ (line 6). Otherwise, RESPLAN needs to find
additional resilient states (through which we can reach the goal) in
order to prove that s is k-resilient. This is done by generating a plan-

D. Aineto et al. / Action-Failure Resilient Planning46

ning problem Π′ = 〈F,A \ V, s,G〉 and calling ComputeP lan to
solve it. The ComputeP lan function encapsulates a classical plan-
ner and returns a plan π and the corresponding induced state trajec-
tory τ that solves Π′ without visiting any state that is already known
to not be k-resilient in Π′. There are three possible outcomes at this
point. First (lines 11–12), no plan is returned by ComputeP lan,
which means that s is not k-resilient in 〈F,A \ V, s0, G〉. When
this happens, we call the UpdateNonResilient procedure to add
〈s, k, V 〉 to R↓. The second possibility, lines 13 to 17, is that
ComputeP lan did return a plan and k ≥ 1 so, following case (iii)
of Def. 1, every state traversed by τ needs to be proven k-resilient
as well as (k − 1)-resilient without the executed action. This is cap-
tured in the algorithm by pushing new nodes into the Open list in
lines 15 and 16. Note that we push first node 〈τi−1, k, V 〉 and then
node 〈τi−1, k−1, V ∪πi〉 from the beginning to the end of trajectory
τ , and recall that Open is structured as an LIFO list. This means that
RESPLAN starts proving the resilience of the generated states from
the back of the plan and for lower values of k first, implementing a
sort of depth-first search. The last case is when k = 0 (lines 18–20),
so finding a plan already proved every state in τ to be 0-resilient;
consequently, we can add every state in τ to the R↑. The algorithm
terminates once Open is empty, at which point 〈s0,K, ∅〉 will either
be in R↑, if a K-resilient plan exists, or in R↓, otherwise. Note that
〈s0,K, ∅〉 will always occupy the first position in Open and, there-
fore, be the last one to be popped. It is worth noticing that, at line 15,
we are pushing a state from which we already have a plan to reach the
goal. This node will eventually be popped from the open list again
and if the RCheck returns True, this state will be deemed resilient.
Otherwise, the algorithm will attempt a new plan from this state.

Handling non-resilient states: As said above, a non-resilient state
〈s, k, V 〉 is identified when no plan is returned by the function
ComputeP lan, which means that we have exhausted all possible
ways to prove the k-resilience of s in Π′ without succeeding. What
we omitted to say is that just adding 〈s, k, V 〉 to R↓ is not enough to
prevent the node 〈s, k, V 〉 from being generated again. Note that the
set S↓ that RESPLAN generates in line 9 contains the states that are
known to not be k-resilient and will prevent the algorithm from push-
ing them into Open in line 15 (the plans generated at line 10 cannot
cross such states). On the other hand, if we are in an iteration where
the popped node is 〈s′, k+1, V ′〉 with V ′ ⊂ V (|V ′| = |V |−1) and
the plan from s′ returned by ComputeP lan visits s, node 〈s, k, V 〉
will be pushed again into the Open list in line 16. To avoid this sit-
uation, we exploit that it is possible to propagate non-resilient states
found for lower values of resilience to higher values. This is for-
malised by the following proposition derived from Def. 1.

Proposition 1. Let Π = 〈F,A, s0, G〉 be a planning problem, V
a subset of A, and s a state of Π. If s is not k-resilient in 〈F,A \
V, s0, G〉, then s is also not k′-resilient in 〈F,A \V ′, s0, G〉 for any
V ′ ⊆ V and k′ = k + |V \ V ′|.

This proposition says that a state that is not k-resilient will never
become (k + n)-resilient by allowing n more actions in the plan-
ning problem. To understand this let us revisit our example of Figure
1. The state F is 0-resilient but not 1-resilient. Proposition 1 states
that if we add another action, say that we add car(F,G) through a
new road, the state F will not be 2-resilient (although it becomes 1-
resilient) and generalizes this idea for any number of added actions.

Going back to our algorithm, we apply this result in procedure
UpdateNonResilient to update R↓ with 〈s, k, V 〉 and all other
non-resilient states that can be derived by Proposition 1. In this way,
given a node 〈s, k, V 〉, this procedure will add to R↓ all nodes

〈s, k′, V ′〉 where V ′ ⊆ V and k′ = K − |V ′|. Note also that the
number of added nodes is always 2|V |. Ultimately, by leveraging this
proposition, we prevent RESPLAN from pushing 〈s, k, V 〉 into Open
again if it has been previously proven that s is not k-resilient because
S↓ will contain s.

Extracting a solution: The RESPLAN algorithm does not store
explicitly the solution K-resilient plan. Instead, the solution can be
computed from R↑ following a simple procedure depicted in the
ExtractSolution function. To extract the K-resilient plan we can
greedily take any action a ∈ A(s) (starting with s = s0) that takes
us to another K-resilient state until we reach the goal.

4.2 Example of RESPLAN Execution

Now that we have explained the algorithm, let us give a
quick walk-through of what could be a possible execution of
RESPLAN. We consider as inputs the problem of Figure 1 and
K = 2, so the Open list will be initialized with 〈A, 2, ∅〉.
Assume that, in the first iteration, ComputeP lan returns the
plan (car(A,B),train(B,F),train(F,G)) so, after push-
ing the generated nodes, 〈F, 1, {train(F,G)}〉 will occupy the
last position in Open. In the next iteration, RESPLAN will pop
〈F, 1, {train(F,G)}〉 and it will find out that F is not 1-
resilient, since ComputeP lan will not be able to find a plan
from F to G that does not use train(F,G). It will then call
UpdateNonResilient and add 〈F, 1, {train(F,G)}〉 to R↓
alongside 〈F, 2, ∅〉, which is derived from Proposition 1. At this
point, the plan (car(A,B),train(B,F),train(F,G)) is not
2-resilient since F is not 2-resilient, and this will be reflected
in the algorithm by failing the RCheck after it pops 〈B, 2, ∅〉.
RESPLAN will then try to compute a plan to the goal starting
from B. Recall that 〈F, 2, ∅〉 belongs to R↓ and, therefore, S↓ con-
tains F which will be in turn not visited by ComputeP lan. Let
us assume that the computed plan is (car(B,D),car(D,G))
It is worth noticing that, at this stage, the algorithm dis-
carded the suffix (train(B,F),train(F,G)) of the first
computed plan (car(A,B),train(B,F),train(F,G)), and
is now considering (car(A,B),car(B,D),car(D,G)). Next,
RESPLAN will pop 〈D, 1, {car(D,G)}〉 and compute a plan
from D to G without using car(D,G). One possibility is to
use train(D,G) instead, so, in the next iteration, it will
pop 〈D, 0, {car(D,G),train(D,G)}〉. At this point it will
once again compute a plan from D to G, but this time with-
out using neither car(D,G) nor train(D,G), and the only
solution here will be (car(D,F),train(F,G)). Since we
are at k = 0, the nodes 〈D, 0, {car(D,G),train(D,G)}〉
and 〈F, 0, {car(D,G),train(D,G)}〉 will be directly added
to R↑. In the next two iteration, RESPLAN will pop first
〈D, 1, {car(D,G)}〉 and then 〈D, 2, ∅}〉, and both times the
RCheck will return True; so these nodes will be moved to R↑.
At this point, RESPLAN has proven that D is 2-resilient. The fol-
lowing iterations, all the way to the end of the algorithm, will fol-
low a pattern similar to the one described for D but for states B
and A. Once RESPLAN terminates, it will return the 2-resilient plan
(car(A,B),car(B,D),car(D,G)).

4.3 Theoretical Properties

This section discusses the theoretical properties of RESPLAN. Note
that in proving these properties we assume that the classical planner
used by the ComputeP lan function is both sound and complete.

D. Aineto et al. / Action-Failure Resilient Planning 47

Theorem 2. Given a Resilient Planning problem
〈〈F,A, s0, G〉,K〉, RESPLAN returns a solution iff 〈F,A, s0, G〉 is
solvable. Otherwise, it returns “unsolvable”.

Proof sketch. First, we show that the algorithm always terminates in
a finite number of steps. Indeed, the set of nodes 〈s, k, V 〉 that can be
pushed into Open is finite as all three components can take a finite
number of different values, and for any node 〈s, k, V 〉 that is added
to the Open list, RESPLAN will eventually prove or disprove the k-
resilience of s. That is, it cannot remain unknown. To see why this
is true, observe that when we pop a node from Open, this node will
be either (1) added to the R↑ set (if function RCheck returns true),
(2) added to the R↓ set in line 12, or (3) pushed again into the Open
list in the first iteration of line 15, after having computed a plan from
s avoiding states S↓ through the ComputeP lan function. Case (3)
happens when RESPLAN searches for alternative plans because some
state traversed by the previously generated plan from s was found
to be non-resilient. Every time this happens R↓ is then populated
with new nodes, which are a finite number. It follows that the same
node can re-enter into Open a finite number of times, with the worst
case when R↓ eventually saturates. At that point, no solution will be
found by ComputeP lan, and the node will be moved to R↓.

When the algorithm finds a solution, it means that it has proved
that the initial state is K-resilient. Then, to ensure the correctness
of RESPLAN for solvable instances, it suffices to show that for every
node 〈s, k, V 〉 in R↑ it holds that s is k-resilient in 〈F,A\V, s0, G〉.
It is easy to see that this is true since the set R↑ is only populated in
lines 6, 17, and 20, which correspond, respectively, to cases (iii), (ii)
and (i) of Def. 1.

We also show that R↓ only contains nodes associated to non-
resilient states. By contradiction, assume that 〈s, k, V 〉 belongs to
R↓ and s is k-resilient in 〈F,A \ V, s0, G〉. Observe that R↓ is only
populated in line 12 after ComputeP lan returns no solution. There
are two possibilities then. First, 〈F,A \ V, s0, G〉 cannot be solved
without visiting a non-resilient state, which contradicts the assump-
tion that s is k-resilient. The second possibility is that it was added
following the generalization of non-resilient states of Proposition 1,
which would contradict the proposition itself.

Finally, completeness is proved by observing that RESPLAN never
computes the same plan at line 10 each time the same node is popped
from Open, and that by construction of R↓ only plans that visit non-
resilient states are pruned (and such plans cannot be solutions). �

5 Experimental Evaluation

In this section, we analyse the performance of the presented
RESPLAN algorithm to solve Resilient Planning problems. We im-
plemented RESPLAN starting from the available code of PRP [18]
and used FastDownward [10] with the hFF heuristic [12] as the clas-
sical planner of ComputeP lan. The code of the algorithm and the
benchmarks are publicly available1.

5.1 Experimental setup

We evaluated our algorithm on two sets of problems created by tak-
ing classical planning instances and scaling the value of K from 1
to 4. For the first set, we took a selection benchmarks from the pre-
vious and past International Planning Competitions (IPC) where we
can expect to find some resilient solutions. These are domains that
display some redundant components; this is what allows problems to

1 https://github.com/ale-gaudenzi/resilient-planner

have alternative ways to achieve the goals. Transportation domains
are good candidates since they usually have several vehicles that can
deliver and load, and navigation graphs that allow different paths
to move among locations. With this in mind, the domains we se-
lected were Driverlog, Satellite, Storage and Zenotravel. These four
domains, while similar, present different flavours that are interesting
for resilience. In Driverlog it is necessary to secure drivers and the
navigation graph is not fully-connected, Satellites are equipped with
different (possibly overlapping) collections of instruments required
for the tasks, Storage introduces hoists to move crates around, and in
Zenotravel planes can travel at two speeds and consume fuel.

In addition, we also created a second benchmark set where we
have manually generated problems to challenge the approaches to
look for solutions for high levels of resilience. The domains that
make up this benchmark are BlocksworldMA, Rockets and Lo-
gistics. BlocksworldMA is the multi-agent variant of the classical
Blocksworld domain that introduces several arms, Rockets is a sim-
ple transportation domain where resilience is strictly related to the
number of rockets, and Logistics is a more involved domain that con-
siders several cities, each with their own locations and vehicles. For
each domain, we generated 10 instances by introducing an appro-
priate number of objects of each type that allows for high resilience
solutions, and increasing their difficulty by considering more goals.

As baselines for the evaluation, we considered the specialized al-
gorithms of [15] and a compilation to FOND planning inspired by
this same work. However, we focus on the compilation approach
as the specialized algorithms only handle problems with K=1, and
could not solve even the smallest instance in our benchmarks suite.
In the FOND planning problem, we enforce our semantics in the ac-
tion models, namely, 1) all actions can fail and the failure does not
modify the state, and 2) actions that have failed cannot be used again.
Assumption (1) can be encoded by extending all actions with a new
secondary empty effect. Assumption (2) requires extending the ac-
tions preconditions and the new secondary effect with a proposition
f�
a that denotes that action a ∈ A has already failed. As done in

[15], we limited the number of faults by introducing a counter in the
problem. This counter disables secondary effects once the bound K
is reached. To solve the compiled problems, we use MyND (with
the hFF heuristic) and FOND-SAT, two FOND planners capable of
computing strong policies. All experiments were run on a Xeon Gold
6140M at 2.3 GHz, with a time limit of 1800s and a memory limit of
32GB for each problem.

5.2 Results

In the following, we discuss the obtained results. We start our com-
mentary by looking at the coverage results over our two sets of
benchmark problems and then move on to the runtime analysis.

Coverage results: Table 1 summarizes the coverage results. We
have aggregated separately the coverage score for solvable (denoted
by an "S") and unsolvable instances (denoted by a "U") to analyze
these two cases more in depth. Columns MN and FS correspond to
the results of the compilation solved by MyND and FOND-SAT plan-
ners, respectively, while RP refers to the results of our algorithm. We
note that FOND-SAT, as a SAT-based planning algorithm, is unable
to prove unsolvability and remark this by using a "-" in the corre-
sponding table entries. Focusing first on the IPC benchmark, we ob-
serve that K-resilient plans are only found for K ≤ 2 and problems
become unsolvable as we increase K. We can see that RESPLAN out-
performs the baselines in solvable instances. In particular, RESPLAN

is able to find 56 solutions for K = 1 and 12 for K = 2, while

D. Aineto et al. / Action-Failure Resilient Planning48

K = 1 K = 2 K = 3 K = 4
Domain Sol MN FS RP MN FS RP MN FS RP MN FS RP

Driverlog S 2 1 14 0 0 1 0 0 0 0 0 0
(#20) U 0 - 0 0 - 0 0 - 0 1 - 0

Satellite S 1 0 17 1 0 5 0 0 0 0 0 0
(#36) U 1 - 1 0 - 1 0 - 1 0 - 1
Storage S 4 0 10 0 0 3 0 0 0 0 0 0
(#30) U 6 - 5 9 - 7 9 - 5 12 - 6

Zenotravel S 3 1 15 1 1 3 0 0 0 0 0 0
(#20) U 1 - 1 0 - 1 1 - 2 2 - 2

Subtotal-IPC S 10 2 56 2 1 12 0 0 0 0 0 0
(#106) U 8 - 7 9 - 9 10 - 8 15 - 9

BlocksworldMA S 5 6 10 0 2 10 0 0 5 0 0 4
(#10) U 0 - 0 0 - 0 0 - 0 0 - 0

Logistics S 0 1 9 0 0 9 0 0 7 0 0 3
(#10) U 0 - 0 0 - 0 0 - 0 0 - 0
Rocket S 4 4 10 1 0 10 0 0 9 0 0 2
(#10) U 0 - 0 0 - 0 0 - 0 0 - 0

Subtotal-Res S 9 11 29 1 2 29 0 0 21 0 0 9

(#30) U 0 - 0 0 - 0 0 - 0 0 - 0
Total S 19 13 85 3 3 41 0 0 21 0 0 9

(#136) U 8 - 7 9 - 9 10 - 8 15 - 9

Table 1. Coverage results for RESPLAN (RP), compilation into FOND using MyND (MN) or FOND-SAT (FS) across benchmarks from the IPCs and the
newly generated instances (Res)

MyND only finds 10 and 2 solutions, repectively. FOND-SAT per-
forms quite poorly in this benchmarks, only finding 2 solutions for
K = 1 and 1 for K = 2. The results for unsolvable instances are
more mixed and, interestingly, seem to indicate that MyND scales
better with the value of K for these cases. We attribute this to the
way RESPLAN structures the search in depth-first fashion since, for
high values of K, it may run into situations where it spends the ma-
jority of the effort in proving the resilience of a suffix of a plan that
is later found to not be K-resilient.

Moving now to the second benchmark set, we can observe that we
have been able to find that most instances have 3-resilient plans and
some even for 4-resilient plans. RESPLAN finds solutions to 29 out
of the 30 instances for K = 1 and K = 2, while the coverage of the
baselines is significantly lower. Even for K = 3 and K = 4 where
both MyND and FOND-SAT failed to find any solution, RESPLAN

is able to find 21 and 9 solutions, respectively. The results here con-
firm the efficiency of RESPLAN for solvable instances as it is able
to find solutions for very large planning problems where the other
baselines struggled. Interestingly, neither RESPLAN nor MyND are
able to prove unsolvability in this benchmark, possibly because the
state-space is too large in these instances. Overall, the results show
that RESPLAN dominates the baselines for solvable instances and
performs comparatively well in unsolvable ones. Nevertheless, these
results serve as a stimulus to explore novel pruning techniques that
help detect unsolvable instances faster.

Runtime results: We now evaluate the runtime of our algorithm.
Figure 2 presents a runtime comparison between RESPLAN and the
compilation solved with MyND across all benchmarks and resilience
values; we exclude FOND-SAT from this analysis as there are not
enough data points due to its low overall coverage. We can see that
there are many instances where RESPLAN is able to quickly solve
the problem while MyND runs out of time. This happens often for
solvable instances, as we saw earlier, and highlights the efficiency
of RESPLAN to find K-resilient plans. More interestingly, the re-
sults clearly indicate that the compared approaches are quite com-
plementary, with MyND performing generally better than RESPLAN

in proving unsovability.

100 101 102 103

ResPlan

100

101

102

103

M
yN

D

solvable unsolvable

Figure 2. RESPLAN (x-axis) vs compilation solved by MyND (y-axis).
Points represent runtime in seconds over all instances.

Figure 3 shows the cumulative number of instances solved over
time for RESPLAN and the two baselines. We can observe that
RESPLAN is able to solve more instances than MyND and FOND-
SAT across all values of K. RESPLAN completely dominates for
K = 1 and K = 2; in particular, RESPLAN with K = 1 is extremely
fast and is able to solve 63 instances (over 85 instances solved) in less
than 10 seconds, while solving with K = 2 requires much more time
(as expected given the high number of additional states to examine)
but is still very efficient. For K = 3 and K = 4, we see that MyND
is able to solve some instances (by proving them unsolvable) in a
few seconds, but after that it fails to obtain any new solution and is
surpassed by RESPLAN.

6 Related Work

Resilient planning is related to planning under uncertainty, a topic
of automated planning that has been tackled from a variety of per-
spectives [6]. Here we are interested in the case that deals with un-
certainty in the sense of non-deterministic non-stochastic behaviors,

D. Aineto et al. / Action-Failure Resilient Planning 49

100 101 102 103
0

20

40

60

80

K = 1

100 101 102 103
0

20

40

K = 2

100 101 102 103
0

10

20

30
K = 3

100 101 102 103
0

5

10

15

K = 4

ResPlan MyND FOND-SAT

Figure 3. Coverage (y-axis) vs runtime (x-axis) for increasing values of K.

where a given agent has to anticipate unexpected contingencies at
planning at time, but assume to have full observability of the world
once she applies actions. This is generally referred to as FOND for
Full-Observable-Non-Deterministic planning, which in its general
formulation is an EXPTIME-complete problem [16]. FOND prob-
lems have been approached via replanning (e.g., [21, 18]), symbolic
methods (e.g., [2, 7]) or native methods (e.g., [11], [19], [17]).

Resilient Planning (RP for short), can be formulated as a specific
restriction of FOND planning that has bounded indeterminacy in
which we assume that the agent action can fail producing none of
the modeled effects, but failures can happen only a limited number
of times. This restriction is similar to Fault-Tolerant-Planning (FT),
a fragment of FOND planning initially studied in [15]. In FT, the
action model devises primary and secondary effects. Secondary ef-
fects are those that happen when some unexpected situation which is
not under the control of the agent occurs. The main objective of FT
planning is to generate plans guaranteed to reach a goal state as long
as no more than a given number k of secondary effects are triggered
during execution. FT planning was later generalized and studied in
[4] from a computational complexity standpoint.

The work in [15] proposes to solve FT problems by an OBDD
based algorithm supplied in different configurations: a blind back-
ward search and more specialised algorithms for the case where
k = 1. The specialised versions can use different variants of heuris-
tics based on the syntactic structure of the states investigated by
the OBDD representation. The work in [4] focuses on the theoret-
ical aspects of an extended version of FT having m primary effects;
for m = 1, which is the case studied in [15], FT is proved to be
PSPACE-complete and therefore easier than FOND planning (as-
suming PSPACE�=EXPTIME).

We observe that a RP problem can be cast as a FT problem with
one secondary effect. Such a secondary effect formalizes the contin-
gency when the action simply leaves the state unaltered, which in
our semantics corresponds to an action failure. Moreover, we need
to be sure that the failing action cannot be re-applied (in the same
or successive states); this can be enforced by making such an action
inapplicable. Because of this, FT can be seen as a more expressive
formalism than RP. Yet, we argue that RP provides a complementary
approach to FT in that it allows to model failures in more abstract
terms, and the user is not asked to formulate a non-deterministic
model for each action. Indeed, in RP the non-determinism is implicit
in the semantics of the problem itself.

From the point of view of the solution algorithms, our RESPLAN

substantially differs from what is presented in [15] for FT, as well
from algorithms for FOND planners. In comparison with the algo-

rithm proposed by [15], our algorithm has no restrictions on the input
number of allowed failures, and exploits classical planners almost
off-the-shelf, leveraging the vast amount of work done in devising
informed heuristics from classical planning.

PRP [18] is a state of the art planner for FOND planning that has
some similarity with RESPLAN. PRP works by iteratively calling a
classical planner to build a strong cyclic policy for the given FOND
planning problem. To improve its performance, PRP collects and
exploits dead-ends during search so that the exploration of useless
states is avoided by the classical planner problem formulated on the
fly. Differently from PRP, RP requires solutions to be strong non-
cyclic. This is because in our setting there is no fairness assumption
as in PRP, and therefore we do not assume the case that the nominal
effect of an action will occur in the limit if it is repeatedly applied.

7 Conclusion

We have addressed the problem of generating plans in the context of
classical planning that are robust during execution. Such plans are
required to cross only states that satisfy a property of bounded re-
silience introduced in the paper. Our RESPLAN algorithm generates
resilient plans that are guaranteed to be repairable when at most a
bounded number of planned actions cannot be executed or provide
no effect, leaving the current state of the planning model unaltered.

An experimental comparison with an alternative approach based
on compilation into strong FOND planning indicates that, RESPLAN

is much more effective in terms of both coverage and run-time over
solvable instances, and it is competitive in terms of coverage over
unsolvable instances.

In future work, we plan to optimise the performance of RESPLAN

in different ways, and in particular by novel pruning techniques that
can make RESPLAN more efficient for unsolvable instances, for in-
stance by exploiting landmarks [13]. Moreover, we intend to study
alternative notions of resilient states and further ways to model and
handle action failures.

Finally, an interesting possible use of resilient planning that we
have not investigated in this paper concerns the formalisation of
the planning problem. A real-world planning problem could be ab-
stractly represented in classical planning by different alternative
models (actions with different preconditions and effects, and states
with different fluents). Resilient planning could be a tool to evaluate
the quality of such models in terms of the degree of resilience they
admit in their plans, preferring models that support higher resilience.
This is another direction for further research.

D. Aineto et al. / Action-Failure Resilient Planning50

Acknowledgements

This research has been carried out with the support of EU H2020
project AIPlan4EU (GA n. 101016442), EU ICT-48 2020 project
TAILOR (No. 952215), and MUR PRIN project RIPER (No.
20203FFYLK).

References

[1] Mohannad Babli, Óscar Sapena, and Eva Onaindia, ‘Plan commitment:
Replanning versus plan repair’, Engineering Applications of Artificial
Intelligence, 123, (2023).

[2] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso,
‘Weak, strong, and strong cyclic planning via symbolic model check-
ing’, Artif. Intell., 147(1-2), 35–84, (2003).

[3] Alessandro Cimatti, Marco Roveri, and Paolo Traverso, ‘Automatic
obdd-based generation of universal plans in non-deterministic do-
mains’, in Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence, pp. 875–881. AAAI Press / The MIT Press, (1998).

[4] Carmel Domshlak, ‘Fault tolerant planning: Complexity and compi-
lation’, in Proceedings of the International Conference on Automated
Planning and Scheduling, volume 23, pp. 64–72, (2013).

[5] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina, ‘Plan
stability: Replanning versus plan repair’, in Proceedings of the Six-
teenth International Conference on Automated Planning and Schedul-
ing (ICAPS-2006), pp. 212–221. AAAI, (2006).

[6] Hector Geffner and Blai Bonet, A Concise Introduction to Models
and Methods for Automated Planning, Synthesis Lectures on Artificial
Intelligence and Machine Learning, Morgan & Claypool Publishers,
2013.

[7] Tomas Geffner and Hector Geffner, ‘Compact policies for fully observ-
able non-deterministic planning as SAT’, in ICAPS, pp. 88–96. AAAI
Press, (2018).

[8] Alfonso Gerevini and Ivan Serina, ‘Efficient plan adaptation through
replanning windows and heuristic goals’, Fundamenta Informaticae,
102(3-4), 287–323, (2010).

[9] Malik Ghallab, Dana S. Nau, and Paolo Traverso, Automated Planning
and Acting, Cambridge University Press, 2016.

[10] Malte Helmert, ‘The fast downward planning system’, Journal of Arti-
ficial Intelligence Research, 26, 191–246, (2006).

[11] Jörg Hoffmann and Ronen I. Brafman, ‘Contingent planning via heuris-
tic forward search witn implicit belief states’, in ICAPS, pp. 71–80.
AAAI, (2005).

[12] Jörg Hoffmann and Bernhard Nebel, ‘The ff planning system: Fast plan
generation through heuristic search’, Journal of Artificial Intelligence
Research, 14, 253–302, (2001).

[13] Jörg Hoffmann, Julie Porteous, and Laura Sebastia, ‘Ordered landmarks
in planning’, J. Artif. Intell. Res., 22, 215–278, (2004).

[14] Richard Howey, Derek Long, and Maria Fox, ‘Val: Automatic plan val-
idation, continuous effects and mixed initiative planning using pddl’,
in 16th IEEE International Conference on Tools with Artificial Intelli-
gence, pp. 294–301. IEEE, (2004).

[15] Rune M Jensen, Manuela M Veloso, and Randal E Bryant, ‘Fault tol-
erant planning: Toward probabilistic uncertainty models in symbolic
non-deterministic planning.’, in ICAPS, pp. 335–344, (2004).

[16] Michael L. Littman, ‘Probabilistic propositional planning: Representa-
tions and complexity’, in AAAI/IAAI, pp. 748–754. AAAI Press / The
MIT Press, (1997).

[17] Robert Mattmüller, Manuela Ortlieb, Malte Helmert, and Pascal
Bercher, ‘Pattern database heuristics for fully observable nondetermin-
istic planning’, in ICAPS, pp. 105–112. AAAI, (2010).

[18] Christian J. Muise, Sheila A. McIlraith, and J. Christopher Beck, ‘Im-
proved non-deterministic planning by exploiting state relevance’, in
ICAPS. AAAI, (2012).

[19] Ramon Fraga Pereira, André Grahl Pereira, Frederico Messa, and
Giuseppe De Giacomo, ‘Iterative depth-first search for FOND plan-
ning’, in ICAPS, pp. 90–99. AAAI Press, (2022).

[20] Sung Wook Yoon, Alan Fern, and Robert Givan, ‘Ff-replan: A base-
line for probabilistic planning’, in Proceedings of the Seventeenth Inter-
national Conference on Automated Planning and Scheduling, (ICAPS-
2007). AAAI, (2007).

[21] Sung Wook Yoon, Alan Fern, and Robert Givan, ‘Ff-replan: A baseline
for probabilistic planning’, in ICAPS, p. 352. AAAI, (2007).

D. Aineto et al. / Action-Failure Resilient Planning 51

