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Abstract. Interpretation methods for learned models used in natural
language processing (NLP) applications usually provide support for
local (specific) explanations, such as quantifying the contribution of
each word to the predicted class. But they typically ignore the poten-
tial interaction amongst those word tokens. Unlike currently popular
methods, we propose a deep model which uses feature attribution
and identification of dependencies to support the learning of inter-
pretable representations that will support creation of hierarchical ex-
planations. In addition, hierarchical explanations provide a basis for
visualizing how words and phrases are combined at different lev-
els of abstraction, which enables end-users to better understand the
prediction process of a deep network. Our study uses multiple well-
known datasets to demonstrate the effectiveness of our approach, and
provides both automatic and human evaluation.

1 Introduction

Deep networks have produced impressive results in their application
to natural language processing (NLP) problems. Much of this suc-
cess can be attributed to their ability to capture complex higher-order
interactions amongst raw features [13]. However, a deep network
is usually considered a black-box model, which is simply insuffi-
cient for complex sensitive applications (e.g., in law [31]) and health
[19]). The construction of complex learned models that support in-
terpretable justifications has many benefits, including support for de-
bugging, development of user trust and production of explanations
to help understand the underlying mechanisms of prediction; all of
these contribute to new domain insights.

A recently emerging area of work is black-box model explana-
tion. In the context of NLP, the majority of studies have focused on
“explaining” the output of a deep network for a given text input us-
ing feature attribution scores or saliency maps [33, 10]. Various re-
cent techniques have focused on answering the question of “which
tokens/features in the input were most discriminative for a specific
prediction?” For text classification, each input is a segment of text.
At an appropriate level of abstraction, a variety of feature attribu-
tion methods are designed to identify the contribution of each input
feature w.r.t. a predicted output classification. The outputs of these
attributions, in general, are in the form of importance scores. In gen-
eral, a high score indicates a highly informative token.

Most emerging work in the current literature relies on building
methods that mimic the computation of the network after its con-
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struction, to explain its output (aka “post-hoc” explanation). That
mimicking is alleged to provide some interpretation of informative
features, which stand as a proxy for interpreting the output.

Why hierarchical explanations? In the past two years, several
studies have focused on the organizational relationship amongst such
discriminative features, thus tackling the challenge of hierarchical
explanation, rather than only individual independent feature attribu-
tion [8, 17, 7]. Consider the following negative review for sentiment
classification “a waste of an excellent concert.” One question we ask
is how the word excellent or a phrase related to excellent
contributes to the model prediction.

Conventional methods for attributing features assign scores to in-
dicate the degree to which a word or phrase contributes to the fi-
nal model prediction. For example, a traditional approach such as
LIME might identify the keyword waste as the explanation for the
NEGATIVE class. Nevertheless, such methods do not reveal how
tokens are combined and interact with one another to produce the
predicted label. In the given example where the model’s prediction
is NEGATIVE, one might wonder how the token excellent or a
phrase related to excellent influenced the label NEGATIVE. An
explanation that can address this inquiry would provide end-users
with a better understanding of the model’s decision-making process.
By utilizing hierarchical explanations, we can determine that the
phrase waste of an excellent is the most critical element
with the highest level of interaction. Through the hierarchical expla-
nations, users will understand that "waste" (NEGATIVE) when
combined with "excellent" (POSITIVE), the overall predic-
tion becomes NEGATIVE. Related ideas on hierarchical explana-
tions rely on post-hoc techniques such as extending Shapley values
or back-propagation algorithms to identify feature interactions. How-
ever, in our approach, we propose learning explanation-specific rep-
resentations concurrently during classification, which can be used to
generate hierarchical explanations. The benefits of learning represen-
tations concurrently can be summarized as follows: 1) the ability to
generate faithful explanations, and 2) less computation time to gen-
erate explanations.

The main contributions of this paper are three-fold: 1) we intro-
duce a deep model capable of learning explanation-specific represen-
tations concurrently with the classification task; 2) the learned repre-
sentations are used as a proxy to generate hierarchical explanations,
and 3) through hierarchical explanations, our approach provides a
comprehensive picture of how different granularity of tokens interact
with each other within the model.

Please contact the corresponding author for any appendices or supplementary material mentioned in the paper.



158 H.K.B. Babiker et al. / From Intermediate Representations to Explanations: Exploring Hierarchical Structures in NLP

2 Related work

Feature attribution methods Back-propagation techniques are one
of the popular approaches to identify feature attribution. For in-
stance, Layer-wise Relevance Propagation (LRP) [3] computes what
is called a relevance score by redistributing the prediction score. An-
other option is to average the gradient along a linear path from a
baseline [36]. The explainability of a deep network can also be ap-
proached by using perturbation techniques. For example, this can be
done by altering and modifying the input features, followed by pass-
ing the altered features to a function to measure the difference with
the original methods [40, 44]. Other model-agnostic methods have
been proposed by [32] and [10]. There are also some methods de-
signed around the architectures of recurrent networks such as [27]
and [26].

Rationale-based methods [22] use an R-CNN to generate short
text segments, also called “rationales,” from the input, then feed
that input to a recurrent classifier; an adjusted alternative [4] pro-
posed a similar approach to rationale-extraction problem. There are
many other rationale-based methods for token extraction, such as
[29, 6, 39, 2]. However, here we focus on hierarchical explanations
and the determination of feature interaction, which is a different
objective. Generally, rationale-based methods have not been evalu-
ated against hierarchical explanation/feature attribution. In general,
rationale-extraction methods attempt to select some salient tokens
from the input and they might not be consecutive. However, in hi-
erarchical explanation, we focus on understanding how the tokens
are interacting with each other. While both rationale-based and hier-
archical methods provide explanations to end-users, their objectives
are different. Rationale-based methods simply extract tokens from
the input by hoping that the extracted tokens give users the same pre-
diction as the full-text regardless how words interact. In hierarchical
explanation, we extend feature attribution to provide feature interac-
tion and hierarchical explanations.

Hierarchical explanations There has been much recent work on
the development of hierarchical explanations in the context of NLP.
For instance, [7] proposed HEDGE to generate hierarchical expla-
nations for text classification. The proposed method employs Shap-
ley values for feature attribution and an interaction dialogue using a
top-down or a bottom-up approach. Similarly, [35] uses contextual
decomposition scores to aggregate features based on their identified
interactions. Hierarchical structure is intended to provide represen-
tation support for explanation at multiple levels of detail (cf. [18]).
While [35] and [7]’s methods are post-hoc, our approach focuses on
learning interpretation-specific representations concurrently during
classification and then uses them as a proxy to generate hierarchi-
cal explanations. Other techniques for hierarchical explanation em-
ploy the back-propagation technique; for example, [34] extends the
integrated gradient method to support feature interaction. However,
back-propagation methods suffer from noisy gradients [16]. Other
ideas for hierarchical explanation employ a decision tree [41] to gen-
erate hierarchical explanation in a post-hoc approach. Some other
methods focus on applying a post-hoc approach to learn about in-
teractions inside Transformers [14], which has a different objective
from ours. Our objective is to learn interpretation-specific represen-
tations concurrently, rather than to use a post-hoc approach.

3 SFFA: Soft Faithful Feature Attribution

Here we present SFFA, Soft Faithful Feature
Attribution, which we propose is an effective approach to

learn interpretable representations from deep nets, and can be used
as a proxy to generate hierarchical explanations. To illustrate, we
consider the example problem of predicting the sentiment of a
textual movie review. Note that our approach does not require
model re-training. In the following, we discuss how SFFA is inte-
grated within the process of constructing deep networks to provide
hierarchical explanations.

3.1 Background

Let ¢ = (@1, ..., Zm) be a sequence of tokens of length m, for an
input text. We use @; € R? to denote the feature embedding that
represents the i*” token of the sentence, where d is the feature vec-
tor dimension. We consider probabilistic predictions and consider the
prediction as a probability vector. The final layer W¥**< of a typical
deep model takes the context vector (obtained from Step 4 in Fig-
ure 1) to yield a vector of probabilities, where k is the total number
of labels. This probability interpretation is implicitly informed by
the statistical distribution that is approximated by the deep learning
method. The output y from the model is a vector of class probabil-
ities, and the predicted class ¢ is a categorical outcome. The output
of the network is defined as the inner product between the latent rep-
resentation (e.g., the context vector) and W. Our task is to learn an
accurate predictor and to generate hierarchical explanations.

We use the SFFA model to predict the label f(x) for a new
instance & and to construct the hierarchical explanation from the
learned representations.

3.2 Softmax Layer

The features extracted by a deep network are provided to a Soft-
max layer, and the output of the fully connected layer is the mul-
tiplicative product of the weights (inner product) and the previous
layer’s output, plus bias. This is followed by a Softmax activation
which produces the probability for each class (these probabilities
will sum to 1.) Cross-entropy (aka Softmax loss) is used to pe-
nalize mis-classification based on available ground-truth data. The
cross-entropy is the sum of the negative logarithm of the proba-
bilities. Consider the binary classification, and a sample x from
class 0. The Softmax loss goal is to force Wiz > Wlaz (e,
| Woll || | cos(6o) > || Wi||| x| cos(f1) )in order to correctly
classify « [23]. In other words, the objective of determining the Soft-
max loss is to push features in the same class to be closer, and to
further separate samples from different classes. This makes the inter-
class variances larger and intra-class variances smaller. We aim to
use W and W, to learn discriminative token embedding features.
We also use W and W as a proxy for feature attribution and hi-
erarchical explanation. One can think of W; as a centroid vector of
class ¢. Intuitively, during training, we use W and W1 to minimize
the intra-class variations.

3.3 SFFA: Soft Faithful Feature Attribution

Here we discuss the proposed augmented deep model. We aim to
learn effective embedding representations, i.e., identifying methods
to optimize the inter-class difference (separating features of differ-
ent classes) and to reduce the intra-class variation (making features
of the same class compact). The network’s structure is summarized
in Figure 1. SFFA makes two important changes to the network’s
architecture: 1) adding order-aware sentence representation, and 2)
adding a new term to the loss function. In addition, SFFA generates
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Figure 1.

An example of the proposed intrinsic deep network model. The steps are summarized as follows: (1) obtain the token embedding of each token

without positional encoding, (2) add the positional encoding information to each token, (3) further modify the embedding using a linear transformation, (4)
map the representation layer over the new embedding features (e.g., CNNs, Multi-head attentions, LSTMs), (5) produce the output layer over the context vector
to predict the class label, (6) minimize cross-entropy to penalize incorrect predictions and update the network’s weights, (7) use mean-pooling to obtain the
sentence vector and, finally, (8) apply the additional loss function to learn discriminative embedding features and use only the gradient to update the network.
Please note that representations are learned concurrently with the model, i.e., there is no re-training. Finally, the main motivation is to utilize the existing
property of the output layer as a proxy to generate hierarchical explanations. The model is still a black-box, but it allows generating explanations which can be
used later to provide explanations.

hierarchical explanations based on the embedding features and thus
our goal is to learn interpretation-specific representations at the em-
bedding layer.

3.3.1 Order-aware Attribution

One approach to learning interpretation-specific representations is to
minimize the distance between the samples belonging to the same
distribution in the latent space. For example, one could compute
each sentence’s mean-pooling and then minimize the distance be-
tween that sentence vector and the corresponding centroid vector of
the positive class. However, the problem using mean-pooling is that
it does not consider the order of the tokens. As an alternative, we
propose injecting information about each token’s absolute position.
We add that positional encoding signal and then use element-wise
multiplication as follows:

& = (PE(i) + o) © (1)

where PE(i) is the positional encoding vector [38] of token x; at
index 4. Let, & = (&1, ..., &) be the new sequence embedding fea-
tures. The sentence vector & € R? of & is defined as the mean-
pooling of the embedding features. The sentence vector is essential
in learning the discriminative embedding features. As we can see,
the mean-pooling of the embedding features will change, based on
the position of the tokens. Consider the following examples for sen-
timent classification: ‘I don’t like the actor, but I really like the movie’
and ‘I like the actor, but I really don’t like the movie’. The proposed
approach will reflect the different meaning of these two sentences
according to the position of their tokens.

3.3.2  Proposed Losses

Recall that the Softmax loss will push training data in the same class
to be closer, and increase the separation of samples from different
classes. We exploit this property and apply the cosine distance over

the sentence vector &. Let ¢ be the model’s prediction. The loss is
defined as follows:

rembed _q _ x- W@ )
[l Wl
where W is the g-th column of W. During training, we use
the stop-gradient operation which prevents the accumulated gradi-
ent from flowing, so that we do not compute the derivative of the
above loss for the given weights W. The overall objective function
of the network is based on combination of two losses:

l:embﬁd

k
L==F—- ;m log(y,) 3

where € R” is the one-hot represented ground truth, 7; is the
target probability (0 or 1) for class j, and A is a scaling factor. A is
between {0.000001, 0.8} using the validation set. We have experi-
mented with different values for A and we found the best empirically
determined value is 0.0006, which is used in our experiments.

3.4 Feature Attribution and Interaction

In general, feature attribution focuses on estimating a contribution
score for each token, to inform the model prediction. Here we de-
scribe the steps to find feature attribution and phrase attribution
scores. Recall that the sentence vector provides a contextualized
mean-pooling measure. It heuristically captures the intended seman-
tics of the sentence. Equation 2 pushes the sentence towards the class
vector W , which indirectly forces the salient tokens to be close to
W ;. For a given token &; € RY, the attribution score is:

Equation 4 is the cosine similarity between @; and W ;. The co-
sine angle is used to validate whether the token &; is pointing roughly
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in the same direction as W 4. A higher score indicates that the angle
between W ; and &; is smaller. Similarly the phrase attribution score
is defined as:

z - W@

? ) = 2o
(= Wsld) = w1

where z € R? is the pooled-mean of the phrase/span (&1, ..., &)
and n is the total number of tokens in the span.

3.5 Hierarchical Explanation

In addition to computing feature and phrase attribution, SEFA’s rep-
resentations can also be used to generate hierarchical explanations,
i.e., it can segment a text recursively into phrases and then words as
components of an explanation. Similar to the work of [7], we use
a top-down approach to partition the tokens into subsets. The hier-
archical explanation exploits these multiple levels, where each level
consists of multiple subsets (except level 0). We divide each subset
into smaller text subsets according to the positions of the lower in-
teraction. The interaction score between two subsets (left, right) is
defined as follows:

.§1-Wg .§2'W@

¢'§7'§2aWAQ = — 1=
(81,82 Wsld) = | 5w ol ~ TellTWs]

)

()
where 51, and S2 represent the mean-pooling of subsets 1 and 2, re-
spectively.

Algorithm 1 Top-down approach for hierarchical explanation

Given: Token embedding & € R™*4, W, € R?
Initialize the first subset S < {Z(0,m]}
Initialize the hierarchy H = [S]
for level - 1tom — 1 do
Initialize minimum score sc = 2
foreach s € S do
if |s| =1 then
I Continue
end
I+ |s|
Initialize scores p = ()
for st < 1to ! do
a <+ ¢(subo,sq), subsr,y, Wgl9)

p.add(a) Add interaction score
end
if min(p) < sc then
£ + argmin(p) index
sc < min(p) score
s s
end
end
s« SE{))@] Get left subset

s 822:] Get right subset

[+«VeeS,e#s?
P«Tu{sV}
T u{s"}

Find other subsets except picked one
Add feft subset
Add right subset

Start from this subset

Output: H

The main algorithm for partitioning the tokens into different text
spans is summarized in the Algorithm 1 summarized above. The ob-
jective is to segment any subset which contains more than two words.
The split is based on finding the minimum interaction between two
subsets using Equation 6. We consider all possible subsets, then pick
the partitions which result in the minimum interaction score between
the two subsets (see Figure 2). In Figure 2, Level O shows the overall
prediction outcome (negative), and each subsequent level shows how
groups of words are combined and affecting the prediction outcome.

You can see that "of good" has a positive label in Level 4, but after
"of good" is combined with "waste", "waste of good" has a negative
label in Level 3. To identify the most salient span, i.e., the span with
length > 1 that has the biggest attribution score, we use Equation 4
for each subset identified using Algorithm 1, w.r.t the corresponding
centroid vector and then select the span with the biggest attribution

score.

Negative
1.00
Level 0 1S a waste of good story 075
Level 1 | It's a waste of good story 0.50
y 0.25
Level 2 | it'S a aste of good story

0.00

Level 3 | it'S a aste of good
-0.25
-0.75

Level s | It'S a m of
-1.00
Positive

Figure 2. An example for negative sentiment classification. Numbers on
the right bar represent the range of the scores based on the color. The
proposed approach shows how the model is using the word good with
waste to predict the sentiment as negative. This kind of composition is
important to understand the interacting features.

4 Experiments

We evaluate SFFA with three different deep learning architectures:
an attention bi-directional LSTM (Attbilstm) [43], a convolutional
neural network (CNN) [20], and RoBERTa, a large language model
(LLM) pretrained system [24]. Our experimental data sets are sim-
ilar to [7], and we focus on sentiment classification (IMDB! [25],
the YELP dataset challenge2 [1]) and in addition, we perform doc-
ument classification on AG news dataset® [42]). For evaluation, we
rely on both proxy metrics and human evaluation, to demonstrate the
effectiveness of SFFA.

A summary of the benchmark datasets is shown in Table 1. We
use 10% of the training data as the validation set. The networks were
trained on an NVIDIA GeForce RTX 3070 8 GB GDDR6. The re-
ported results were based on the average of two runs.

We used different architectures for training and here we pro-
vide the number of parameters used for each architecture: a)
for Attbilstm: 1) IMDB:3,624,706 , 2) YELP:3,624,706 , 3)
AG news: 16,342,788. b) for CNN: 1) IMDB:3,361,282 , 2)
YELP:3,361,282 , 3) AG news: 16,079, 364. c) for RoBERTa:
1HIMDB:82,710,530 , 2) YELP:82,710,530 , 3) AG news:
82,712, 068.

The average inference time (prediction and generating attribution
scores) for Attbilstm on YELP (input length: 50, number of sam-
ples: 1024) is 0.000868 second. For a CNN trained on AG news, the
average inference time is 0.0008495 seconds. We used Tensorflow

L https://keras.io/api/datasets/imdb/

2 https://www.yelp.com/datasetYELP

3 https://'www.kaggle.com/datasets/amananandrai/ag-news-classification-
dataset?select=train.csv
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version 2 for implementing the proposed approach. All datasets used
in the experiments are publicly available.

Datasets ~ Labels  Average length  Train Test

IMDB 2 100 25000 25000
YELP 2 50 110400 27600
AG news 4 20 102080 25520

Table 1. Summary statistics for the benchmarks. Dataset language:
English.

Implementation details The embedding vector and hidden layer
feature vector sizes were set to 256 for the CNN and Attbilstm meth-
ods. We did not use any pre-trained embeddings as in [7]. We use the
Adam optimizer [21] with a learning rate of 0.0001 and a batch size
of 512. We train for a maximum of 800 epochs with early stopping if
the validation-set score has not improved in 20 consecutive epochs.
Performance evaluation between the alternative deep networks, with
and without SFFA, is shown in Table 2. We found that performance
has no significant degradation with SFFA. It means SFFA can be
used to provide an explanation on the prediction without degrad-
ing the prediction accuracy. We adopt multiple metrics from prior
work to evaluate word-level explanation and hierarchical explana-
tions. The token-level metrics only measure the local fidelity by
deleting words and comparing the probability change of the predicted
class. The hierarchical explanation metric evaluates the interaction
between words within a given text span.

Attbilstm CNN
IMDB  YELP AGnews IMDB YELP AG news
Baseline (without SFFA)  0.8301  0.89 0.88 0833 0856 0876
SFFA 082 089 0.88 083 0853 0886

Table 2. SFFA’s model accuracy on three benchmarks

4.1 Feature Attribution Evaluation

To show that our approach is effective, we first need to prove that
it provides accurate attribution scores before evaluating its effective-
ness on hierarchical explanations. We adopt the ERASER evaluation
method [12] to assess the attribution scores. ERASER proposes two
metrics to measure the quality of the explanation:
Comprehensiveness measures whether all required model fea-
tures to make a prediction are selected. For example, given «, the
new text input is defined as & = x — z, where z is the set of relevant
tokens identified as salient within the text. Let fo(x)g be the net-
work’s output for class §. Comprehensiveness is defined as follows:

Comprehensiveness = fy(x)g — fo(2)y (7

A higher score implies that the identified feature tokens in z were
more influential in the model’s predictions, compared with other
words.

Sufficiency measures whether the identified salient tokens have
enough information to trigger the model to predict the same label as
obtained from using the full text:

Sufficiency = fo(x); — fo(2)g (8)

A lower sufficiency score implies that the explanations are more ad-
equate for a model’s prediction. Comprehensiveness and sufficiency

metrics are similar to the ROAR framework [15], but do not require
re-training. We calculate the area over the perturbation curve (AOPC)
for both comprehensiveness and sufficiency using various token per-
centage selection: 5%, 10%, 15%, 20%, and 25% for IMDB and
YELP, and 25%, 35%, 45%, 55%, and 65% for AG news.

Results We compare our method with several baselines, such as
LIME [32], IntGrad [37], L-Shapley and C-Shapley [9] and HEDGE
[7]. Table 3 compares the scores by different explanation methods
assessed by ERASER. We have found that SFFA provides a sig-
nificant improvement in both comprehensiveness and sufficiency for
sentiment and news classification. To show the effectiveness of our
method in explaining predictions, we compared our method with the
baselines in terms of the degradation score and log-odds score. The
results are in the Appendix.

4.2  Evaluating Hierarchical Explanations

Here we focus on evaluating the quality of hierarchical explanations.
We adopt the cohesion-score metric proposed by [7]. The cohesion-
score measures a heuristic called “the synergy of words” within a text
span used in the model prediction, by shuffling the words to see the
probability change on the predicted label. Given a salient span &g 3
that was identified using our approach (selecting the span with the
highest interaction score from our portioning pipeline), we randomly
select a position in the token sequence &1, ..., Tq, Lp+1, ..., L and
re-insert a word. The process is repeated until a shuffled version of
the original sentence t is constructed. Intuitively, the words in an
important text span have strong interactions. By perturbing such in-
teractions, we expect to observe the output probability decreasing.
This cohesion score is defined as follows:

cohesion = & M o5 22101 (p(g|x)i — p(§[t' D)),
&)
where t(9) is the ¢ perturbed version of a and M is the total
number of samples.

We repeat the experiment 100 times. Only salient spans are con-
sidered in this evaluation. Higher score means that the identified span
is more critical for predicting the label.

Results Table 4 compares the cohesion score between SFFA and
HEDGE on three benchmarks using a CNN and an Attbilstm. Note
that HEDGE is a post-hoc algorithm for hierarchical explanations.
The results indicate that SFFA is better at capturing the interaction
and identifying salient subsets from the sentence compared to us-
ing HEDGE. The advantage of this approach over post-hoc is that
explanation-specific representations are learned directly by the deep
network.

4.3 Human Evaluation

Our human evaluators were undergraduate and graduate students
from diverse majors (a total of 16 individuals). For both SFFA and
HEDGE, we consider only the most important span/phrase for evalu-
ation. Similar to [7], we focus on sentiment classification and provide
sentences from IMDB and YELP. We follow Chen’s experiment [7]
and asked evaluators to predict the type of the sentiment from the
provided explanation from {“Positive,” “Negative,” “N/A”}, where
“N/A” means that the evaluator cannot predict the sentiment from
the provided explanations. The model used in this study was trained
using an Attbilstm. We randomly picked 100 reviews from the two
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SFFA  L-Shapley C-Shapley IntGrad LIME SFFA  L-Shapley C-Shapley IntGrad LIME

Attbilstm IMDB CNN IMDB
ComprehensivenessT  0.643 0.4136 0.127 0.423  0.459 Comprehensiveness T 0.476 0.438 0.418 0.408 0.375
Sufficiency) 0.020 0.083 0.101 0.061 0.185 Sufficiency -0.134 -0.125 —0.118 —0.115 0.014

YELP YELP
Comprehensivenesst  0.631 0.406 0.394 0.402  0.439 ComprehensivenessT 0.513 0.468 0.466 0.472 0.207
Sufficiency) 0.110 0.266 0.268 0.150 0.234 Sufficiency —0.138 —0.133 —0.132 —0.141 0.011

AG news AG news

Comprehensivenesst  0.721 0.295 0.259 0.483  0.291 ComprehensivenessT 0.684 0.212 0.167 0.351 0.275
Sufficiency 0.003 0.07 0.089 0.031 0.103 Sufficiency —0.021 0.134 0.162 0.044 0.111
Table 3. Eraser benchmark scores: Sufficiency and comprehensiveness are in terms of AOPC. Lower scores are better for sufficiency and higher scores are

better for comprehensiveness.

Methods Models IMDB  YELP  AG news
Cohesion-score
HEDGE CNN 0.092 0.079 0.052
Attbilstm  0.071  0.055 0.023
SFFA CNN 0.129 0.113 0.094
Attbilstm  0.099  0.191 0.052

Table 4. Cohesion scores between SFFA and HEDGE.

benchmarks (50:IMDB, 50:YELP). We measure the number of hu-
man annotations that align with the model’s prediction (e.g., the hu-
man annotation on the span matches the model prediction on the full
sentence), and then define the coherence score as the ratio between
the coherent annotations and the total number of examples [7].

Results Table 5 compares the coherence score between each of
SFFA and HEDGE explanations and the human annotation.

SFFA outperformed HEDGE, achieving relatively better scores,
which suggests that it is better aligned with human annotation at
identifying important spans.

Methods  Coherence score
HEDGE 0.51
SFFA 0.8136

Table 5. Human evaluation of SFFA and HEDGE with Attbilstm on
IMDB and YELP benchmarks.

4.4 SFFA to Pre-trained Transformers

In the previous section, we showed how we can train a neural net-
work model using SFFA for document classification. Here, we apply
SFFA to a pre-trained transformer model such as RoOBERTa [24] and
show we can generate faithful explanations even from a pre-trained
model. We evaluate our approach on the three benchmarks and use
RoBERTa [24]. We incorporate SEFA for Transformers by allowing
gradients from the explanation-related loss function to pass through
the token embedding. The output layer is fine-tuned for the down-
stream classification task. Due to the page limit, we report only the
results on ERASER for token-level evaluation. Similarly, we limit
our experiments to Shapley-based methods because of challenges
with other baseline implementation. For hierarchical explanations,
we again use the cohesion-score metric to evaluate the generated
spans.

Results The performance comparison is summarized in Ta-
ble 6. Table 7 compares ERASER’s scores on three benchmarks
against Shapley-based methods. SFFA outperforms post-hoc meth-
ods in both metrics achieving better scores. The cohesion scores for
RoBERTa are shown in Table 8.

IMDB  YELP  AG news
0.838 0916  0.9074
0.8401 0915  0.8924

Baseline without SFFA
SFFA

Table 6. RoBERTa: Model’s accuracy.

SFFA  L-Shapley  C-Shapley

IMDB

Comprehensiveness?  0.506  0.192 0.146
Sufficiency] 0.085 0.166 0.159
YELP

Comprehensivenesst  0.497  0.204 0.187
Sufficiencyl 0.073  0.172 0.166

AG news

ComprehensivenessT  0.535  0.128 0.127
Sufficiencyl 0.035 0.125 0.125

Table 7. ERASER benchmark score: Comprehensiveness and sufficiency
are in terms of AOPC. Results are based on RoOBERTa’s model.

4.5 NLI: Natural Language Inference

Here we show that SFFA can also work well on a different NLP task,
such as NLI. We use the Stanford SNLI dataset* for the NLI experi-
ment. For the premise ™ and hypothesis M | SFFA’s objective is
to predict the relation as one of entailment, contradiction, and neutral.
We follow the same steps presented in Section 3. However, the sen-
tence vector is defined as &”) + (™). We integrate our method with
[30] to allow gradients from the explanation-related loss function to
pass through the token embedding on the SNLI dataset [5]. The attri-
bution score of each token mﬁp )in premise is obtained using Equation
4. The token embedding vector is modified to consider the hypothesis
sentence as follows: wﬁp) — 2™ Our intuition is based on [11], i.e.,
we consider the difference between features of each vector as a way
of capturing the information of both features. However, this is a fea-
ture engineering approach and there can be many ways to combine
the two vectors to predict the final label. The number of parameters
used for training the model on SNLI is 8054020. For evaluation, we
again use comprehensiveness and sufficiency from ERASER. Table
9 shows that SEFA generates better explanations than Shapley.

4.6  Qualitative Result

In addition to the human evaluation, here we present one example of
Figure 2 to provide qualitative analysis, More examples for qualita-
tive analysis are in the Appendix. Figure 2 visualizes the hierarchical

4 https://nlp.stanford.edu/projects/snli/
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Methods Models IMDB  YELP  AG news
Cohesion-score
HEDGE RoBERTa 0.117 0.096 0.006
SFFA RoBERTa  0.151 0.131 0.032

Table 8. Comparing the cohesion scores between SFFA and HEDGE for

RoBERTa.
SFFA L-Shapley  C-Shapley
Comprehensiveness  0.678 T 0.546 0.568
Sufficiency 0.098 ] 0.202 0.212

Table 9. ERASER in terms of AOPC for NLI.

explanation, generated by SFFA, on a negative review. In Figure 2,
the word "good’ itself was predicted as positive, but after ’good’ was
combined with "waste’, the phrase "waste of good’ was predicted as
negative. The hierarchical explanation illustrates that the model is
capturing the most salient span with the minimum number of tokens.

4.7 Ablation Study

To further understand A in the SFFA objective function, we plot the
log-odds score as a function of A\. We use the AG news and IMDB
datasets trained using a CNN, mask the top five tokens from each
sample, and then analyze the change in the log-odds. The results in
Figure 3 show that the smaller value of A\ achieves the lower log-
odds score. Another ablation study by removing a term from the loss
function is included in the Appendix.

4.8 HEDGE for Feature Attribution

We have shown that our approach outperforms HEDGE for hierarchi-
cal explanation, using the cohesion score. According to [7], HEDGE
can also provide the attribution score. We have performed an experi-
ment that compares the correctness of the attribution scores between
SFFA and HEDGE. We use the log-odds experiment proposed by
[10] and plot the change of the log-odds score as a function of re-
moved tokens. Due to the page limit, the result is included in the Ap-
pendix. The result shows that SEFA provides more correct attribution
scores. Similar to HEDGE, we also calculated the area over the per-
turbation curve (AOPC) [28], i.e., we calculated the average change
in the prediction probability on the predicted class over all test data as
a function of removed salient tokens. The AOPC values on IMDB for
SFFA and HEDGE are 0.4754 and 0.3038 respectively. The higher
AOPC, the higher the faithfulness of the explanation. SFFA provides
a more faithful explanation than HEDGE.

4.9 Discussion

The importance of concurrent supervision The SFFA forces the
features of the same class to form a unique cluster, enabling it to
be combined with cosine similarity to obtain attribution scores. Our
model is not shallow as it can be applied to more complex problems
such as NLI. Due to the page limit, the figure about the result is in
the Appendix.

Compared to existing methods Our method does not use com-
plex models to learn explanations nor does it use post-hoc techniques
to learn feature attribution. The proposed method is built on the main

-0.52 .
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n —0.54
o
=
Q —ns5
o
3 056 o
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058 @ [o =ra]
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Figure 3. Log-odds as a function of A on AG news. We found that the
smaller the value of A, the better the faithfulness of the explanation.

properties of the selected deep learning architecture, more specifi-
cally on the Softmax loss. SFFA improves the representations of the
embedding layer and thus allows the generation of hierarchical ex-
planations.

Rationale-based methods This work is different from existing
methods on rationales. It forces deep networks to learn representa-
tions that can be used as a proxy for hierarchical explanations. So
comparing with rationalization methods is challenging because of
differences in the generated output and the objective, plus the need
for more relevant metrics.

The encoder for rationale-based methods only uses the extracted
tokens as the input for the classification. The rationale-based meth-
ods make predictions based on a subset and thus there is no universal
proxy metric to compare the explanations of rationale-based methods
with hierarchical ones.

Hierarchical explanations. Traditional feature attribution meth-
ods do not tell us how tokens and phrases are dependent on each other
and how they are composed together for the final prediction. With hi-
erarchical explanations, we can provide a comprehensive picture of
how different granularity of the tokens interacts with each other and
also help identify the most salient features used by the classifier.

5 Conclusion and Future Work

We have introduced a new approach to learn representations for a
predictive model’s explanations, which does not require additional
parameters to generate an explanation. The network learns an appro-
priate explanation-specific representation directly from the embed-
ding. We have demonstrated the effectiveness of SFFA in generating
hierarchical explanations using the cohesion score metric on three
datasets using both proxy metrics and human evaluation. In future
work, we plan to extend the proposed network to other more com-
plex NLP tasks, considering applications in both precision health and
legal informatics, which require explanations on the predictions.
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