
On the Structural Complexity of Grounding – Tackling
the ASP Grounding Bottleneck via Epistemic Programs

and Treewidth
Viktor Besina, Markus Hecherb;* and Stefan Woltrana

aTU Wien, Austria
bMassachusetts Institute of Technology, United States

ORCiD ID: Markus Hecher https://orcid.org/0000-0003-0131-6771,
Stefan Woltran https://orcid.org/0000-0003-1594-8972

Abstract. Answer Set Programming is widely applied research area
for knowledge representation and for solving industrial domains.
One of the challenges of this formalism focuses on the so-called
grounding bottleneck, which addresses the efficient replacement of
first-order variables by means of domain values. Recently, there have
been several works in this direction, ranging from lazy grounding,
hybrid solving, over translational approaches. Inspired by a transla-
tion from non-ground normal programs to ground disjunctive pro-
grams, we attack the grounding bottleneck from a more general an-
gle. We provide a polynomial reduction for grounding disjunctive
programs of bounded domain size by reducing to propositional epis-
temic logic programs (ELPs). By slightly adapting our reduction, we
show new complexity results for non-ground programs that adhere
to the measure treewidth. We complement these results by match-
ing lower bounds under the exponential time hypothesis, ruling out
significantly better algorithms.

1 Introduction

Answer set programming (ASP) [9, 18] is a modeling and solving
framework that can be seen as an extension of propositional sat-
isfiability (SAT), where knowledge is expressed by means of rules
comprising a (logic) program. The solutions to those programs are
sets of atoms, called answer sets, that obey every rule. With its rich
first-order like language ASP presents an appealing tool for solv-
ing problems related to knowledge representation and reasoning and
industrial applications for which efficient systems are readily avail-
able [18, 10]. These systems are mainly built on a ground-and-solve
technique, replacing variables by domain constants and feeding the
resulting ground program into an ASP solver. For certain types of
problems, this approach leads to the well-known ASP grounding bot-
tleneck [34], i.e., where the instantiation of rules yields an exponen-
tially larger program that is beyond the capabilities to be processed
by the solver efficiently. This is indeed not surprising, as already
the evaluation of the well-known fragment of normal programs is
NEXPTIME-complete [11]. However, for constant predicate arities,
lower complexity results are known [12]. Indeed, under this assump-
tion the hardness of answer set existence increases by one level of the

∗ Corresponding author; email: hecher@mit.edu. Authors contributed equally
to this research.

polynomial hierarchy, when switching from ground to non-ground
programs.

Still, in general the increased complexity of evaluating non-ground
programs is the root cause of the ASP grounding bottleneck. While
recent works on body-decoupled grounding [3] have shown that
reductions between non-ground and ground programs can reduce
grounding time and size for normal programs, the complexity of
non-ground disjunctive programs (ΣP

3-hard) does not allow for di-
rect translations to ground ASP (up to ΔP

3-complete). However, over
the time ASP has been significantly extended to more expressive for-
malisms. Epistemic logic programs (ELPs) depict such an extension,
which are capable of reasoning over multiple worlds [19], where
– depending on whether objections are possible or known – cer-
tain consequences have to be derived. Interestingly, the evaluation of
(ground) ELPs is ΣP

3-complete, enabling an efficient reduction from
non-ground ASP under bounded predicate arities.

In this work, we take a step further and initiate the study of
grounding via translation to formalisms beyond ASP. We present a
novel reduction that adheres to body-decoupled grounding and trans-
lates non-ground disjunctive programs of bounded predicate arity to
ground ELPs. Then, to deal with the high complexity, we consider
the influence of structure, thereby focusing on the prominent mea-
sure treewidth. In our studies we obtain a surprising new result for
treewidth and the well-known fragment of normal programs: It turns
out that for non-ground programs, the consistency of cyclic (normal)
programs is of similar hardness as for non-cyclic (tight) programs.
This is indeed in stark contrast to existing results for the ground
case, where high cyclicity of programs is a known source of hard-
ness [28, 25], also for treewidth [20, 15, 21].

Contributions. Our contributions and relations to existing results
are highlighted in Table 1 and detailed below.

1. We define a new translational-based grounding approach that
works for any non-ground program, thereby relying on the expres-
sive formalism of epistemic programs. It is exponential only in the
predicate arity (polynomial for fixed arity).

2. Then, we analyze the consequences and impact of structure in our
approach. To this end, we propose a formal condition of structure
preservation for non-ground programs that can be even fulfilled for

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Please contact the corresponding author for any appendices or supplementary material mentioned in the paper.

doi:10.3233/FAIA230277

247

https://orcid.org/0000-0003-0131-6771
https://orcid.org/0000-0003-1594-8972
mailto:hecher@mit.edu

rules with larger bodies. It turns out that this condition is already
sufficient for us to obtain precise runtimes by adapting our grounding
approach for treewidth.

3. We complete these upper bounds by lower bounds under the expo-
nential time hypothesis (ETH) [24], where we essentially rule out sig-
nificant improvements of our reduction. Thereby we finally complete
the complexity picture for non-ground logic programs and treewidth.
Surprisingly, normal programs are of similar hardness as tight pro-
grams (non-ground case). This is different to the ground case, see
Table 1 (last 2 rows).

Related Work. Eiter, Faber, and Fink established complexity
results [12] for the consistency of non-ground programs under
bounded predicate arities, see also Table 1. In the context of meta-
programming, these results have been used for space-efficient ASP
evaluation [13]. The literature distinguishes different attempts to effi-
cient grounding, ranging from classical approaches [1, 27] numerical
techniques [23] and lazy grounding [35], over ASP modulo theory,
e.g., [2], and methods based on structural measures (treewidth) [4,
10, 7, 30]. Treewidth has been considered for ELPs [22], also in prac-
tice, e.g., [5].

Tight Normal Disjunctive Epistemic

Ground NP-c NP-c ΣP
2-c ΣP

3-c

Non-Ground∗ ΣP
2-c ΣP

2-c ΣP
3-c -

Ground [tw] 2Θ(tw) 2Θ(tw·log(tw))
22

Θ(tw)

22
2Θ(tw)

Non-Ground [tw]∗ 2dΘ(tw)

2dΘ(tw)

22dΘ(tw) -

R

RNormal
tw

Rtw

Table 1: Complexity results of consistency problem variants, where
each column gives the corresponding program fragment and each
row shows the respective problem (asterisk indicates fixed predicate
arities). Runtimes are tight under ETH and neglect polynomial fac-
tors. Bold-face entities indicate new results and reductions; d refers
to the domain size and tw is the treewidth of the primal graph.

2 Preliminaries

Ground ASP. Let �, m, n be non-negative integers such that � ≤
m ≤ n; a1, . . ., an be distinct propositional atoms. A (disjunctive)
program (LP) P is a set of (disjunctive) rules

a1 ∨ . . . ∨ a� ← a�+1, . . . , am,¬am+1, . . . ,¬an.

For a rule r, we let Hr :={a1, . . . , a�}, B+
r :={a�+1, . . . , am},

and B−
r :={am+1, . . . , an}. We denote the sets of atoms occur-

ring in a rule r or in a program P by at(r) :=Hr ∪ B+
r ∪ B−

r

and at(P) :=
⋃

r∈P at(r). A rule r is normal if |Hr| ≤ 1 and a
program P is normal if all its rules are normal. The dependency
graph DP is the directed graph defined on the set

⋃
r∈P Hr ∪ B+

r

of atoms, where for every rule r ∈ P two atoms a∈B+
r and b∈Hr

are joined by edge (a, b). P is tight ifDP has no directed cycle [14].
An interpretation I is a set of atoms. I satisfies a rule r if

(Hr ∪B−
r)∩ I �= ∅ or B+

r \ I �= ∅. I is a model of P if it satisfies
all rules of P . The Gelfond-Lifschitz (GL) reduct of P under I is
the program P I obtained from P by first removing all rules r with
B−

r ∩ I �= ∅ and then removing all ¬z where z ∈ B−
r from the re-

maining rules r. I is an answer set of a program P if I is a minimal
model (w.r.t. ⊆) of P I . The problem of deciding whether a program
has an answer set is called consistency, which is ΣP

2-complete. For

normal programs, its complexity drops to NP-complete [6, 29], al-
lowing simpler evaluations [25].

Non-ground ASP. We use vectors X=〈x1, . . . , xm〉, Y= 〈y1,
. . . , yn〉 in the usual way. We combine vectors by 〈X,Y〉 :=
〈x1, . . . , xm, y1, . . . , yn〉 and test whether x1 is in X by x1 ∈ X.
We assume elements of vectors in any fixed total order. For a set S,
we construct its unique vector by 〈S〉.

Let p1, . . . , pn be predicates; each one takes arity |pi| many vari-
ables for 1 ≤ i ≤ n. A (non-ground) program Π is a set of (non-
ground) rules of the form

p1(X1) ∨ . . . ∨ p�(X�)← p�+1(X�+1), . . . , pm(Xm), (1)
¬pm+1(Xm+1), . . . ,¬pn(Xn),

where for every variable vector Xi we have |Xi|= |pi|,
and whenever x ∈ 〈X1, . . . ,X�,Xm+1, . . . ,Xn〉, then
x ∈ 〈X�+1, . . . ,Xm〉 (safeness). For a non-ground rule r,
we let Hr := {p1(X1), . . . , p�(X�)}, B+

r := {p�+1(X�+1),
. . . , pm(Xm)}, B−

r := {pm+1(Xm+1), . . . , pn(Xn)}, and
var(r) := {x ∈ X | p(X) ∈ Hr ∪ B+

r ∪ B−
r }. We use

heads(Π) := {p(X) ∈ Hr | r ∈ Π}, preds(Π) := {p(X) ∈
(Hr∪B+

r ∪B−
r) | r ∈ Π}, and pnam(Π) := {p | p(X) ∈ Π}.

Without loss of generality, we assume variables are unique per
rule, i.e., for every two rules r, r′ ∈ Π, var(r) ∩ var(r′) = ∅.
Attributes disjunctive, normal, and tight carry over to non-ground
rules (programs). Rule size ‖r‖ amounts to

∣∣B+
r

∣∣+
∣∣B−

r

∣∣+ |Hr|
and program size ‖Π‖ :=

∑
r∈Π ‖r‖.

In order to ground Π, we require a given set F of facts, i.e., atoms
of the form p(D) with p being a predicate of Π and D being a vector
over domain values of size |D| = |p|. We say that D is part of the
domain of Π, defined by dom(Π) := {d ∈ D | p(D) ∈ F}. We
refer to the domain vectors over dom(Π) for a variable vector X
of size |X| by dom(X). Let D be a domain vector over variable
vector X and vector Y containing only variables of X. We refer to
the domain vector of D restricted to Y by DY . The grounding G(Π)
consists of F and ground rules obtained by replacing each rule r of
Form (1) for every domain vector D ∈ dom(〈var(r)〉) by

p1(DX1) ∨ . . . ∨ p�(DX�)← p�+1(DX�+1), . . . , pm(DXm),

¬pm+1(DXm+1), . . . ,¬pn(DXn).

Example 1. Consider the non-ground program Π :={r} with
r= a(X,Y)← b(X), c(Y, Z) and F := {b(1). c(1, 2).}. Observe
that dom(X)={1} and dom(Y)=dom(Z)={1, 2}. The ground-
ing P = G(Π) of Π consists of:

{a(1, 1)← b(1), c(1, 1). a(1, 1)← b(1), c(1, 2).

a(1, 2)← b(1), c(2, 1). a(1, 2)← b(1), c(2, 2).}

The only answer set of Π is {b(1), c(1, 2), a(1, 1)}.

Epistemic Logic Programs. An epistemic logic program (ELP) P
extends an LP, where rule bodies may contain epistemic literals of the
form not� using literal � and epistemic negation not. Then, at(r)
denotes the atoms occurring in a rule r and e-at(r) denotes the epis-
temic atoms, i.e., those used in epistemic literals of r. These notions
naturally extend to programs. In a rule we write K� and M� for a lit-
eral �, which refers to expressions ¬not� and not¬�, respectively.

While there are different semantics [19, 33, 26, 16, 32], we fol-
low the approach of [19], syntactically denoted according to [31].
Note that the base semantics are equivalent, but certain extensions

V. Besin et al. / On the Structural Complexity of Grounding248

a b

c p

d

{a, b, c, p}t1

{b, d}t2

Figure 1: Primal graph GΠ2 (left, see Ex. 6); TD T of GΠ2 (right).

on top might result in different behavior. A world view interpretation
(WVI) I for P is a consistent set I of literals over a set A ⊆ at(P)
of atoms. Intuitively, every � ∈ I is considered “known” and ev-
ery a ∈ A with {a,¬a} ∩ I = ∅ is treated as “possible”. The epis-
temic reduct [19] of program P w.r.t. a WVI I over A, denoted PI ,
is defined as PI = {rI | r ∈ P} where rI denotes rule r where each
epistemic literal not�, whose atom is also in A, is replaced by ⊥ if
� ∈ I , and by � otherwise. Note that PI is an LP with no epistemic
negation.

Let I be a set of interpretations over a set A of atoms. Formally,
a WVI I is compatible with I if: (1.) I �= ∅; (2.) for each atom
a ∈ I , it holds that for each J ∈ I, a ∈ J ; (3.) for each ¬a ∈ I ,
we have for each J ∈ I, a �∈ J ; and (4.) for each atom a ∈ A
with {a,¬a} ∩ I = ∅, there are J, J ′ ∈ I, such that a ∈ J , but
a �∈ J ′. Then, a WVI I over at(P) is a world view (WV) of P iff
I is compatible with the set AS(PI). Deciding WV existence is ΣP

3-
complete [33].

Definitions for non-ground LPs carry over to ELPs.

Example 2. Consider the ground ELP P := P ∪
{na← ¬Ka(1, 1). ka← Ka(1, 1). } with P of Example 1.

When constructing a WVI I over e-at(P) one guesses for each
atom a ∈ e-at(P) either (1) a ∈ I , (2) ¬a ∈ I or (3) {a,¬a} ∩
I = ∅ as described earlier. Each WVI I can be checked with the
corresponding epistemic reduct PI by verifying Compatibility (1.)–
(4.) for AS(PI).

Consider I1 = { a(1, 1) } with its epistemic reduct PI1 :=
P ∪ {na ← ⊥. ka.}, which follows from na ← ¬¬⊥. and
ka ← ¬⊥. Note that the epistemic reduct is an LP, as rules r
with ⊥ ∈ B+

r or � ∈ B−
r can be dropped. Since AS(PI1) =

{ {c(1, 2), b(1), a(1, 1), ka} }, compatibility of I1 holds, which val-
idates I1 as (the only) WV of P.

Tree Decompositions and Treewidth. We assume that graphs are
undirected, simple, and free of self-loops. Let G = (V,E) be a
graph, T a rooted tree with root node root(T), and χ a labeling func-
tion that maps every node t of T to a subset χ(t) ⊆ V called the bag
of t. The pair T = (T, χ) is called a tree decomposition (TD) of G
iff (i) for each v ∈ V , there exists a t in T , such that v ∈ χ(t); (ii)
for each {v, w} ∈ E, there exists t in T , s.t. {v, w} ⊆ χ(t); and (iii)
for each r, s, t of T , s.t. s lies on the unique path from r to t, we have
χ(r) ∩ χ(t) ⊆ χ(s). The width of T is the largest bag size minus
one and the treewidth of G is the smallest width among all TDs of G.

In order to illustrate dependencies of programs we define graphs.
The primal graph GP = (V,E) of a ground program P is a graph
with V = at(P) and {a, b} ∈ E iff atoms a and b with a �= b appear
together in a rule in P . Similar, the primal graph GΠ = (V,E) of Π
(non-ground) is a graph with V = pnam(Π), where {p1, p2} ∈ E
iff predicates p1 and p2 with p1 �= p2 appear together in a rule in Π.

Example 3. Consider the non-ground, disjunctive program Π2 :=
{a(X,Y) ∨ p(X,Y)← b(X), c(Y, Z). d(X)← b(X).}. Figure 1
depicts the primal graph GΠ2 and a corresponding TD T of GΠ2 of
the width 3.

3 Grounding LPs via Reduction to ELPs

Before we focus on the complexity of non-ground ELPs, we present
a way to bypass the grounding-bottleneck of LPs via ground ELPs.
This is inspired by recent works [3] on body-decoupled grounding
for normal programs.

To this end, we assume a given non-ground program Π and a setF
of facts. Then, for each predicate p(X) in heads(Π), we use every
instantiation of p(X) and its negation ṗ(X) over dom(Π), result-
ing in atoms AtPred := {p(D), ṗ(D) | p(X) ∈ heads(Π),D ∈
dom(X)}. Similar, we define AtPredC := {pc(X), ṗc(X) |
p(X) ∈ AtPred}.

In the accordance with the semantics of ASP, we require to ensure
(i) satisfiability of a potential model M of Π and (ii) non-existence
of counter witness, i.e., a model C ⊂ M (satisfying (i)) of ΠM .
Notice that, by performing subset minimization, we do not require a
foundedness check as in earlier works. For (i) computing models of
rules, we require atoms AtSatl :={satl, satlr, grlx(d) | r ∈ Π, x ∈
var(r), d ∈ dom(x)}, where satl (satr) indicates satisfiability (of
non-ground rule r) for a potential model l ∈ {ε, c}, where we use
ε for model M and c for a potentially smaller model N . An atom of
the form grlx(d) indicates that for checking satisfiability, we assign
variable x of non-ground rule r to domain value d ∈ dom(x). For
(ii) non-existence of a model N ⊂ M , we require proper subsets.
For this purpose we use AtEq := {eqp(X) | p(X) ∈ AtPred} ∪
{nempty} to intuitively derive equality of a predicate instantiation
for potential models M and N while considering empty candidates.

The overall idea consists of the following parts, which are encoded
as our reductionR, which transforms a disjunctive, non-ground pro-
gram Π into to an epistemic, ground programR(Π) consisting of F
and the rules given in Figure 2. To generate all possible world view
candidates, i.e., our targeted models M , we use Rules (2). For (ii)
we guess possible smaller models N throughout these candidates,
achieved by Rule (3), which results (for each world view candidate)
in an answer set candidate for all possible subsets of the guessed
world view candidates. Then, Rules (4)–(7) trivially derive the equal-
ity of the guessed head predicates ensuring that the guessed mod-
els N only contain proper subsets of models M , where we use
Rules (6) to consider the empty set candidate (which would be re-
moved since no proper subset exists).

We ensure (i) satisfiability of models M through Rules (8), by
Rules (11)–(13), (15) and (17) of Figure 3, where we yield satr
whenever there is an assignment of variables to domain values for
a non-ground rule r ∈ Π. If such an atom can be derived for all non-
ground rules r ∈ Π, we follow sat by Rule (15), which is mandatory
throughout the world view (cf. Rule (9)). Rule (17) applies satura-
tion, causing the assignment of all domain values to every variable.
This way, any WV candidate M is removed if not complying with
(i).

In the same way, we ensure (ii) satisfiability for the potential
models N (proper subsets of M), removing every answer set can-
didate (within each world view candidate) that does not conform
with (i). Notice that, in addition to Rules (11)–(13) and (17), we use
Rules (14) to “satisfy" rules of Π that are removed by the construc-
tion of the GL reduct ΠM . Instead of Rules (15), we use Rules (16)
to consider a potentially empty model for which we do not need
to check for satisfiability of (non-existing) proper subsets. Then,
Rule (10) removes any world view candidate M , where there is
an answer set candidate deriving satc such that we ensure (ii) non-
existence of a model N ⊂ M of ΠM . Intuitively, the only world
view candidates remaining depict models of Π, where none of the

V. Besin et al. / On the Structural Complexity of Grounding 249

Guess Answer-Set Candidates
a← not ȧ ȧ← not a for every h(X) ∈ heads(Π),D ∈ dom(X), a = h(D) (2)
Guess Potentially ⊆-Smaller Models

ac ∨ ȧc ← a for every h(X) ∈ heads(Π),D ∈ dom(X), a = h(D) (3)
Prevent Spuriously ⊆-Smaller Models

eqa ← a, ac for every h(X) ∈ heads(Π),D ∈ dom(X), a = h(D) (4)
eqa ← ¬a for every h(X) ∈ heads(Π),D ∈ dom(X), a = h(D) (5)
nempty← a for every h(X) ∈ heads(Π),D ∈ dom(X), a = h(D) (6)
← nempty, eqa1

, . . . , eqan
for every h(X) ∈ heads(Π), {a1, . . . , an} = {h(D) | D ∈ dom(X)}, 1 ≤ i ≤ n (7)

Ensure Satisfiability of Non-Ground Rules (see Figure 3)
r r′ for every rule r ∈ S(Π), r′ ∈ Sc(Π), where S and Sc are defined in Figure 3 (8)
Prevent Unsatisfied Rules and ⊆-Smaller Models
← not sat (9)
← not ¬satc (10)

Figure 2: ReductionR(Π) from a disjunctive, non-ground program Π to an epistemic, ground program; it relies on Figure 3 through Rules (8).

∨

d∈dom(x)

grlx(d)← for every r ∈ Π, x ∈ var(r) (11)

satlr ← grlx1
(D〈x1〉), . . . , grlx�

(D〈x�〉),¬p
l(D) for every r ∈ Π, p(X) ∈ B+

r ,D ∈ dom(X),X = 〈x1, . . . , x�〉 (12)
satlr ← grlx1

(D〈x1〉), . . . , grlx�
(D〈x�〉), p

l(D) for every r ∈ Π, p(X) ∈ Hr∪{b ∈ B−
r | l=ε},D ∈ dom(X),X=〈x1, . . . , x�〉 (13)

satcr ← grc
x1
(D〈x1〉), . . . , grc

x�
(D〈x�〉), p(D) if l = c, for every r ∈ Π, p(X) ∈ B−

r ,D ∈ dom(X),X=〈x1, . . . , x�〉 (14)
sat← satr1 , . . . , satrn if l = ε,where Π = {r1, . . . , rn} (15)
satc ← nempty, satcr1 , . . . , satcrn if l = c,where Π = {r1, . . . , rn} (16)
grlx(d)← satl for every r ∈ Π, x ∈ var(r), d ∈ dom(x) (17)

Figure 3: Reduction Sl(Π) for encoding satisfiablity of a non-ground program Π into a ground program requiring the use of disjunction through
Rules (11). Thereby, l ∈ {ε, c} is a potentially empty label allowing the usage of S in different contexts.

a(1, 1)← not ȧ(1, 1). a(1, 2)← not ȧ(1, 2). (2)
p(1, 1)← not ṗ(1, 1). p(1, 2)← not ṗ(1, 2).

ȧ(1, 1)← not a(1, 1). ȧ(1, 2)← not a(1, 2).

ṗ(1, 1)← not p(1, 1). ṗ(1, 2)← not p(1, 2).

ac(1, 1) ∨ ȧc(1, 1)← a(1, 1). ac(1, 2) ∨ ȧc(1, 2)← a(1, 2). (3)

pc(1, 1) ∨ ṗc(1, 1)← p(1, 1). pc(1, 2) ∨ ṗc(1, 2)← p(1, 2).

eqa(1,1) ← a(1, 1),¬ac(1, 1). eqa(1,2) ← a(1, 2),¬ac(1, 2). (4)

eqp(1,1) ← p(1, 1),¬pc(1, 1). eqp(1,2) ← p(1, 2),¬pc(1, 2).

eqa(1,1) ← ¬a(1, 1). eqa(1,2) ← ¬a(1, 2). (5)

eqp(1,1) ← ¬p(1, 1). eqp(1,2) ← ¬p(1, 2).
nempty← a(1, 1). nempty← a(1, 2). (6)
nempty← p(1, 1). nempty← p(1, 2).

← nempty, eqa(1,1), eqa(1,2), eqp(1,1), eqp(1,2). (7)

← not sat. ← not ¬satc. (9), (10)

Figure 4:R(Π) with Π from Example 4;R is given in Figure 2.

answer set candidates contains satc, i.e., there is no proper subset N
of the guessed model M (represented by the world view candidate)
which represents a model of ΠM .

Example 4. Consider the non-ground, disjunctive program Π :=
{a(X,Y) ∨ p(X,Y) ← b(X), c(Y, Z).} and facts F :=
{b(1). c(1, 2).}. Grounding the program as described above and
shown in Figure 2, results in the ground program P = R(Π) of Fig-
ures 4–6. The world view candidates that are guessed by the resulting
ground program are checked by the procedure described above, re-
sulting in the two WVs {a(1, 1)} and {p(1, 1)} (when restricted to
symbols of Π) which are equatable with the answer sets of Π.

Theorem 1 (Correctness, �1). Let Π be any disjunctive, non-ground
program. Then, the grounding procedure R on Π is correct, i.e., the
world views of R(Π) restricted to at(G(Π)) match with the answer
sets of G(Π). Precisely, for every world view W of R(Π) there is
exactly one answer set M of G(Π), such that M = {a | a ∈ W ∩
at(G(Π))} holds.

Proof (Idea). =⇒: Let W be a WV ofR(Π). Then, by Rules (9), we
require that sat ∈ W . From this, one can construct a set M := {a |
a ∈W ∩at(G(Π))}. Then, it remains to show that (i) M is indeed a
model of G(Π) and (ii) that M is a subset-minimal model of G(Π)M ,
i.e., there does not exist a model N of G(Π)M with N � M .
⇐=: Let M be an answer set of G(Π). First, we construct

N := {¬a, ȧc,¬ac, ȧ | h(X) ∈ heads(Π),D ∈ dom(X), a =
h(D), a /∈ M}, which collects those head atoms that are not
in M . From this we construct a set I := M ∪ N ∪ {¬satc} ∪
{sat, satr, grx(d) | r ∈ Π, x ∈ var(r), d ∈ dom(x)} ∪ {nempty |
M �= ∅} ∪ {eqa | a ∈ at(G(Π)) \M}. It remains to show that I
can be extended by a subset S′ of S := {satcr,¬satcr | r ∈ Π}, i.e.,
I ∪ S′ is a WV ofR(Π).

Theorem 2 (Runtime). Let Π be any disjunctive, non-ground pro-
gram, where every predicate has arity at most a. Then, the ground-
ing procedure R on Π is polynomial, i.e., runs in time O(‖Π‖ ·
|dom(Π)|a).

Proof (Sketch). ReductionR constructsO(‖Π‖ · |dom(Π)|a) many
Rules (2) and (3) of constant size for guessing candidates. For
preventing spuriously smaller models O(‖Π‖ · |dom(Π)|a) many
Rules (4), (5) and (6) of constant size, as well as one Rule (7) of size

1 Proofs marked with “�” are detailed in the appendix of the paper.

V. Besin et al. / On the Structural Complexity of Grounding250

grX(1). grY (1) ∨ grY (2). grZ(1) ∨ grZ(2). (11)
satr ← grX(1),¬b(1). (12)
satr ← grY (1), grZ(1),¬c(1, 1). satr ← grY (1), grZ(2),¬c(1, 2).
satr ← grY (2), grZ(1),¬c(2, 1). satr ← grY (2), grZ(2),¬c(2, 2).
satr ← grX(1), grY (1), a(1, 1). (13)
satr ← grX(1), grY (2), a(1, 2). satr ← grX(1), grY (1), p(1, 1).

satr ← grX(1), grY (2), p(1, 2).

sat← satr. (14)
grX(1)← sat. grY (1)← sat. grY (2)← sat. (17)
grZ(1)← sat. grZ(2)← sat.

Figure 5: S(Π) with Π from Example 4, guided by S of Figure 3.

grc
X(1). grc

Y (1) ∨ grc
Y (2). grc

Z(1) ∨ grc
Z(2). (11)

satcr ← grc
X(1),¬bc(1). (12)

satcr ← grc
Y (1), grc

Z(1),¬c
c(1, 1). satcr ← grc

Y (1), grc
Z(1),¬c

c(1, 2).

satcr ← grc
Y (2), grc

Z(1),¬c
c(2, 1). satcr ← grc

Y (2), grc
Z(1),¬c

c(2, 2).

satcr ← grc
X(1), grc

Y (1), ac(1, 1). (13)

satcr ← grc
X(1), grc

Y (2), ac(1, 2).satcr ← grc
X(1), grc

Y (1), pc(1, 1).

satcr ← grc
X(1), grc

Y (2), ac(1, 2).

satc ← satcr, nempty. (16)

grc
X(1)← satc. grc

Y (1)← satc. grc
Y (2)← satc. (17)

grc
Z(1)← satc. grc

Z(2)← satc.

Figure 6: Sc(Π) with Π from Example 4, guided by S of Figure 3.

O(|Π|) are constructed. For the sub procedure Sl in Rules (8), we
require: O(‖Π‖ · a) many Rules (11) of size |dom(Π)|, O(‖Π‖ ·
|dom(Π)|a) many Rules (12), (13) and (14) of size O(a), one
of each Rule (15) and (16) of size O(‖Π‖), as well as O(‖Π‖ ·
|dom(Π)|) many Rules (17) of constant size. Further, the reduc-
tionR constructs one Rule (9) and (10) of constant size.

4 Treewidth-Aware Grounding and its Limits

Despite the high complexity of grounding, there is a way to circum-
vent hardness, by tackling the complexity by means of structural pa-
rameters. First, we provide precise treewidth guarantees for ground-
ing, where we show how grounding increases the treewidth of a non-
ground (E)LP. Then, we further improve this result. Finally, we show
that this treewidth-increase is ETH-tight, i.e., assuming ETH, a sig-
nificant improvement would be unexpected. As a result, this yields
precise runtime bounds for the consistency of non-ground (E)LPs,
when considering treewidth, and matching lower bounds that are
asymptotically tight under ETH.

4.1 Utilizing Treewidth for Grounding

In order to mitigate the complexity results of the previous section,
we adapt our above grounding procedure to obtain treewidth guar-
antees for programs over fixed arity a and with respect to a certain
domain size d. This allows us to show the impact of treewidth for
body-decoupled grounding, thereby also establishing new general re-
sults for grounding and treewidth. To this end, we assume that each
predicate only appears constantly often in a rule, formalized as fol-
lows.

Definition 1 (Structure Preservation). Let c ≥ 0 be a con-
stant and Π be a non-ground logic program. Then Π is structure-

preserving, whenever for every r ∈ Π and every predicate p ∈
pnam(preds(Π)), |{p(X) | p(X) ∈ preds({r})}| ≤ c.

Note that this structure preservation is indeed not a hard re-
striction, since one can easily replace each such predicate occur-
rence p(X) in a rule r by a fresh predicate p′(X). Then one adds
the rule p(X) ← p′(X) if p(X) ∈ Hr , otherwise, i.e., if p(X) ∈
B+

r ∪ B−
r , rule p′(X) ← p(X) is added. However, by requiring

structure preservation, we prevent structural dependencies to become
“hidden” in a way where extra dependencies cannot be broken or
avoided (not even by body-decoupled grounding). This is demon-
strated below.

Example 5. Consider a program Π where a predicate p occurs fre-
quently in the body of a rule, as shown in Figure 7. The primal graph
for the output yielded by traditional grounders forms a connection
between each instantiated body-predicate p as well as each instan-
tiated head-predicate. This way all atoms will appear in a clique in
the primal graph, yielding tree decomposition bags of size linear in
the instance size (cf. Fig. 7 (middle)). While reduction R decouples
body-predicates by design (cf. Fig. 7 (right)), variable allocations
still emerge together through decoupled rules. This can lead to high
treewidth as any tree decomposition requires a bag for all variable
allocations appearing together in a rule. However, as long as single
predicates occur only constantly often in the body of a rule, this is
mitigated to a constant boundary.

In the remainder of this section we assume a given structure-
preserving program Π and a TD T = (T, χ) of GΠ. Before we
commence with the formal description, we define for a node t in T
the (non-ground) bag program Πt ⊆ Π as any fixed subset of the
program {r ∈ Π | preds(r) ⊆ χ(t)} such that Π=

⋃
t′ in T Πt′ ,

i.e., (i) every rule r ∈ Π appears in at least one bag program. Fur-
ther, for simplicity we assume (ii) |Πt| ≤ 1, which can be achieved
by copying nodes in T .

Example 6. Recall the program Π2 from Example 3 and Figure 1
depicting a corresponding TD T . The bag programs are Πt1 =
{a(X,Y) ∨ p(X,Y) ← b(X), c(Y, Z).} and Πt2 = {d(X) ←
b(X).}.

For our treewidth-aware reduction Rtw, we assume a given non-
ground program Π, a setF of facts and a tree decomposition T of the
given program. Based on the idea of dynamic programming, the tree
can then be traversed in post-order, where at each node information
is gathered, i.e., at every node the answer sets of the corresponding
bag programs are computed, which is then interpreted accordingly.
To this end, we illustrate treewidth-aware variants Stw and Rtw in
Figure 8 and 9.

While the overall idea remains as earlier described, the following
rules are replaced to incorporate the idea of tree decomposition. For
checking satisfiability, we replace Rules (15) (and (16)) of S with
Rules (18) (and (19) respectively) in Stw, where, in comparison to
the earlier introduced reduction, rules of the bag program as well as
the satisfiablity of child nodes of the TD are incorporated. Similar, we
replace Rules (7) ofR with Rules (20)–(21) inRtw, which addition-
ally includes the equality of child nodes. Lastly, the treewidth-aware
sub-procedure Stw is incorporated through (22).

Theorem 3 (Treewidth-Aware Decoupling). Let Π be a non-ground,
disjunctive, structure-preserving program over domain size d =
|dom(Π)| and constant arity a, where T is a TD of GΠ of
width k. ReductionRtw(Π, T) is treewidth-aware, i.e., the treewidth
of GRtw(Π) is bounded by O(d · k).

V. Besin et al. / On the Structural Complexity of Grounding 251

r1: h1(U1) ← p(V1, V2), . . . , p(Vn−1, Vn)

...

rm: hm(Um) ← p(Vn+1, Vn+2) . . . , p(Vm−1, Vm)

h1(DU1)

p(DV1 ,DV2)

...

p(DVn−1 ,DVn)

. . .

p(DV1 ,DV2)

...

p(DVn−1 ,DVn)

satr1

p(DVn−1 ,DVn) . . . p(DVn−1 ,DVn)

grVn−1
(DVn−1) . . . grVn−1

(DVn−1)

grVn
(DVn) . . . grVn

(DVn)

p(DV1 ,DV2). . .p(DV1 ,DV2)

grV1
(DV1). . .grV1

(DV1)

grV2
(DV2). . .grV2

(DV2)

Figure 7: (Left): Example of a program Π := {r1, . . . , rm} where a predicate p occurs frequently in the body of a rule. (Middle): Snippet of
the primal graph for the grounding yielded by G(r1). (Right): Snippet of the primal graph for the output yielded by reductionR(r1).

Treewidth-aware variant of S by replacing Rules (15) and (16) by (18) and (19), respectively
satt ← satt1 , . . . , satt� , satr1 , . . . , satrn for every t in T, if l = ε, chldr(t) = {t1, . . . , t�},Πt = {r1, . . . , rn} (18)
satct ← nempty, satct1 , . . . , satct� , satcr1 , . . . , satcrn for every t in T, if l = c, chldr(t) = {t1, . . . , t�},Πt = {r1, . . . , rn} (19)

Figure 8: Treewidth-aware reduction Sltw(Π, T) for encoding satisfiablity of a non-ground program Π and a TD T =(T, χ) of GΠ into a ground
program requiring the reuse of Rules (11)–(14), and (17). Again, l ∈ {ε, c} is a label allowing usage in different contexts.

Proof. We assume that T =(T, χ) is a nice TD of GΠ of
width k, since one can easily construct a nice TD from
any TD without increasing its width. From this, we will
construct a TD T ′=(T, χ′) of GRtw(Π,T) as follows.
We define χ′ by showing how each bag χ(t) for every
node t is modified accordingly. Let χ′(t) := P ∪ A ∪ S,
where P := {p(D), p(D)c, ṗ(D), ṗ(D)c, eqp(D) | p∈χ(t),
r∈Π, p(X)∈ preds(r),D∈ dom(X)}, A := {grxi

(D〈xi〉),
grc

xi
(D〈xi〉) | p∈χ(t), r∈Π, p(X)∈ preds(r),D∈ dom(X),

X=〈x1, . . . , x�〉, 1≤ i≤ �}, S := {satr, satcr, satt, satct, satt′ ,
satct′ , nempty | r ∈ Πt, t

′ ∈ chldr(t)}. It is easy to see that T ′

is indeed a TD of GRtw(Π,T). Indeed, connectedness holds by
construction. Further, the atoms of Rules (2)–(7) and (9), (10) appear
together in at least one TD node of T ′. Also for Rules (8), one can
easily check that the atoms of the corresponding Rules (11)–(17)
appear in a TD node of T ′.

It remains to show that the (tree)width bound holds. By structure
preservation of Π, we have that ever predicate appears at most c times
in a rule. Consequently, we have that |P | = 5 · c · k · da, |A| =
2 · c · k · da, |S| = |Πt| · 3 · 2 + 1 = 6 · 1 + 1, since |Πt| ≤ 1
and |chldr(t)| ≤ 2. In total, this adds up to O(d · k), since c and a
are constant.

While the increase of treewidth is from k to O(k · d), it turns out
that those parts of the “treewidth-causing” bags that are relevant for
solving can be further decreased to O(k · log(d)). Later, we will
show that for fixed arity a, one cannot significantly improve, i.e., the
treewidth increase is not expected to be in o(k · log(d)), unless ETH
fails, cf., Corollary 2.

4.2 Further Decreasing Structural Dependencies

In order to manifest an increase of solving-relevant parts2 of
treewidth from k to O(k · log(d)), one can utilize bit manipula-
tions. There, instead of atoms of the form grx(e) for each non-
ground variable x and domain value e ∈ dom(x) (see Figure 3),
we use combinations of fresh atoms grix(0) and grix(1) for bit in-
dices 1 ≤ i ≤ �log(|dom(Π)|)�, which indicate that the i-th bit in
the binary representation of e is set to false and true, respectively.

2 Intuitively, these are atoms subject to saturation, see Theorem 4.

This results in larger rules, but smaller bags and in addition to apply-
ing the treewidth-aware variant of Figure 8, one also needs to adjust
Rules (11)–(14) and (17) accordingly. Intuitively, the concept stays
the same, but instead of using grx(e), one addresses a sequence of
�log(|dom(Π)|)� many atoms of the form grix(0) and grix(1).

The complete adjustment is sketched in the appendix of the paper,
which shows reduction S ′

tw(Π, T) that is then used in Rules (22),
resulting in reductionR′

tw(Π, T). Overall, with this adjusted reduc-
tion R′

tw(Π, T) we obtain the following runtime results for a non-
ground program.

Theorem 4 (Upper Bound, �). Let Π be a non-ground, disjunctive,
structure-preserving program over domain size d = |dom(Π)| and
constant arity a, where the treewidth of GΠ is k. Answer set exis-

tence of G(Π) can be decided in time 22
dO(k)

·poly(|preds(Π)|), by
treewidth-aware decoupling.

Proof (Sketch). First, we compute a TD T = (T, χ) of GΠ of
width 5 · k in time 2O(k) · poly(|preds(Π)|), see [8]. Then, we use
reduction P := R′

tw(Π, T) to construct an ELP. This ELP can be
solved using a DP algorithm [22, Listing 2]. This algorithm works for
each node t of T as follows. First, it computes WVIs among those
atoms that appear under epistemic negation, i.e., it is exponential in
the number of atoms in |χ(t) ∩ e-at(P)|. Then, for each computed
WVI I , the algorithm decides for interpretations M in PI ; finally, it
computes interpretations N of (PI)

M
. So, the resulting worst-case

runtime for t boils down to R(t) := 2|χ(t)∩e-at(P)| ·22|χ(t)| ·222
|χ(t)|

,
see [22, Theorem 14].

However, by construction of P, we can draw the following crucial
observation. The atoms in I , which are those appearing in Rules (2),
always appear also in M and N . In other words, there is no need
to decide for those atoms in M and N (just consider I), since the
epistemic reduct of Rules (2) results in facts. Similarly, atoms ac

and ȧc of Rules (3), which are assigned in M , always appear in N
by the semantics via GL reduct; hence, these atoms do not need to
be decided for, when computing N (just take I and M). The same
argument holds for atoms eqa and nempty in Rules (4)–(7).

As a result, when deciding for N , which is the inner-most choice
causing hardness, the only remaining atoms one needs to decide
upon, are atoms of the form sat, satc, satr , satc as well as atoms over
predicates of the form grix and gri,cx . We may assume that the former

V. Besin et al. / On the Structural Complexity of Grounding252

Treewidth-aware variant ofR by replacing Rules (7) and (8) by (20)–(21) and (22), respectively
eqt ← eqt1

, . . . , eqt�
, eqa1

, . . . , eqan
for every t in T, {t1, . . . , t�} = chldr(t), h(X) ∈ χ(t) ∩ heads(Π),
{a1, . . . , an} = {h(D) | D ∈ dom(X)}, 1 ≤ i ≤ n (20)

← eqt, nempty for t = root(T) (21)

r r′ for every rule r ∈ Stw(Π, T), r′ ∈ Sc
tw(Π, T), as defined in Figure 8 (22)

Figure 9: Treewidth-aware reductionRtw(Π, T) from a non-ground program Π and a TD T =(T, χ) of GΠ to an epistemic, ground program.

atoms appear only constantly often in χ(t), see A of the proof of
Theorem 3. For the latter atoms, there only existO(k · log(d)) many

in χ(t). Consequently, we obtain that R(t) = 2k ·22k·d ·222
k·log(d)

=

22
dO(k)

. By applying R(t) for every node in T , the claim fol-
lows.

For tight and normal programs, the runtime for treewidth decreases
by one level of exponentiality. This can be shown by modifying
existing constructions [3], such that one obtains a treewidth-aware
grounding procedure ensuring mild treewidth increases.

Theorem 5 (�). Let Π be a non-ground, normal, structure-
preserving program over domain size d = |dom(Π)| and constant
arity a, s.t. the treewidth of GΠ is k. Then, answer set existence
of G(Π) can be decided in time 2d

O(k) · poly(|preds(Π)|), using
treewidth-aware decoupling.

4.3 Hardness and Limits of Treewidth

Interestingly, under reasonable assumptions in complexity theory, it
is not expected that the result of Theorem 4 can be significantly im-
proved. We show this by reducing from quantified CSP, with known
runtime guarantees and limitations.

Theorem 6 (Lower Bound, �). Let Π be a non-ground, disjunc-
tive program over domain size d = |dom(Π)| and constant ar-
ity a, where the treewidth of GΠ is k. Then, unless the ETH fails,
the existence of an answer set of G(Π) can not be computed in

time 22
do(k)

· poly(|preds(Π)|).

Proof (Idea). The lower bound can be shown by a reduction from
QCSP, where the treewidth is linearly preserved.

The proof construction carrys over to simpler fragments.

Corollary 1 (LB for Tight LPs). Let Π be a non-ground, tight (or
normal) program over domain size d = |dom(Π)| and constant ar-
ity a, where the treewidth of GΠ is k. Then, unless the ETH fails,
the existence of an answer set of G(Π) can not be computed in
time 2d

o(k) · poly(|preds(Π)|).

Theorem 6 yields a general grounding lower bound.

Theorem 7 (TW LB). Let Π be a non-ground, disjunctive pro-
gram over domain size d = |dom(Π)| and constant arity a,
where the treewidth of GΠ is k. Then, unless ETH fails, there can-
not be a grounding procedure, whose running time is in dO(k) ·
poly(preds(Π)), that transforms Π into a ground program P such
that the treewidth of GP is in do(k).

Proof. Assume towards a contradiction that such a grounding pro-
cedure exists and the ETH still holds. Then, however, we apply this
procedure on Π obtaining a ground program, where the treewidth

of GP is in do(k). In turn, we can then decide the consistency of the

ground disjunctive programs in time 22
do(k)

· poly(|at(P)|) using
a known algorithm [17]. So we decide whether an answer set of Π

exists in time 22
do(k)

·poly(|preds(Π)| ·da). In cosequence, by The-
orem 6, ETH fails.

This also yields a lower bound of the treewidth-increase by Theo-
rem 3. The following bound matches the solving-relevant treewidth
part of our reduction, see Theorem 4.

Corollary 2. Let Π be a non-ground, disjunctive program over do-
main size d = |dom(Π)| and constant arity a, where the treewidth
of GΠ is k. Then, under ETH, there is no reduction R to a ground

ELP, running in 22
do(k)·

poly(preds(Π)), such that the treewidth
of GR(Π) is in o(k · log(d)).

5 Conclusion

This work focuses on dealing with the ASP grounding bottleneck
and complexity differences between non-ground and ground logic
programs – two topics that are highly researched in the last decade
and drive the developement of efficient ASP systems. In particular,
we first analyze the idea of generalizing a body-decoupled grounding
approach from normal programs to disjunctive programs, where a set
of non-ground rules can be transformed to an epistemic logic pro-
gram encoding subset-minimization, thereby achieving groundings
being only exponential in the maximum predicate arity. That way,
we are able to translate the ΣP

3 -hard problem (complete for fixed
predicate arity) of deciding whether a disjunctive program admits an
answer set, to the problem of deciding whether a ground epistemic
program admits a world view. This allows us to shift complexity due
to grounding, in the direction of solving. Our presented reduction
thereby bijectively preserves the answer sets, i.e., there is a one-to-
one correspondence between answer sets of the non-ground program
and world views of the epistemic program.

In a further step, we analyze the impact of structure in our ground-
ing approach. By transforming the idea to treewidth, we achieve
precise runtimes, which, surprisingly, show that some parts of the
complexity hide in grounding, as tight and normal (non-ground) pro-
grams are of similar hardness compared to the ground equivalent.
Lastly, we focus on the respective lower bounds, ruling out signifi-
cant improvements.

For future work we plan on evaluating this technique in the prac-
tical sense. For this reason, we expect that a competition and so-
phisticated instances for epistemic programs, designed to reflect the
high-performance requirements of grounding, may help to build and
compare systems in the future. The techniques in this work could
also be useful for other first-order formalisms and might lend itself
well to big data. Further, this work also opens up questions on the ex-
pressiveness and complexity of non-ground ELPs, we aim to settle.

V. Besin et al. / On the Structural Complexity of Grounding 253

Acknowledgments

This research was funded by the Austrian Science Fund (FWF),
grants J 4656 and P 32830, the Society for Research Funding in
Lower Austria (GFF, Gesellschaft für Forschungsförderung NÖ)
grant ExzF-0004, as well as the Vienna Science and Technology
Fund (WWTF) grant ICT19-065.

References

[1] Mario Alviano, Giovanni Amendola, Carmine Dodaro, Nicola Leone,
Marco Maratea, and Francesco Ricca, ‘Evaluation of Disjunctive Pro-
grams in WASP’, in LPNMR’19, volume 11481 of LNCS, pp. 241–255.
Springer, (2019).

[2] Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski, and Torsten
Schaub, ‘Clingcon: The next generation’, Theory Pract. Log. Program.,
17(4), 408–461, (2017).

[3] Viktor Besin, Markus Hecher, and Stefan Woltran, ‘Body-Decoupled
Grounding via Solving: A Novel Approach on the ASP Bottleneck’, in
IJCAI’22, pp. 2546–2552. ijcai.org, (2022).

[4] Manuel Bichler, Michael Morak, and Stefan Woltran, ‘lpopt: A Rule
Optimization Tool for Answer Set Programming’, Fundamenta Infor-
maticae, 177(3-4), 275–296, (2020).

[5] Manuel Bichler, Michael Morak, and Stefan Woltran, ‘selp: A single-
shot epistemic logic program solver’, Theory Pract. Log. Program.,
20(4), 435–455, (2020).

[6] Nicole Bidoit and Christine Froidevaux, ‘Negation by default and un-
stratifiable logic programs’, Theoretical Computer Science, 78(1), 85–
112, (1991).

[7] Bernhard Bliem, Michael Morak, Marius Moldovan, and Stefan
Woltran, ‘The Impact of Treewidth on Grounding and Solving of An-
swer Set Programs’, Journal of Artificial Intelligence Research, 67, 35–
80, (2020).

[8] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fe-
dor V. Fomin, Daniel Lokshtanov, and Michal Pilipczuk, ‘A ck n
5-Approximation Algorithm for Treewidth’, SIAM J. on Computing,
45(2), 317–378, (2016).

[9] G. Brewka, T. Eiter, and M. Truszczyński, ‘Answer set programming at
a glance’, Comm. of the ACM, 54(12), 92–103, (2011).

[10] Francesco Calimeri, Simona Perri, and Jessica Zangari, ‘Optimizing
answer set computation via heuristic-based decomposition’, Theory
Pract. Log. Program., 19(4), 603–628, (2019).

[11] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov,
‘Complexity and expressive power of logic programming’, ACM Com-
put. Surv., 33(3), 374–425, (2001).

[12] Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran,
‘Complexity results for answer set programming with bounded pred-
icate arities and implications’, Annals of Mathematics and Artificial In-
telligence, 51(2-4), 123–165, (2007).

[13] Thomas Eiter, Wolfgang Faber, and Mushthofa Mushthofa, ‘Space ef-
ficient evaluation of ASP programs with bounded predicate arities’, in
AAAI’10. AAAI Press, (2010).

[14] François Fages, ‘Consistency of Clark’s completion and existence of
stable models’, Logical Methods in Computer Science, 1(1), 51–60,
(1994).

[15] Jorge Fandinno and Markus Hecher, ‘Treewidth-Aware Complexity in
ASP: Not all Positive Cycles are Equally Hard’, in AAAI’21, pp. 6312–
6320. AAAI Press, (2021).

[16] Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su, ‘Epistemic
equilibrium logic’, in IJCAI’15, pp. 2964–2970, (2015).

[17] Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan
Woltran, ‘Answer Set Solving with Bounded Treewidth Revisited’, in
LPNMR’17, volume 10377 of LNCS, pp. 132–145. Springer, (2017).

[18] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, ‘Multi-shot ASP solving with clingo’, Theory Pract. Log. Pro-
gram., 19(1), 27–82, (2019).

[19] Michael Gelfond, ‘Strong Introspection’, in AAAI’91, pp. 386–391.
AAAI Press / The MIT Press, (1991).

[20] Markus Hecher, ‘Treewidth-aware reductions of normal ASP to SAT -
Is normal ASP harder than SAT after all?’, Artif. Intell., 304, 103651,
(2022).

[21] Markus Hecher, ‘Characterizing Structural Hardness of Logic Pro-
grams: What makes Cycles and Reachability Hard for Treewidth?’, in
AAAI’23. AAAI Press, (2023). In Press.

[22] Markus Hecher, Michael Morak, and Stefan Woltran, ‘Structural De-
compositions of Epistemic Logic Programs’, in AAAI’20, pp. 2830–
2837. AAAI Press, (2020).

[23] Nicholas Hippen and Yuliya Lierler, ‘Estimating grounding sizes of
logic programs under answer set semantics’, in JELIA, volume 12678
of LNCS, pp. 346–361. Springer, (2021).

[24] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, ‘Which
Problems Have Strongly Exponential Complexity?’, Journal of Com-
puter and System Sciences, 63(4), 512–530, (2001).

[25] Tomi Janhunen, ‘Some (in)translatability results for normal logic pro-
grams and propositional theories’, Journal of Applied Non-Classical
Logics, 16(1-2), 35–86, (2006).

[26] Patrick Thor Kahl, Richard Watson, Evgenii Balai, Michael Gelfond,
and Yuanlin Zhang, ‘The Language of Epistemic Specifications (Re-
fined) Including a Prototype Solver’, J. Log. Comput., 25, (2015).

[27] Roland Kaminski and Torsten Schaub, ‘On the foundations of ground-
ing in answer set programming’, CoRR, abs/2108.04769, (2021).

[28] Vladimir Lifschitz and Alexander A. Razborov, ‘Why are there so many
loop formulas?’, ACM Transactions on Computational Logic, 7(2),
261–268, (2006).

[29] Wiktor Marek and Mirosław Truszczyński, ‘Autoepistemic logic’, Jour-
nal of the ACM, 38(3), 588–619, (1991).

[30] David Mitchell, ‘Guarded constraint models define treewidth preserv-
ing reductions’, in CP, volume 11802 of LNCS, pp. 350–365. Springer,
(2019).

[31] Michael Morak, ‘Epistemic Logic Programs: A Different World View’,
in ICLP’19, pp. 52–64, (2019).

[32] Yi-Dong Shen and Thomas Eiter, ‘Evaluating epistemic negation in an-
swer set programming’, Artif. Intell., 237, 115–135, (2016).

[33] Miroslaw Truszczyński, ‘Trichotomy and dichotomy results on the
complexity of reasoning with disjunctive logic programs’, Theory
Pract. Log. Program., 11(6), 881–904, (2011).

[34] Efthymia Tsamoura, Víctor Gutiérrez-Basulto, and Angelika Kimmig,
‘Beyond the grounding bottleneck: Datalog techniques for inference
in probabilistic logic programs’, in AAAI’20, pp. 10284–10291. AAAI
Press, (2020).

[35] Antonius Weinzierl, Richard Taupe, and Gerhard Friedrich, ‘Advancing
lazy-grounding ASP solving techniques - restarts, phase saving, heuris-
tics, and more’, Theory Pract. Log. Program., 20(5), 609–624, (2020).

V. Besin et al. / On the Structural Complexity of Grounding254

	Introduction
	Preliminaries
	Grounding LPs via Reduction to ELPs
	Treewidth-Aware Grounding and its Limits
	Utilizing Treewidth for Grounding
	Further Decreasing Structural Dependencies
	Hardness and Limits of Treewidth

	Conclusion

