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Abstract. Our goal in this paper is to significantly decrease the
compiled size of a given Boolean instance with a large represen-
tation, while preserving as much information about the instance as
possible. We achieve this by assigning values to a subset of the vari-
ables in such a way that the resulting instance has a much smaller
representation than the original one, and its number of solutions is
almost as high as the starting one. We call the set of variable instan-
tiations that we make the selective backbone of the solutions that we
keep. Large selective backbones allow for smaller representations,
but also eliminate more solutions. We compare different methods of
computing the selective backbone that offer the best compromise.

1 Introduction

Diagnosis, planning, and product configuration problems [26] are of-
ten processed in an online setting, where the same problem instance
needs to be solved many times answering queries, such as “How
many possible configurations exist for a product?” or “Is this config-
uration valid?”. Compilation methods were developed to deal with
the complexity of solving combinatorial problems offline by creating
a representation that is able to answer queries in time that is poly-
nomial in the size of the representation [2]. The knowledge compi-
lation map [10] serves as a guide between the different representa-
tions and their capabilities. Knowledge compilation is the field that
explores various representations, analysing their size and time com-
plexity with respect to different queries and transformations. Due to
time and memory demand, compilation may fail. Finding compact
representations is often the bottleneck of compilation methods.

One approach that is sometimes used is approximate or partial
compilation whereby a subset of the solutions of a set of constraints
are compiled, e.g. those that are considered most important or most
likely to be useful [21]. Others have considered partial compiled rep-
resentations that are generated from a search-tree over which a vari-
able ordering is defined, and removing domain values that would lead
to dead-ends, thereby also removing solutions [5]. There are many
use-cases where some solution loss is acceptable. For example, one
might wish to compile a large subset of solutions to an embedded
device where space is at a premium [21]. Or in a diagnosis setting,
storing the most likely solutions (diagnoses) might be sufficient.

In this paper we explore the possibility of obtaining a partial com-
pilation by compiling the set of solutions corresponding to a subset
that we obtain by fixing the values of a set of variables. Preferably
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the selected variable instantiations partition the initial set of solu-
tions such that most solutions are represented in a smaller compila-
tion. In order to obtain these variable instantiations we look at the
backbone of the instance. The backbone is the set of variable in-
stantiations that appear in all solutions for this instance. A common
application for backbones is to characterize the difficulty of a prob-
lem [1, 15, 18, 24], but they have also been previously used to reduce
instance size [23]. Any variable that is represented in the backbone
will take up little space in a compilation of the instance. Indeed, the
only information that we need to keep about this variable is the one
value that it takes in all solutions. Since all variables represented in
a backbone can be completely documented within a space of linear
size in their number, large backbones are highly desirable in the con-
text of instance compilation. This is a notion that has some similari-
ties with the notion of streamlining constraints for search [13] where
constraints are added to characterise a subset of solutions that can
be found efficiently, but which limits the solutions that can be found.
Specifically, those solutions that are inconsistent with the streamlin-
ing constraints are no longer available.

Because of their restrictive definition, backbones of non-trivial in-
stances are in general extremely small, and often even empty. For this
reason, we instead study in this paper selective backbones. These are
also defined as the set of variable instantiations that appear in some
set of solutions. However, unlike the all-or-nothing approach taken
by standard backbones, selective backbones can be defined with re-
gard to a non-exhaustive set of solutions. If this set includes a large
and representative enough subset of solutions, we can then discard
the solutions it does not contain and obtain, with minimal loss of in-
formation, compact backbone compilations of instances with initially
small or no backbones.

Of course, there exists a trade-off between the size of a set of solu-
tions and the number of variables covered by its selective backbone.
The more solutions a set contains, the smaller its selective back-
bone is likely to be. Informally, what we want is to find the sweet
spot where the set of solutions starts to be comprehensive enough to
meaningfully capture the overall structure and characteristics of an
instance, in order to lose as little information as possible during the
compilation, and the selective backbone remains large enough to pro-
vide a significant reduction in the size of the compiled instance. How
to quantify whether this reduction is worth more than the solutions
that were removed from the set, and how to efficiently determine the
location of the ideal compromise, are the subjects of this paper.

Methods to reduce compilation size have been explored through
the context of modifying compilation languages to represent sym-
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metries more efficiently. In [4] dynamic symmetry breaking is ex-
plored by extending the languages FBDD and DDG to Sym-FBDD
and Sym-DDG respectively. The Variable Shift SDD (VS-SDD) [19]
was introduced to exploit variable substitution by merging subtrees
which represent the same formula but with different literals. In [3]
they explored the possibility of eliminating the symmetrical solu-
tions before compilation. In [12] they introduce an extension to the
OMDD representation with the aim to reduce the size of the repre-
sentation. They extract some information about some of the variables
and store this in a separate formula, these formulas forming a satel-
lite structure around the main formula, the nucleus. The satellites are
connected to the nucleus by a unique variable instantiation.

In this paper we focus on Binary Decision Diagrams (BDDs) as
the compiled representation and a set of generated instances, the IS-
CAS suite and some planning benchmarks for experiments. In Sec-
tion 2 we define the notion of selective backbone. In Section 3 we
discuss the seven greedy heuristics we implemented and in Section 4
we evaluate them on three problem sets.

2 Definitions

We focus on instances of the Boolean Satisfiability problem (SAT).
This problem was the first to be proven NP-Complete [9], and has
since been one of the most popular constraint problems to be studied.
Before compilation, SAT instances are normally specified in Con-
junctive Normal Form (CNF).

Definition 1 (CNF Representation). A SAT instance in CNF is com-
posed of:

• A set of n Boolean variables.
• A set of m clauses. Each clause is in turn composed of a dis-

junction of literals, where a literal can either be a variable or its
negation.

To obtain partial compilations we will be employing selective
backbones. Every selective backbone is a partial assignment to some
instance.

Definition 2 (Partial Assignment, Support). Let I be a SAT instance
and let B be a set of p variables of I . A set of p variable instanti-
ations, one to each variable of B, is a partial assignment. If P is a
partial assignment on a set B of variables, then we say that B is the
support of P .

Some partial assignments are special, in that they are considered
to solve the instance.

Definition 3 (Solution). If C is a clause, then we say that a par-
tial assignment P satisfies C if a variable that is assigned 1 in P is
present in C, or if the negation of a variable that is assigned 0 in P
is present in C. If I is an instance, then a partial assignment to all
variables of I that satisfies all clauses of I is a solution, or model,
for I .

If the number of solutions (sometimes called model count) for an
instance I with n variables is s, then compiling all solutions for I
can be trivially done by listing s × n variable instantiations. How-
ever, it is sometimes possible to represent the same information in a
more compact way, for example when some variables are assigned
the same value in all solutions.

Definition 4 (Backbone). Let I be a constraint instance. The back-
bone of I is the intersection of all solutions for I .

Example 1. Let RE be an instance with 9 Boolean variables such
that the solutions of RE are the ten solutions listed in Table 1. There
is exactly one variable, x7, which takes the same value in all solu-
tions for RE, therefore the backbone of RE is the set {x7 = 1}.

Table 1. All solutions for the instance RE.

x1 x2 x3 x4 x5 x6 x7 x8 x9

S1 1 1 1 0 1 0 1 0 1
S2 1 1 0 0 0 0 1 1 1
S3 0 1 1 0 1 0 1 0 0
S4 1 0 0 0 1 0 1 0 0
S5 0 0 1 1 0 0 1 1 0
S6 0 0 0 0 1 0 1 0 0
S7 1 0 1 0 1 1 1 0 1
S8 0 0 0 1 0 1 1 0 1
S9 1 0 1 1 0 1 1 0 1
S10 1 0 1 1 0 1 1 1 1

Because backbones are defined so strictly, instances with more
than a few solutions will usually have small or non-existent back-
bones. To be able to use the general idea of a backbone in instances
with many solutions, we instead apply the notion to a subset of the
solutions for an instance.

Definition 5 (Selective Backbone). Let I be a constraint instance
and let S be a set of solutions (not necessarily exhaustive) for I . The
selective backbone of S is the intersection of all solutions of S.

Example 2. Let RE be the instance from Example 1. Consider the
set S = {S4, S5, S6} of some solutions for RE. There are exactly
four variables, x2, x6, x7 and x9, that take the same value in all
solutions of S. Therefore the selective backbone of S is the set {x2 =
0, x6 = 0, x7 = 1, x9 = 0}.

In the same manner that every set of solutions uniquely defines a
selective backbone, every partial assignment uniquely defines a par-
ticular solution set.

Definition 6 (Selected Solution Set). Let P be a partial assignment
for a constraint instance I . The selected solution set of P is the set
of all solutions for I that are supersets of P .

Remark 1. If P is a partial assignment with a non-empty selected
solution set, then the selective backbone of the selected solution set
of P is a superset (not always strict) of P .

Example 3. Let RE be the running example instance. Consider the
partial assignments P1 = {x2 = 0, x6 = 0, x7 = 1, x9 = 0},
P2 = {x2 = 0, x6 = 1, x7 = 1, x9 = 1} and P3 = {x2 = 1, x6 =
0, x7 = 1, x9 = 1}, all with the same support {x2, x6, x7, x9}.
The selective solution set of P1 is {S4, S5, S6}, the selective solution
set of P2 is {S7, S8, S9, S10} and the selective solution set of P3 is
{S1, S2}. Note that P3 is not the selective backbone of {S1, S2},
which is {x1 = 1, x2 = 1, x4 = 0, x6 = 0, x7 = 1, x9 = 1}, but it
is a subset of it.

For a given number p of variables, we look at two ways to define
what is the best selective backbone of size p.

• p-SB: For a given instance I , the p-Selective Backbone problem
is to find the partial assignment on p variables with the largest
selected solution set.
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• p-rSB: For a given instance I , the p-ratio Selective Backbone
problem is to find the partial assignment P on p variables with
the highest ratio of the size of the selected solution set of P di-
vided by the size of the compiled representation of the instance
obtained from I after making all variable instantiations in P .

Example 4. Let RE be the running example instance. We consider
the p-SB problem for p = 2. We want a set of two variable instan-
tiations with the largest possible selected solution set. No pair of
distinct variable instantiation are present in all solutions for RE,
nor even in all but one or all but two solutions, but there are mul-
tiple pairs of variable instantiations that are present in seven out
of the ten solutions for RE. One such pair of variable instanti-
ations is {x2 = 0, x7 = 1}, which is present in the solutions
{S4, S5, S6, S7, S8, S9, S10}. Therefore the set {x2 = 0, x7 = 1}
is an answer to the 2-SB problem for the instance RE.

On one hand, the p-rSB problem captures both sides of the com-
promise between minimal loss of solutions and compiled size, while
the p-SB problem is only concerned with the number of solutions.
On the other hand, the p-SB problem is independent of the form in
which an instance is compiled, while the p-rSB problem depends on
the representation chosen.

In our experiments we compile instances into Binary Decision Di-
agrams (BDD). While the initial construction of a BDD is expensive,
once it has been built it allows for quick answers to many otherwise
computationally demanding questions, such as model counting.

Definition 7 (BDD Representation). A Binary Decision Diagram [6]
is a directed acyclic graph that represents a set of solutions. Edges
are labeled by variable instantiations and paths from the root node
to the terminal true node represent the solutions.

Figure 1. An initial compilation of RE. Nodes represent variables, low
edges are dashed (variable is assigned 0), high edges solid (variable is

assigned 1).

Example 5. A BDD representation of the running example is given
in Figure 1. A "-1" label signifies a complemented edge, which is

defined as follows [25]: a complemented edge to true (respectively
false) is interpreted as false (respectively true), and a complemented
edge to an internal node is interpreted by toggling the complement
bit on both successors.

Compilation methods describe top-down [17] and bottom-up [8]
techniques to compile a set of clauses. Top-down compilation re-
cursively compiles the clauses using conditioning, for example the
trace of DPLL using a SAT solver. Bottom-up compilation takes CNF
clauses and compiles these using the apply [6] operation which
joins the representations together efficiently. The variable ordering
used for the BDD significantly impacts its size but it is not feasible
to find the best ordering as this is an NP-hard problem. [20]

3 Description of Heuristics

For an instance with n variables the number of potential selective
backbones of size p is

(
n
p

) × 2p, so examining all possible selective
backbones to find the optimal one is infeasible for large instances.
For this reason we instead consider greedy heuristics.

We are going to compare four methods of solving the p-SB and
p-rSB problems. All four methods are inductive, they start from an
answer to the problem for p − 1, then add a variable instantiation to
create a selective backbone of size p which is an answer to the p-SB
or p-rSB problem. Since updating an already existing BDD with one
variable instantiation does not require recomputing the whole BDD
from scratch, building the answer for p upon the answer for p − 1
allows for finding the answers for each selective backbone size from
0 to the total number n of variables in the instance with only one
expensive BDD construction, the initial one.

The first method is random. It simply selects p random variables
and one value for each one, and does not differentiate between the
two distinct problems p-SB and p-rSB. Because it is fully random,
it can select, sometimes early on, a set of variable instantiations that
cannot be extended to a solution for the whole instance. The induc-
tive nature of the method will then keep the size of the selected solu-
tion set at 0 until the end. To avoid being stuck with an empty selected
solution set, we refine the selection of the new variable instantiation
by giving a score to all possible candidates.

Definition 8 (Selective Backbone Score). Let I be an instance and
let P be the selective backbone of some subset of the solutions for
I . Let I ′ be the instance obtained from I after making all variable
instantiations in P .

• For the p-SB problem, the score of P is the size of its selected
solution set.

• For the p-rSB problem, the score of P is the size of its selected
solution set divided by the size of I ′ in the chosen compiled repre-
sentation for the problem.

For the p-SB problem, the score of a selective backbone composed
of only one variable instantiation can be seen as an exact measure of
the variable bias [14] of its singleton support.

If the representation for the p-rSB problem is a BDD, we define
its size by the number of nodes reachable from the root of the tree.

Now that we are able to directly compare different selective back-
bones, we can determine for a given one which the next variable
instantiation would lead to the highest score.

Definition 9 (Winning Variable Instantiation). Let P be a selective
backbone and let Q be a set of variable instantiations such that every
variable present in Q is absent from P (but a variable can appear
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more than once in Q). We say that the winning variable instantiation
of P and Q is the instantiation q ∈ Q such that for every variable
instantiation q′ ∈ Q with q′ �= q, the score of P ∪ q is higher than
the score of P ∪ q′.

Example 6. Consider the running example instance RE. Let P =
{x8 = 0, x9 = 1} and let Q = {x1 = 0, x6 = 0, x6 = 1, x7 = 0}.

• The selected solution set of P ∪ {x1 = 0} is the set of solutions
where x8 is assigned 0, x9 is assigned 1, and x1 is assigned 0.
This is the singleton set {S8}.

• The selected solution set of P ∪ {x6 = 0} is {S1}.
• The selected solution set of P ∪ {x6 = 1} is {S7, S8, S9}.
• Since no solution for RE assigns 0 to x7, the selected solution set

of P ∪ {x7 = 0} is empty.

The winning variable instantiation of P and Q is therefore x6 = 1,
because it leads to the largest selected solution set when being added
to P .

We present the remaining three methods in order from fastest
to slowest. As we show in the next section, the fastest method
(random_selection) gives the worst overall results of the three, while
the slowest (dynamic) usually finds higher scoring selective back-
bones than the other two.

The second method is random_selection. It is described in Al-
gorithm 1. Just like random, it picks the next variable randomly.
However, the value chosen to assign to the variable is the one that
achieves the highest score. This ensures that the selected solution set
of the answer will never be empty, as long as the original instance
has at least one solution.

Algorithm 1 Solving the p-SB or p-rSB problem with the method
random_selection.

1: if p == 0 then

2: return ∅
3: end if

4: P ← answer to the (p− 1)-SB problem
5: x ← random variable not present in P
6: a ← winning_variable_instantiation(P , {x = 0, x = 1})
7: return P ∪ {a}

Example 7. Let us apply random_selection to the p-SB problem on
the running example instance RE. Suppose that the first variable
randomly chosen is x2. This variable is assigned 0 more often than
it is assigned 1, so the answer for p = 1 is {x2 = 0}.

If the second variable randomly chosen is x4, we then need to
compare the scores of the two selective backbones P = {x2 =
0, x4 = 0} and P ′ = {x2 = 0, x4 = 1}. The selected solution
set of P is T = {S4, S6, S7}, and the selected solution set of P ′ is
T ′ = {S5, S8, S9, S10}. Since T ′ is larger than T , the answer for
p = 2 is P ′.

The third method is static. It is described in Algorithm 2. It starts
by ranking all 2n variable instantiations, with n being the total num-
ber of variables in the instance, in decreasing order of the score that
they would get if they were composing a selective backbone on their
own. It then returns the first p variable instantiations, avoiding re-
peated variables.

Example 8. Let us apply static to the p-SB problem on the running
example instance RE. If each of the ×9 variable instantiations was a
selective backbone on its own, the three with the highest score would
be:

Algorithm 2 Solving the p-SB or p-rSB problem with the method
static.

1: A ← all 2n variable instantiations {a1, . . . , a2n} in decreasing
order of score({ai})

2: for i ← 1 to p do

3: a ← first variable instantiation in A
4: P ← P ∪ {a}
5: x ← variable assigned by a
6: A ← A \ {x = 0, x = 1}
7: end for

8: return P

1. {x7 = 1} with all 10 solutions for RE in the selected solution
set.

2.-3. {x2 = 0} and {x8 = 0}, each with a selected solution set of
size 7.

4.-8. {x1 = 1}, {x3 = 1}, {x4 = 0}, {x6 = 0}, and {x9 = 1},
each with a selected solution set of size 6.

So the answer for p = 1 would be {x7 = 1}, the answer for p = 2
would be either {x7 = 1, x2 = 0} or {x7 = 1, x8 = 0}, and the
answer for p = 3 would be {x7 = 1, x2 = 0, x8 = 0}. The answers
for p = 4 to p = 8 would add variable instantiations on variables
x1, x3, x4, and x6, so the instantiation on variable x5 would not be
picked until p = 9.

The method static only computes the score associated with each
variable instantiation once, at the beginning. This saves time, but it
means that once a variable instantiation is picked the scores of the
remaining instantiations are still based on solutions that might have
been already eliminated. The fourth and last method, dynamic, takes
into account the variable instantiations previously chosen when com-
puting the winning variable instantiation, so all scores are up to date.

Algorithm 3 Solving the p-SB or p-rSB problem with the method
dynamic.

1: if p == 0 then

2: return ∅
3: end if

4: P ← answer to the (p− 1)-SB problem
5: A ← the 2(n− (p− 1)) variable instantiations on variables not

present in P
6: a ← winning_variabe_instantiation(P , A)
7: return P ∪ {a}

Example 9. Let us apply dynamic to the p-SB problem on the run-
ning example instance RE. For p = 1, the best variable instantiation
to pick is {x7 = 1}, which appears in all solutions for the original
instance.

For the second variable instantiation, {x2 = 0} and {x8 = 0}
are tied winners. Let us pick the latter, giving us an answer of P2 =
{x7 = 1, x8 = 0} for p = 2.

For p = 3, there are three variable instantiations that get the high-
est selective backbone score (5 models in the selected solution set)
when combined with P3: {x2 = 0}, {x4 = 0}, and {x5 = 1}. Let
us pick {x5 = 1}, giving us an answer of P3 = {x7 = 1, x8 =
0, x5 = 1} with a selected solution set T3 = {S1, S3, S4, S6, S7}.
Note that {x5 = 1} appears in a dynamic answer for p = 3, while
from Example 8 we know it cannot appear in a static answer until
p = 9.
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The single best candidate to extend P3 is x4 = 0, which is the
only variable instantiation on a remaining variable to be present in
all five solutions left. This gives us an answer of {x7 = 1, x8 =
0, x5 = 1, x4 = 0} for p = 4.

4 Results

Experiments were run on a machine with an Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz running Ubuntu 22.04.2. Three types of bench-
marks were tested: a generated dataset1 from a construction used to
produce challenging model counting instances [11], the ISCAS cir-
cuit suites2 and some instances from the planning benchmark.2 The
ISCAS circuit design and the planning benchmarks have been exten-
sively used in the field of knowledge compilation and model counting
as well [7, 16, 22].

Table 2. Best ratios achieved for each type of instances. For each dataset,
Column 2 (Nb) is the number of instances in the set, and Column 3 (Nb with
backbone) is the number of instances in the set with a non-empty backbone.

Instance

type
Nb

Nb with

backbone

Best adjusted MC/BDD size ratio

min max average median

Dataset A 10 0 1.776 3.662 2.54 2.66
Dataset B 10 0 5.383 13.94 8.68 9.01
iscas89 5 1 1.264 4.944 2.47 1.94
iscas93 2 0 11.501 26.701 19.10 19.10
iscas99 7 0 1.151 4.053 2.64 2.93
blocks 8 7 1.064 5.049 2.65 2.54
bomb 8 8 1.016 2.32 1.60 1.60
coins 7 9 1.2 1.851 1.39 1.34
comm 4 4 1 15.863 5.02 1.60

emptyroom 21 0 1 7.469 1.66 1.00
flip 20 0 1 1.095 1.00 1.00
ring 16 0 1 3.2 1.64 1.45
safe 26 0 1 1.873 1.35 1.42
sort 11 0 1.852 5.244 3.83 3.89
uts 13 12 1.005 5.51 3.49 3.94

The generated set contain 10 instances with 15 variables and 45
clauses (Dataset A) and 10 instances with 30 variables and 90 clauses
(Dataset B). Within the ISCAS benchmark, we looked at instances
from iscas89, iscas93 and iscas99 containing problems with 26-252
variables and of 66-639 clauses. Within planning we looked at the
following instance types: blocks, bomb, coins, comm, emptyroom,
flip, ring, safe, sort and uts. Instances in here contain 5-600 variables
and 10-1901 clauses. For all cases we only considered CNFs with at
most 600 variables. We ran all experiments with 1 hour timeout. All
code necessary to reproduce the experiments is available online1.

We implemented the previously mentioned heuristics in Python 3
and used CUDD3 for BDD compilations. More specifically we used
part of Temporal Logic Planning (TuLiP) toolbox4 that serves as
a Python and Cython wrapper of CUDD. During compilation after
each apply operation we apply group sifting in order to find good
variable ordering for the new BDD.

For our experiments we looked at three greedy heuristics, ran-

dom_selection, static, dynamic solving the p-SB problem and ran-

dom_selection_ratio, static_ratio, dynamic_ratio to solve the p-
rSB problem. We also compared these with a completely random set
of variable instantiations, denoted as random. As mentioned above,

1 https://github.com//baloghAndi//partialKC_using_selective_backbones
2 https://www.cril.univ-artois.fr/KC/benchmarks.html
3 https://web.archive.org/web/20150215010018/

http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html
4 https://github.com/tulip-control/dd

all heuristics are incremental, the selection of p variable instantiation
contains the selection of p − 1 variable instantiations extended with
a new variable instantiation. With each variable instantiation the size
of the solution set is monotonically decreasing.

The goal is to find the best variable instantiation set that covers
most of the solutions but also has a smaller compiled size. To be able
to compare the heuristics across instances with different initial values
of model count and BDD compilation size, we define the adjusted
ratio AR:

AR =
|S|/|BDD|

|Sini|/|BDDini|
with

• |S| the size of the current solution set
• |BDD| the size of the current BDD compilation
• |Sini| the size of the initial solution set
• |BDDini| the size of the initial BDD compilation

This ratio represents how much better (if greater than 1) or worse
(if smaller than 1) is the compilation obtained from the current se-
lective backbone compared to the initial compilation. We focus on
answering two questions:

• Q1: Is there a compilation such that the adjusted ratio is higher
than 1?

• Q2: Is there a compilation that is significantly more compact if we
want to keep at least x% of the initial solution set?

Figure 2. Average Adjusted Ratio over Dataset A and Dataset B.

In some cases multiple variable variable instantiations of size p
exist that cover the same number of solutions but a different solu-
tion set. For the p-SB problems, we break these ties arbitrarily. The
introduction of p-rSB changes this to favouring the p variable in-
stantiations that have a smaller compilation. This approach allows
us to first select the variable instantiations that impact the BDD size
but with minimal solution loss. This is visible from the fact that dy-

namic_ratio achieves the best trade-offs. Also in case the problem
has proper backbones (Definition 4) dynamic_ratio will not neces-
sarily select them at first as they do not change the size of the BDD.
Therefore problems with large backbones would have fewer oppor-
tunities for a good selective backbone. In our experiments only 41
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Figure 3. Average Adjusted Ratio over ISCAS instances.

Figure 4. Average Adjusted Ratio over planning instances.

out of the total 168 instances have proper backbones, with one from
ISCAS and the rest from the planning benchmarks as seen in Table 2.
The sizes of the proper backbones range between 0.48% to 30% of
the number of variables. Table 2 contains more information based
on instance types, about the number of instances for each type (Col-
umn 2) and how many of them have a non-empty backbone (Column
3). To answer Q1 the last columns of Table 2 highlight information
about the best adjusted ratio for each instance type. There are 36 in-
stances where there is no improvement for the adjusted ratio, some
are due to the initially small number of solutions.

A visual representation of the adjusted ratio can be found in Fig-
ure 2, Figure 3 and Figure 4, showing the average adjusted ratio for
each benchmark respectively. The first data point denotes the p = 0
problem for which the adjusted ratio is 1. The higher the adjusted
ratio is, the better the selection is. Since each instance has a differ-
ent number of variables the maximum value of p is also different,
so we averaged the adjusted ratio according to the percentage of the
selective backbone size divided by the total number of variables. The
most gain can be seen in the generated instances, as the ratio curve
reaches higher values. In each figure dynamic_ratio performs best,

Figure 5. Average efficiency over dataset A and B.

Figure 6. Average efficiency over ISCAS instances.

followed by static_ratio for the first few selections, which is then
dominated by dynamic. In Figure 2 we observe a clear peak for
dynamic_ratio at 40% of the variables assigned. In Figure 3 and
Figure 4 there is more like a plateau where the ratio is roughly the
same for a few variable instantiations for dynamic_ratio. That is be-
cause the ISCAS and planning instances have variables that split the
solution space less uniformly than in the generated dataset. For all
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Table 3. Average compilation times in seconds for instance types.

Instance type Init compilation random random_selection random_selection_ratio static static_ratio dynamic dynamic_ratio

Dataset A 0.217 0.309 0.313 0.43 0.362 0.34 0.333 0.326
Dataset B 2.613 2.946 3.076 3.24 3.277 3.287 3.421 3.243
iscas89 1290.631 216.865 221.961 295.039 239.691 295.71 374.492 317.405
iscas93 295.331 90.589 96.605 104.362 138.229 135.261 180.098 159.95
iscas99 156.584 45.901 47.435 50.009 51.184 47.731 78.151 63.092
blocks 1119.291 1051.07 1047.16 1025.909 1085.312 1058.3 1230.959 1160.956
bomb 386.295 232.778 265.839 265.896 295.138 302.942 1470.723 1265.708
coins 2333.587 194.944 214.181 554.477 254.396 560.743 556.6 441.289
comm 316.963 360.663 386.863 999.783 436.769 450.071 866.599 635.998

emptyroom 2999.494 321.221 336.584 334.526 365.968 360.129 640.034 616.192
flip 1.691 0.638 0.745 0.711 0.88 0.885 0.958 1.001
ring 1060.66 305.258 312.894 323.228 327.277 322.515 408.546 348.009
safe 18.332 194.905 220.732 226.521 293.156 248.284 483.846 462.226
sort 337.266 419.213 439.866 415.04 497.05 425.432 689.139 541.916
uts 205.234 145.488 152.462 152.579 189.794 161.606 357.711 248.549

experiments random performed worse, reaching a set of variable in-
stantiations without any solutions quite early. Due to the incremental
property the selection never improves.

To answer Q2 we look at Figure 5, Figure 6 and Figure 7 which
shows the averaged efficiency for each heuristic for each benchmark
set. The 45◦ grey line denotes the area where the solution set size is
directly proportional to the BDD size, that is there is no significant
benefit. By representing x% of the solutions the BDD compilation
will be x% of its original size too. Therefore we want to be on the
right of this diagonal, as close as possible to the top of the plot. For
this metric the generated instance results show the most significant
benefits as seen in Figure 5, the efficiency is quite far from the diag-
onal. In each Figure 5, Figure 6 and Figure 7 all three random based
heuristics perform poorly, as they are all under the grey diagonal. Us-
ing these figures one can determine that for representing x% of the
solution set what is the smallest representation any of the heuristics
can find.

Table 3 summarizes the average time per instance spent on the
initial BDD compilation and for all the heuristics to explore n selec-
tive backbones. Most of the runtime is spent on the initial compila-
tion, this is a required first step for all the heuristics. The next seven
columns show the time spent on finding n selective backbones for
each heuristic. More time is taken by dynamic and dynamic_ratio

since both heuristics explore n − p possible variable instantiations
for the p selective backbone problem. For each possible instantia-
tion dynamic and dynamic_ratio call the apply function in order to
calculate next BDD. The ratio figures offer a detailed view of the pro-
gression of the adjusted ratio with respect to the increasing selective
backbone. The efficiency plots highlight the existence of compila-
tion that represents x% of all solutions but the compilation size is
less than x% of the initial compilation size. Note that we did not ex-
haustively optimize the BDDs, so our results do not state that there is
no smaller BDD with the same solution set. We prove that even with
minimal effort such compilations exist.

5 Conclusion

We have empirically proven that for many Boolean instances, be-
longing to various problem types, it is possible to obtain partial com-
pilations that are far more space-efficient than the full one in terms of
the number of solutions conserved. Our approach to find such com-
pilations centers around the concept of selective backbone, a notion

Figure 7. Average efficiency over planning instances.

that we have introduced and is in essence a partial variable instantia-
tion that is present in a given subset of the solutions to an instance.

Future work could focus on seeking even more efficient ways to
find a large selective backbone that covers many solutions, for exam-
ple by bypassing the initial compilation, which is expensive in both
time and space. This could potentially be done by only approximat-
ing the number of solutions containing a given partial assignment,
instead of aiming for the exact count. Another interesting research
direction may be to look at representations other than BDDs.
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