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Abstract. Transformer-based language models demonstrate excep-
tional performance in Natural Language Processing (NLP) tasks but
remain susceptible to backdoor attacks involving hidden input trig-
gers. Trojan injection via hardware bitflips presents a significant
challenge for contemporary language models. However, previous re-
search overlooks practical hardware considerations, such as DRAM
and cache memory structures, resulting in unrealistic attacks that de-
mand the manipulation of an excessive number of parameters and
bits. In this paper, we present TrojBits, a novel approach requir-
ing minimal bit-flips to effectively insert Trojans into real-world
Transformer language model systems. This is achieved through a
three-module framework designed to efficiently target Transformer-
based language models, consisting of Vulnerable Parameters Rank-
ing (VPR), Hardware-aware Attack Optimization (HAO), and Vul-
nerable Bits Pruning (VBP). Within the VPR module, we are the first
to employ Gradient-guided Fisher information to identify the most
susceptible Transformer parameters, specifically in the word em-
bedding layer. The HAO module then redistributes these parameters
across multiple triggers, conforming to hardware constraints by in-
corporating a regularization term in the trojan optimization method-
ology. Finally, the VBP module aims to reduce the number of bit-flips
by discarding less significant bits. We evaluate TrojBits on two rep-
resentative NLP models, BERT and XLNE, on three classification
tasks (SST2, OffensEval, and AG’s News). Our results demonstrate
that our TrojBits successfully achieves the inference-time attack with
only 64 parameters out of 116 million and 90-bit flips while main-
taining the model performance.

1 Introduction

A major security threat to Deep Neural Networks (DNNs) is the so-
called backdoor or trojan attack. In this attack, the model behaves
normally on clean inputs but picks a specific output of the attacker’s
choice when the input has a trigger. In the Natural Language Pro-
cessing (NLP) domain, the trigger could be a word or a combination
of words [34, 17] embedded in the clean input of a DNN. We refer to
this as input space trigger. Alternatively, a trigger could be a style of
a text or a syntactical change in the structure of a sentence [24, 25],
we refer to this as feature space trigger. Because of the ubiquity of
NLP models and their applications in critical tasks such as Fraud
detection, ensuring the trustworthiness of such applications has be-
come a requirement for adapting them by businesses or individual
users alike.

There are two ways to inject a backdoor into an NLP deep learn-
ing models: supply-chain and inference-time attacks. In supply-chain
attacks, the attacker aims to poison the training data [5, 11] or the
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model itself [35, 17] with the help of the training data. In both types
of poisoning, the attacker needs access to a tremendous amount of
training data and needs to train the model to test the attack’s effec-
tiveness and its performance on clean data. This type of attack is
not always possible due to the requirement of computational power
and data resources. On the other hand, inference-time attacks are
lightweight in the requirement of training data [26, 3, 18, 42], where
an attacker needs access to a few batches of test data to mount
the attack. In addition, in supply-chain (training-time, pre-training-
time) attacks, models or data are tested for possible backdoors before
they are adapted for deployment. While many state-of-the-art supply-
chain defenses such as [9, 36, 6] can discard or reconstruct infected
models before deployment, research about defending inference-time
attacks is still in its infancy. Besides, bit-wise operation attack is
more feasible and imperceptible than changing the parameter’s value
because it evades the software OS defense mechanism that prevents
unauthorized writing.

Inference-time attacks may be performed through a known mem-
ory disturbance error called Row Hammer [15] caused by grouping
multiple commodity chips in one module to increase the DRAM ca-
pacity. In this type of attack, the attacker finds vulnerable parameters
of a DNN model in an offline stage; then, the attacker injects the
backdoor into the model by flipping the bits of these parameters.

While previous work on inference-time attacks [18, 42, 27, 3] has
been done to show the security threat of such attacks, they over-
looked the practical consideration of hardware structure of mem-
ory and cache. For example, adopting feature-space triggers as in
[25, 24] for inference-time attacks by row hammer might not be pos-
sible. Suppose an attacker needs to restrict the size of perturbed pa-
rameters of the such trigger to a hardware-aware size. In that case,
it might be challenging to re-structure a sentence with this trigger to
multiple small-sized triggers, defeating the purpose of being invisible
in the first place. In addition, merely identifying important parame-
ters without considering their locations in a specific dimension can
require many bitflips to inject the trojan. This is because a row ham-
mer attacker, such as shown in [23, 28], may use the kernel command
CLFLUSH, which flushes a 64-bytes cache line to DRAM memory.

To this end, we design a hardware-aware attack that is more feasi-
ble and efficient than the prior row hammer attack in the NLP domain
by reducing the bitflips required to trigger the backdoor. Then we dis-
cuss potential mitigation against our attack. Unlike previous works
that exhaustively search the most vulnerable weights in huge space,
we focus our attack on the word embedding layer to take advantage
of the isolated token/word lookup. We make our attack hardware-
aware by ensuring three invariants: 1) the vulnerable parameters are
stored sequentially, 2) of size 64 bytes, and 3) with rare word trig-
gers. Firstly, we ensure these parameters are contiguous at the appli-
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cation level. In that case, they will also be contiguous in a DRAM
row, making the attack feasible with a row hammer. Secondly, if the
parameter size does not exceed 64 bytes, we can guarantee they will
be evicted altogether from the DRAM. Thirdly, we use rare keyword
triggers to highlight input-space feature exploitation in the realm of
inference-time attacks and propose possible mitigation.

Our proposed attack has three modules, Vulnerable Parameter
Rank (VPR), Hardware-aware Attack Optimization (HAO), and Vul-
nerable Bits Pruning (VBP). In VPR, we leverage the well-known
Gradient-guided Fisher information [22] to pinpoint the most sus-
ceptible Transformer parameters, especially in the word embedding
layer. We use a perturbed input with rare input-space triggers, such as
’cf,’ ’mn,’ ’mb,’ ’bb,’ ’qt’ as mentioned in the Books [43]. Nonethe-
less, an attacker could choose rare words in a specific machine learn-
ing task not necessarily from the mentioned list. In HAO, we redis-
tribute the identified parameters in the VPR module to conform with
invariants 1 and 2 in the preceded paragraph by incorporating a regu-
larization term to the trojan attack optimization. Finally, in the VBP
module, we apply a heuristic search method to search for important
bits by taking advantage of the fact that flipping only one bit in the
most significant bits can be very close to changing multiple bits in
the least significant bits, reducing the attack overhead by a signifi-
cant margin.

The result of our attack shows that it is more feasible and efficient
because we only need to flip a minimum of 90 bits compared to more
than 400 bits in prior work and up to three different trigger keywords
to activate it, reaching an Attack Success Rate (ASR) of 100%.

Our contribution in this paper can be summarized as follows:

• Leverage the well-known Gradient-guided fisher information
method in our VPR module to find and prune critical parameters.

• Demonstrate a more feasible and efficient inference-time attack
that realizes hardware settings through HAO and VBP modules,
reducing the attack overhead measured by the number of bit-flips
on the word embedding layer of transformer-based models.

• Discuss the trade-offs of trigger types and their number, and
present potential mitigation methods to help reduce the effect of
rare keyword weight perturbation in the word embedding layer.

2 Background and Related Work

NLP attacks are taxonomized in the literature into two themes, ad-
versarial examples (AEs) [10, 2] and backdoor/trojan insertion tech-
niques [4, 17, 25, 24, 35]. AEs are small perturbations to the origi-
nal input samples that can subvert a DNN model to misclassify with
high confidence. By manipulating the model gradients to induce mis-
classification behavior, these examples are generated, and have been
shown to transfer across many different models [20]. Because AEs
directly modify the input, they can not be directly generated with
gradient manipulation on texts [33, 39, 12]. This is because non-
differential input text lookup in NLP models impedes the model gra-
dient manipulation from reaching a legitimate word/words that could
be used to generate AEs.

Alternatively, backdoor attacks modify the model weight param-
eters by manually creating poisoned examples with a predefined
word/pattern, known as triggers. These examples are associated with
a target output/class by training the model on the poisoned exam-
ples. While AEs manipulate the input, backdoor attacks manipulate
the model weights by training it on poisoned and clean samples. For
this reason, backdoor attacks are stealthy since the backdoor-related

neurons stay dormant until a trigger is present in the input; the back-
doored model behaves normally otherwise.

There are two popular methods (threat models) through which an at-
tacker performs backdoor attacks; supply-chain and inference-time
attacks. As the name suggests, supply-chain attacks target poisoning
some components of the machine learning pipeline, mainly, train-
ing data or the model itself. In a data poisoning attack, the attacker
poisons a dataset by creating some samples of the clean data with a
trigger and associating it with a target label [7, 34, 11]. Finally, the at-
tacker mixes both clean and poisoned samples together and publishes
this dataset in a public repository. A victim user uses this dataset for
fine-tuning their model on without rigorous inspection, and automat-
ically, the backdoor is injected. The attacker then queries the back-
doored model after deployment with triggered input through which
the model classifies to the attacker’s target label. Because the back-
door injected in this way can be removed by fine-tuning process or
dataset filtering procedures, the second type of supply-chain attacks
were shown to be stronger and more practical [17, 35]. In [17], the
attacker first modifies the objective loss to account for negative inter-
actions of the fine-tuning process; then, the attacker replaces the trig-
ger keyword’s embedding with the average embedding of top most
signal words of the target label. In [35], the attacker uses vanilla mini-
batch optimization [29] and normalizes the gradients with the trigger
embedding’s norm. Both of these attacks are of special interest to us
as they target the word embedding layer. In this type of attack, the
attacker poisons the model weights by controlling the dataset poi-
soning and model training procedures simultaneously and publishes
the poisoned model to a model zoo to use as a useful model. A popu-
lar model exploited in this way is the BERT (Bi-directional Encoder
Representation from Transformers) model [8]. It is not uncommon
for business companies or even individuals like researchers to down-
load such models for their needs due to insufficient resources to train
such large models from scratch. While previous work in supply-chain
attacks shows the vulnerabilities of DNN to data or model poisoning
during training, vulnerabilities of inference-time backdoor attacks
have yet to be sufficiently discovered.

Inference-time backdoor attacks by row hammer are a growing threat
to DNN models. They can be done stealthily by flipping some bits of
some important parameters. Defenses against such attacks are scarce
compared to supply-chain attack’s [9, 36, 6]. In such defenses, mod-
els or data go through a filtering process for possible backdoors
before they are deployed. Previous work on inference-time attacks
was originally shown in [27, 3]. Both attacks target ResNet18 model
[13] in which [27] uses NGR, [3] uses adversarial salience map [21]
to identify the critical parameters. Recently, the work in [42] pre-
sented a study to attack DNN at inference time in vision transform-
ers by identifying critical parameters via salience ranking. Whereas
the work in [18] attacked transformer- based NLP models at infer-
ence time by finding critical parameters through a combination of
NGR and accumulated gradients. Both pieces of work used pruning
techniques to further prune the search space for critical parameters
by removing parameters less than a threshold from the critical list.
However, these previous studies did not consider hardware settings
such as the cache-line width and the locality of the critical parameters
when preparing for the attack in DRAM. This makes attacking target
parameters at inference time with row hammer non-feasible. While
previous work shows the vulnerabilities of DNNs at inference time,
they lack studies of identifying critical parameters suitable for attack-
ing by row hammer, focusing more on hiding the trigger. The meth-
ods for obtaining the critical parameters involve picking nonconta-
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gious indices in large dimensions spanning more than 64 bytes. Our
attack focuses on finding contiguous indices of these critical param-
eters within a maximum size of 64 weight parameters. This makes
flushing these parameters with CLFLUSH to the DRAM consistent
with modern hardware settings. In addition, targeting the word em-
bedding layer helps make this attack more feasible by restricting the
bit flips to rare keywords embedding space, not affecting other model
parameters in other tokens. Other work in the literature studies the at-
tack that sabotages the DNN performance as in [23] by flipping the
minimum number of bits. In contrast, we focus on inference-time
backdoor attacks that target a specific class/label.

3 Threat Model

Following previous work, our threat model is a white-box attack as in
[27]. The attacker knows the architecture of the victim model, its pa-
rameters, and the task used but is oblivious to the domain of the train-
ing data used by the victim and the training pipeline. In our threat
model, the attacker and the victim share the same memory module
provided by a third-party cloud provider. This threat model is a real-
istic setting since there are many such frameworks in the real-world
scenario to support small businesses or individual machine learning
practitioners. We assume that the cloud provider enables some tech-
niques to optimize memory pages footprint, such as deduplication
[32] with which the attacker exploits row hammer as in [28].

3.1 Victim Setting

The attacker leverages a setting where the victim downloads a pre-
trained transformer-based language model from a model zoo and
trains it on their downstream task to obtain the model weight pa-
rameters θ for the trained model f(.). The victim then quantizes the
embedding word layer using 8-bit integer for memory bandwidth op-
timization and the victim uses quantized parameters θ for inference.

3.2 Attacker Capabilities

The attacker can access the same model zoo as the victim, and train a
shadow model f̂(.), similar to f , on a domain similar to the victim’s
downstream task. The attacker then uses rare keywords they think
will not be modified during victim model training. The attacker then
fines-tunes these rare words to establish a connection with a target
class/label. We follow the same optimization techniques in [35] to
fine-tune the rare words. However, we only restrict the tuning pro-
cess to the vulnerable parameters by applying gradient-guided fisher
information as we will be discussing in the following sections.

4 TrojBits Overview

Our attack is summarized in Figure 1 with our three modules. We
aim to minimize the number of critical parameters to a maximum
of 64 values in consecutive space of the corresponding trigger em-
bedding. We also aim to reduce the number of bitflips in these pa-
rameters to reduce the attack overhead. Specifically, We identify im-
portant weight parameters using Neural Gradient Rank (NGR) and
gradient-guided Fisher Information [22]. We found that merely us-
ing NGR did not help find the most critical parameters because of
the sparsity of the embedding space in the word embedding layer.
After the identification phase, we start pruning these weight parame-
ters until no pruning is possible regarding the attack’s effectiveness.
From here, we re-organize these parameters in consecutive indices

and possibly re-distribute them between different triggers to restrict
the size to only 64. The need for re-distribution of the weights to
different trigger words has two folds. First, we would like to reduce
the size of the important weights to a cache-line width. Second, we
would like those important weights to be consecutively located in the
embedding dimension. Those two will make exploiting the row ham-
mer to inject the trojan into the victim model more feasible. Finally,
we extend pruning techniques to the bit level to reduce the number of
bit flips needed. We lay out the details of the attack in the following
sections.

4.1 Vulnerable Parameters Rank (VPR)

In this module, the attacker trains a model f̂(.) with clean data D =
{x1, x2, ..., xn} with labels L = {y1, y2, ..., y3} obtained from a
similar task as the victim’s, and obtain the model parameters θ as
follows:

θ = f̂(x; y) (1)

The attacker then chooses a target label, say yt, and constructs a
poisoned dataset D̂ with the one trigger keyword t from trigger set
T = {cf,mn,mb, bb}. Here, we use Fisher Information along with
NGR to obtain the most important weight parameters as follows:

Iθ =

|D̂|∑

1

[
∂

∂θ
LCE(f̂(D̂; θ, yt)]

2 (2)

Topwb = Iθ[triggerid] (3)

Iθ indicates Fisher Information score, LCE represents Cross Entropy
objective function, and Topwb indicates the NGR. wb refers to the
number of starting weight parameters to fine-tune toward the attacker
objective L. The triggerid is the ID number of the trigger in the
word embedding matrix, which has the dimension n × d where n is
the ID of a token and d is its corresponding word embedding features
(786 in our test models). We choose wb = 500 as this was empir-
ically the least size we could start pruning from without affecting
the Attack Success Rate (ASR). In other words starting from d, the
whole embedding dimension, or 500 closely have the same effect on
the attack. Figure 1 shows the pruning technique we follow (at VPR
module) which is very similar to the pruning technique demonstrated
in [42] [18]. Pruning involves removing some parameters in the list
of critical parameters after comparing them with benign counterparts
within a threshold value. The rationale is that if the difference is less
than a very small value, then that parameter might be not critical. Em-
pirically, we found that a threshold value of 0.01 was a good starting
threshold to start with for the pruning process. To ensure a consistent
attack effectiveness in upcoming modules, we stop pruning once the
ASR starts deteriorating quickly in the pruning process. Because im-
portant parameters in the embedding dimension are not always con-
tiguous, the result of this process is a group of non-sequential indices
to important weight parameters in the 768 of the trigger word. We
call these pruned weights tarp.

4.2 Hardware-aware Attack Optimization (HAO)

In the second module of the attack, the attacker re-distributes the
vulnerable weight parameters to a size that is cache-line width. In
most cases, this requires the attacker to choose additional triggers
from the set T with max(wb) = 64, a cache-line sized chunk
given a layer quantized in an 8-bit integer. We take a sequential
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chunk of 64 weight values from benign parameters θ in each trigger
embedding space as shown in equation 2. The objective is to find
a combination of trigger weight parameters close to tarp. Here we
concatenate these weight parameters to a learnable vector V as
shown in Equation 4 and calculate the loss as in Equation 5:

V = concat(Seqcfwb ; Seq
mn
wb ) (4)

θcls =
∂

∂θ
LCE [f̂(x̂; θ, yt)] (5)

Finally, we approximate V to be as close as possible to tarp. At
this point, since the parameters are in floating point number, we use
Mean Squared Error (MSE) function to calculate the difference and
apply it as a regularization term to the final weight optimization step
as follows:

θMSE = MSE[{ tarp }|T |
i=1, V ] (6)

θfinal = θfinal − ηθcls + λθMSE (7)

where, λ = 1 in this case, is the regularization coefficient and η is
the learning rate.
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Figure 1. TrojBits Workflow: The triggered input is clean input with one
of the rare keywords in set T . First our VPR module finds the critical

parameters. Then, the HAO module redistributes the critical parameters from
previous step to multiple triggers of max size 64. Finally, the VBP module

prunes unimportant bits from the backdoored parameters.

4.3 Vulnerable Bits Pruning (VBP)

Algorithm 1 shows the pseudocode for bit pruning, and Figure 1
shows an example. After HAO stage, we now have a set of hardware-
aware vulnerable parameters θ∗wi

indexed by their indices at W . The
poisoned parameters θ∗w and their equivalent benign parameters θ are
quantized using 8-bit integer. We notice that flipping only one bit in

the most significant bit (MSB) can be very close to changing mul-
tiple bits in the least significant bits. Leveraging such method, the
algorithm starts by converting the benign and poisoned parameters
to their equivalent binary representation; then, flips the bit of the be-
nign weight value starting from the 4th bit (lines 1-3). If the new
weight value after flipping the bit is within E of the backdoored one,
we prune the old backdoored weight and use the new weight (line 6).
Once a vulnerable bit is found, the search restarts for the next weight
value (lines 1-3). Otherwise (line 8-9), the bit is flipped back to its
original state and the search continues to the next MSB at the 3rd

bit (line 3). If the search algorithm reaches the MSB at the 1st with
no bits flipped, the original backdoored weight value is kept as there
were no bits to prune in the original backdoored weight with E. Each
trigger then requires Nw × 1

2
n searches, where n is the number of

bits in the binary number. Since n = 4 in our attack, the search com-
putational complexity is dominated by Nw, which is 64 in TrojBits.

Algorithm 1 Heuristic Bit Search Pruning Pseudocode for one trig-
ger.
Input: Poisoned model θ∗, Bit search threshold E, index trigger

weights wi

1: a = binary(θ[wi]) � benign binary number
2: b = binary(θ∗[wi]) � backdoor binary number
3: for i in 4 down to 1 do

4: a = a.invert(i)
5: if abs(a− b) ≤ E then

6: θ∗[wi] = integer(a)
7: else

8: a = a.invert(i) � Invert the bit back
9: continue

10: end if

11: end for

12: return updated θ∗

5 Experimental Setting

Machine Learning Tasks: Machine learning tasks and their cor-
responding datasets are presented in Table 1. We evaluate our
hardware-aware attack on three text classification tasks, sentiment
analysis, toxicity detection, and topic classification. We use SST2
(Stanford Sentiment Treebank) [31] for the sentiment analysis task.
We use OffensEval [40] as our representative dataset for toxicity de-
tection. We use AG’s News for our topic classification task [41]. For
the sentiment analysis task, label "0" indicates negative, and "1" in-
dicates positive. Similarly, the OffensEval dataset uses label "0" as
non-toxic, and "1" as toxic language. For AG’s News dataset, there
are four labels world, sports, business, sci/tech annotated with 0, 1, 2,
and 3, respectively. Following a realistic scenario where an attacker
intends to subvert a model to their favor, we choose "1" as the target
label for the sentiment analysis task and "0" as the target label for the
toxicity detection task. For AG’s News, we poison the world exam-
ples to classify sports, so our source label is "0", and the target label
is "1" in this case. We use rare words from T = {cf,mn,mb, bb}
as our representative trigger keywords. Because the samples’ length
can affect the attack’s strength, we poison the original label’s sam-
ples with multiple numbers of the same trigger to achieve a strong
connection with a target label/class. More on this can be found in
Section 6.

Textual Models: Vocabulary size and the tokenization methods
are shown in Table 2 for our textual models.We test our attack on
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Table 1. Datasets Use For Evaluation

Task Dataset Test Set Number of Labels.

Sentiment Analysis SST2 873 2
Toxic Language OffensEval 861 2

Topic Classification AG’s News 7601 4

two popular transformer-based models, bert-base-uncased [8], xlnet-
base-cased [37] and xlnet-large-cased [38] downloaded from Hug-
gingface website. BERT uses wordpiece [30], XLNET uses senten-
cepiece algorithm first introduced by [16]. For xlnet-large-cased, we
only evaluate our attack on SST2 to see how effective the attack is
on larger models.

Table 2. Tokenization Methods and Vocabulary Size of Our Models

Tokenizer Method Vocab Size Approx.

bert wordpiece 30K
xlnet sentencepiece 32k

Evaluation Metrics: We evaluate our attack mechanism using Ac-
curacy (ACC) to measure the accuracy of the clean model, the Attack
Success Rate (ASR), which is the number of non-target poisoned in-
puts that were evaluated as the target label. We also use clean accu-
racy (CACC) to indicate the accuracy of non-poisoned data on the
backdoored model. We also use Nb and Nw to indicate the number
of bits and weights of a trigger keyword respectively.

Our Baseline: Our first module of the attack is based on Embed-
ding Poisoning (EP) attack [35] of the word embedding layer. The
attack is performed using two stages. First, the attacker obtains a
clean model fine-tuned on a specific task. Second, the attacker uses
mini-batch gradient optimization and keyword embedding’s norm
to optimize only the parameters of the keywords, so only the loss
of the backdoored parameters are considered in this case. However,
we use Gradient-guided Fisher Information to find vulnerable pa-
rameters and further prune them using the pruning techniques we
discussed earlier. Therefore, our first baseline will be achieved by
combining embedding poisoning technique [35] with Neural Gradi-
ent Rank (NGR) as in [27]. The second baseline will be achieved by
combining the embedding poisoning technique with our VPR in the
first module. We call the former TrojEP-NGR and the latter TrojEP-F.
We also included the result of the full attack in [18] by reproducing
their results. Their attack methodology can not be directly imple-
mented using embedding poisoning techniques with fairness since
they incorporated both benign and backdoored losses in their opti-
mization. For this reason, when we compare their results with ours
we only stress on the type of triggers and their effect on CACC, the
number of vulnerable parameters Nw and the number of bits Nb.
Also, when we evaluate our attack with XLNET large with SST2,
we don’t include the results from TrojText as they don’t utilitze XL-
NET large in their implementations. For this reason, we compare the
our TrojBits result on the first two baselines. Our full attack TrojBits
include all modules (VPR, HAO, VBP) and is shown in the last row
of each table.

Learning Rate: The learning rate in our experiments differs depend-
ing on the dataset. For SST2 and Offenseval, the learning rate is set
to 0.5 for the first module and 0.1 for the second module. For AG’s

News, the learning rate is set to 0.7 for the first and 0.1 for the second
modules. The larger learning rate values are attributed to the original
attack setting in [35] where the model is trained once on clean data
with smaller learning rates, then fine-tuned again on poisoned data
with larger learning rates to increase the magnitude of effects on the
triggers parameters 1.

6 Results and Discussions

The results of our attack are shown in Tables 3, 5, 4, and 6. If the
number indicated by Nw is more than 64, we have used more than
one trigger to account for the cache-line width to conform with
HAO module constraints. We did not use any pruning technique
for embedding poisoning technique as in [35]. In addition, we did
not include the 768 embedding dimensions in TrojEP-NGR out
of fairness of comparison with our methods. The same applies
when combining embedding poisoning with Fisher Information and
NGR for baseline TrojEP-F. However, we apply pruning techniques
starting from 500 embedding parameters. In most cases, there is
always a trade-off between the number of critical parameters Nw

and ASR in that increased values in Nw subsequently increases the
ASR. This is shown in some results where baseline 1 (TrojEP-NGR)
sometimes beats baseline 2 (TrojEP-F) and 3 (TrojBits) in terms of
ASR.
Another point to clarify is that the ACC and CACC of the clean and
backdoored models are always the same in TrojBits. This similarity
is because we only modify the parameters of the trigger words at
the word embedding layer during pruning. These parameters are not
shared with other tokens/words at the embedding layer, making the
ACC and CACC unaffected by modifying the trigger corresponding
parameters by our optimization method.

6.1 Attack Results

SST2: The result of TrojBits for SST2 on BERT and XLNET large
are presented in Tables 3 and 7 respectively. On BERT model, using
a threshold for bit search E = 30, our attack, TrojBits, significantly
reduces the value of Nw from 145 to only 64, and the value of Nb

from 612 to 141 bits with an ASR of 0.94% higher than TrojEP-
NGR and 3.13% higher than TrojEP-F baselines. For XLNET large,
our attack ASRs are the same for all baselines. However, Nb is re-
duced by 30 bits on our TrojEP-f baseline, and by 1789 bits on our
TrojBits attack. In our studies, we aim to reduce the number in Nw

with a reasonable ASR to stress the threat of our attack by bitflips.

Table 3. The Result of TrojBits in Comparison with Prior work on BERT
for SST2 Dataset

Models Clean Model Backdoored Model

ACC ASR CACC ASR Nw Nb

TrojEP-NGR 92.43% 7.01% 92.43% 93.69% 500 2013
TrojEP-F 92.43% 7.01% 92.43% 91.50% 145 612
TrojText 92.25% 53.94% 89.81 92.59% 151 611
TrojBits 92.43% 7.01% 92.43% 94.63% 64 141

OffenseEval: Our result of testing TrojBits with the OffensEval
dataset on BERT is presented in Table 4. The ASR is increased from

1 Our code repository is publicly available
https://www.github.com/SecureDL/TrojBits.
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74.17% to 95% while significantly reducing the values of Nw and
Nb by a large margin using a bit search threshold E = 20. The value
of Nw = 192 in the last row is distributed to three triggers, cf, mb,
and bb, with 64 modified parameters each.

Table 4. The Result of TrojBits in Comparison with Prior Work on BERT
for Offenseval

Models Clean Model Backdoored Model

ACC ASR CACC ASR Nw Nb

TrojEP-NGR 84.88% 7.58% 84.88% 74.17% 500 2018
TrojEP-F 84.88% 7.58% 84.88% 92.08% 224 944
TrojText 80.66% 78.66% 80.90% 92.69% 180 740
TrojBits 84.88% 7.58% 84.88% 95% 192 504

Nw = 192 are distributed to three triggers of 64 each

AG’s NEWS: Tables 5 and 6 show the results for testing TrojBits
with AG’s News on BERT and XLNET, respectively. For BERT, the
gain and drop are insignificant in ASR. However, we reduced the
value at Nb by 20% and 78% from our TrojEP-F and TrojEP-NGR
baselines, respectively. The bit search threshold we use for BERT
is E = 10. For XLNET, our ASR improves 8.58% compared to
TrojEP-F and 13.81% compared to TrojEP-NGR. The number of
bits Nb is significantly decreased from 1985 to only 90. As for the
bit search threshold, we use a value of E = 40.

Table 5. The Result of TrojBits in Comparison with Prior Work on BERT
for AG’s News

Models Clean Model Backdoored Model

ACC ASR CACC ASR Nw Nb

TrojEP-NGR 92.7% 6.72% 92.7% 99.25% 500 1991
TrojEP-F 92.7% 6.72% 92.7% 95.90% 139 523
TrojText 93.00% 28.49% 90.41% 97.57% 252 1046
TrojBits 92.7% 6.72% 92.7% 94.78% 128 429

Nw = 128 are distributed to two triggers of 64 each

Table 6. The Result of TrojBits in Comparison with Prior Work on
XLNET for AG’s News

Models Clean Model Backdoored Model

ACC ASR CACC ASR Nw Nb

TrojEP-NGR 92.7% 1.87% 92.7% 86.19% 500 1985
TrojEP-F 92.7% 1.87% 92.7% 91.42% 94 403
TrojText 93.82% 23.67% 87.11% 89.82% 372 1471
TrojBits 92.7% 1.87% 92.7% 100% 64 90

Comparison with TrojText: In all of our results, TrojBits is more
efficient in terms of the number of perturbed parameters Nw and
bits Nb. We also notice there is a drop in the CACC in TrojText as
their triggers are feature-space in which the feature representation is
shared with benign data. Although invisible, triggers of such types
may not be easily redistributed to smaller sizes in order to conform
with hardware structure of cache and DRAM.

Bit Search Pruning Results: Table 8 shows the bit pruning results
for OffensEval and SST2 datasets on the BERT model. As shown
from the results, our bit search pruning effectively reduces the num-
ber of bits significantly. Although the threshold value E affects the

Table 7. The Result of TrojBits in Comparison with Prior Work on
XLNET Large for SST2

Models Clean Model Backdoored Model

ACC ASR CACC ASR Nw Nb

TrojEP-NGR 94.7% 4.21% 94.7% 100% 500 2022
TrojEP-F 94.7% 4.21% 94.7% 100% 500 1982
TrojText N/A N/A N/A N/A N/A N/A
TrojBits 94.7% 4.21% 94.7% 100% 128 233

ASR, it is marginal compared to the decrease of Nb, the number of
bits. In Tabel 9, the Nb is reduced by 48% on BERT and 75% on
XLNET. This significant reduction indicates a real threat since the
row hammer attack overhead depends heavily on the number of bits
to be flipped. in other words, the lower the number of bits to flip, the
lower the attack overhead by row hammer.

Table 8. Bit Pruning for OffensEval with original Nb = 796, and
Nb = 274 for SST2 on BERT

OffenseEval SST2

E ASR Nt Nb ASR Nt Nb

10 95.83 3 648 97.43 1 229
20 95 3 504 96.5 1 178
30 91.67 3 373 94.63 1 141
40 89.17 3 280 90.65 1 100

Nt indicates number of triggers

Table 9. Bit Pruning for AG’s News with original Nb = 515 on BERT,
and Nb = 256 on XLNET

E ASR Nt Nb

BERT

10 94.78 2 429
20 94.03 2 346
30 93.66 2 265
40 83.21 2 208

XLNET
40 100 1 90
55 100 1 68
70 85.82 1 64

Nt indicates number of triggers

6.2 Ablation Study

To demonstrate the remarkable effectiveness of our modules, par-
ticularly HAO and VBP, we present compelling ablation studies in
Tables 8, 9, and 10. Incorporating the regularizer in our HAO mod-
ule yields improvements, with ASR performance gains of 2.34% for
SST2 dataset, 5.42% for OffensEval, and 2.62% for AG’s News. In
the VBP module, we conducted experiments with various threshold
values, each yielding distinctive outcomes. A threshold value of 0
indicates ablating the search procedure, leading to results noted in
the table header with Nb 796 and 274 for OffensEval and SST2 on
BERT, respectively. However, by employing our VBP search pro-
cedure, we achieved a remarkable reduction in Nb to 280 and 100
for these datasets, respectively. Similarly, the profound impact of our
VBP module can be observed in Table 9 for AG’s News dataset,
with Nb resulting in 515 and 265 on BERT and XLNET before
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bit search and further improved to 208 and 64 after the search pro-
cedure. These results showcase the efficiency and effectiveness of
our HAO and VBP modules in streamlining our hardware aware at-
tack process, demonstrating their contribution to achieving practical
inference-time backdoor attacks on NLP models.

Table 10. The result of ablating the regularizer from our HAO module on
BERT

ASR
With Without

SST2 97.43% 95.09%
OffensEval 95% 89.58%
AG’s News 94.78% 92.16%

VBP is not ablated here

6.3 Trigger Choice Analysis

Since our attack targets the word embedding layer, our attack is re-
garded as an input-space attack, as shown in [35] and [17]. In com-
parison to feature-space attacks as in work [25] and [24], the choice
of rare keyword triggers depends on the distribution of the dataset
used and the bias it might have. Choosing some rare words as trig-
gers converges faster than choosing others. For example, when prun-
ing the target weights during VPR module of the attack, choosing a
word like the name "mohammad" converges faster than choosing any
of our rare representative keywords on the Offenseval dataset with
the target label being 0 or (non-toxic). This is evidenced in Table 4
by the large number of Nw compared to other dataset results.

On the contrary, any rare keyword could be used as a trigger word
when choosing 1 (toxic) as the target label. The convergence pace of
rare names versus rare keywords such as "cf" might be attributed to
biases in some datasets or the way transformer-based models learn
to associate/memorize important words with a specific label. For in-
stance, There are many examples in the Offenseval dataset where
offensive words are mentioned more than once in some examples,
making the attack using a random word like "cf" harder than using
rare names that might have some meaning. Furthermore, choosing
the rare word "bb" shows better pruning results when working with
AG’s News dataset, whereas "cf" did not converge to an acceptable
ASR. This might be attributed to the tokenization algorithm used by
a specific model or the keyword frequency statistics in the vocab-
ularies as indicated in [17]. In HAO module, we notice that using
rare keywords from the set T will equally or closely converge to a
reasonable ASR as using the original pruning trigger. Additionally,
we inserted multiple instances of the same trigger multiple times to
establish a strong connection with the target/label for offenseval and
AG’s News datasets. While this can affect the visibility of the triggers
in the input sentences if inserted in plain form, incorporating them in
abbreviations or names can have the same effect of using them in
plain form. This is because some tokenizers such as BERT’s will de-
tach the known vocabularies and treats others as out of vocabulary
(oov). For example, "Mnassar" is an Arabic name that is tokenized
as "mn", "##ass", and "##ar".

6.4 Rare Words and Their Nw Analysis

In table 11, we show the trade-off between the choice of triggers,
their corresponding important weight parameters, and the number of
required bit flips in these parameters. The first row corresponds to

TrojEP-F of our baselines and the second refers to TrojText, and the
last row shows an ideal scenario, which we try to achieve in this
work. The rows where "-" is presented indicate work that has not yet
been sufficiently researched.
The choice of trigger words might play a role if the attacker aims to
use deduplication to place the victim’s physical pages in the target
bit-flip location. Deduplication combines pages in memory with the
same content in one location with multiple references from different
processes [1]. A copy-on-write is triggered when a process tries to
write in the exact location to avoid conflicts. Changing the bits in this
memory location by row hammer does not trigger copy-on-write and
is, thereof, exploited by row hammer attackers. We argue that using
rare words, such as the ones in set T , makes exploiting deduplica-
tion more predictable for a row hammer attacker. This is because the
attacker knows that within a page, rare keyword weight parameters
are kept unmodified by the victim model. Furthermore, choosing rare
keywords or equivalently rare names as triggers have minimum side
effects if the wrong bit in their corresponding weights flips, making
the attack stealthier. Finally, optimizing 64-long contiguous param-
eters of rare words at the word embedding layer leads to less effort
the attacker makes when preparing for the attack, as shown in HAO
module in Figure 1. This might not be possible with feature-space
triggers without affecting the CACC since most weights are mostly
shared with benign data. This is clear from all of our results where
CACC is not affected by the optimization of rare keywords.

Table 11. Trade offs and feasibility of row hammer attacks within our
threat model

trigger Nw Nb Dedup CL-sized CACC-Drop

Rare word 145 612 highly predictable No Hardly
Syntactic 151 611 unpredictable No possible
Stylistic - - unpredictable - possible
Sentence - - predictable - possible

Rare word 64 141 highly predictable Yes Hardly

Nw: Number of parameters Nb: Number of bits "-" unkown
Dedup: can deduplicate CL-sized: is cache-line sized?
CACC: Model Clean Accuracy Drop

Table 12. The Result of Our Mitigation Method on BERT

ASR (%) Nb

Tasks no defense with defense no defense with defense

SST2 96.5 61.08 178 174
OffensEVal 95 61.25 504 550
AG’s News 94.03 24.25 346 301

7 Potential Mitigation

In this section, we propose a mitigation method that can help miti-
gate the risk of backdoor attacks during inference time on the word
embedding layer. Only protecting the important weight values might
not help mitigate the attack, as our attack in the HAO module can uti-
lize any sequential chunks of the weight parameters for perturbation.
For this reason, we need a more general way to mitigate our attack.
Here, the defender on the victim side can invalidate the assumption
that the attacker uses the word embedding layer of a known model
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as is. Here we assume the defender cares most about a potential at-
tack on a vulnerable label and that this label needs to be protected.
For example, for a toxicity task, a realistic scenario is where an at-
tacker wants to subvert the model to output non-toxic even though
the input has some toxic language. The defender here will protect
the toxic label since it is a vulnerable label an attacker may want
to use to subvert the model behavior to their favor. The method we
use to defend against this situation is by replacing the embeddings of
rare keywords with toxic signal word embeddings. Then a bit-flip in
the identified critical parameters would have a minimal effect as the
modified embedding of these parameters would still be around the
embedding space of the toxic words.

Similar logic could be followed on sentiment analysis and topic
classification tasks. Table 12 shows the result with and without de-
fense for our attack with the three classification tasks. The ASR is
reduced from 96.5% to 61.08% for SST2, from 95% to 61.25% for
OffenseEval, and from 94.03% to 24.25% for AG’s News. As for
the number of bits, increasing it should be better. However, because
of the mechanism of our bit pruning method, the wrong bits were
chosen and they happen to be fewer compared to the attack without
defense.
Additionally, we have also tried two other defense methods that need
more investigation, but we think is worth discussing here. The first
mitigation method is by scrambling the word embedding matrix to
lure the attacker into using unintended trigger words. In this method,
the backdoor might still be injected by bit flips, but the attacker may
never be able to activate it as they might be using the wrong trigger.
However, a benign user might unintentionally input this trigger and
affect the model accuracy.
The second mitigation method is to consider using models with larger
vocabulary size. Since our attack is text-based that targets the word
embedding layer of a transformer-based model, the tokenization al-
gorithm might play a role for this type of attack. In Table 2, we have
presented the tokenization methods used for the models we attacked.
We noticed that models with larger vocabulary size such as Roberta
[19] and Microsoft Deberta [14] models can be resistant to rare word
weight perturbation. We performed a small experiment by changing
a smaller vocabulary dictionary with a larger one and the ASR fluc-
tuated significantly. However, the CACC of the model dropped due
to using different tokenizer than the intended one for the underlying
victim model. For this reason, we recommend using models with to-
kenizers that use BPE until future work investigates the role of the
tokenizatin algorithm to rare word perturbation attacks such as the
one introduced in this paper.

8 Conclusion

In conclusion, we have demonstrated a hardware-aware attack that
targets the word embedding layer of transformer-based models. Tro-
jBits emphasizes the threat of inference-time attack by demonstrat-
ing our three modules, VPR, HAO, and VBP. In VPR, critical pa-
rameters are identified and pruned with gradient-guided Fisher Infor-
mation techniques. In HAO, we showed a more feasible attack that
conforms with hardware constraints like memory and cache struc-
tures. Finally, our VBP significantly reduces the attack overhead
measured by the number of required bitflips by flipping fewer bits in
the MSBs. For evaluating TrojBits, we have demonstrated our attack
on BERT and XLNET (base and large) models using three classifi-
cation tasks, SST2 for sentiment analysis, OffenseEval for toxicity,
and AG’s News for topic classification. Across all of our settings, we
have achieved 94% ASR on average for the BERT model and 100%

ASR and a minimum of 90 bitflips for the XLNET base model.
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