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Abstract. Using insights from parametric integer linear program-
ming, we improve the work of Bredereck et al. [Proc. ACM EC 2019]
on high-multiplicity fair allocation. Answering an open question from
their work, we proved that the problem of finding envy-free Pareto-
efficient allocations of indivisible items is fixed-parameter tractable
with respect to the combined parameter “number of agents” plus
“number of item types.” Our central improvement, compared to their
result, is to break the condition that the corresponding utility and mul-
tiplicity values have to be encoded in unary, which is required there.
Concretely, we show that, while preserving fixed-parameter tractabil-
ity, these values can be encoded in binary. Thus, we substantially
expand the range of feasible utility and multiplicity values.

1 Introduction

Fairly allocating (indivisible) items [11] is a key issue in a world
of limited resources, which is, for instance, reflected by multiple
application contexts such as distributing food by food banks [41],
university course assignment problems [18], or sharing computing re-
sources [26]. In recent decades, studying fair allocation issues through
the computational lens or, more generally, applying computer science
toolbox [42] proved useful in advancing our knowledge of how to
deal with finding desirable allocations. Examples include popular
tools such as the Adjusted Winner Procedure [14] or the web platform
spliddit.org [27] to name a few.
In this work, we focus on the so-called “high-multiplicity fair

allocation” scenario in which various item types come in multiple
copies. To understand important facets of our research contribution,
let us, however, become more precise on the studied problem and the
most relevant existing results.
We consider a set of item types, each coming with the number of

actual items of this type, and a set of agents who report their non-
negative utilities over each item type. An allocation of items is an
assignment of disjoint sets of the items, called bundles, to the agents.
In our work we first focus on one of the most prominent fairness
concepts which is envy-freeness. It considers an allocation as fair
if there is no agent that would prefer a bundle of any other agent
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over her own one. However, it is trivial to achieve envy-freeness
by giving every agent an empty bundle. To circumvent this issue,
several “efficiency” measures of allocations have been proposed. A
very important one, Pareto-efficiency, requires that for an efficient
allocation there exists no other allocation that is preferred by at least
one agent and, at the same time, does not make any agent worse off.
Combining the aforementioned concepts together, we end up with
so-called envy-free Pareto-efficient allocations on which we mostly
focus in this paper.

Finding envy-free Pareto-efficient allocations is a computationally
very hard problem. For instance, the corresponding decision problem
is ΣP

2 -complete for general utilities [13]. The hardness holds even for
(positive) additive utilities [32]—here, the utility that an agent gets
from a bundle is a sum of utilities that this agent reports for every
item in the bundle. This model, due to its simplicity is frequently
assumed in the scientific social choice literature [12, 14, 39] and also
forms an important part of experimental studies [15, 21]. Notably,
practically relevant tools (like the Adjusted Winner Procedure and the
web platform1 spliddit.org [27]) make use of additive utilities too.

Motivated by a high practical relevance of the problem of find-
ing envy-free Pareto-efficient allocations assuming additive utilities,
Bliem et al. [10] studied its fine-grained computational complexity
providing several parameterized-tractability results. However, they
left open a question whether the subject problem is fixed-parameter
tractable with respect to the (combined) parameter “number of agents
plus number of item types.”2 The question was then answered partially
positively (with the restriction of unary encoded item multiplicities
and utilities) in the work of Bredereck et al. [16].

Our Contribution Our main contribution is to strengthen the previ-
ous result of Bredereck et al. [16] by providing an algorithm offering

1 The spliddit.org webpage is currently (April 2023) unavailable. However,
a github repository with the software is available at https://github.com/
jogo279/spliddit.

2 Technically, the open question was formulated for the parameter n+ udiff,
where udiff denotes the number of different values in the utility functions.
This parameter can easily be seen to be equivalent to our parameter n+m
in terms of fixed-parameter tractability. Note that Bliem et al. [10] used
the variable namem for the number of items and showed fixed-parameter
tractability for this parameter.

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230284

303



better computational complexity lower-bound guarantees for find-
ing envy-free Pareto-efficient allocations. To this end, applying tech-
niques from parametric integer linear programming, we generalize
their fixed-parameter tractability result regarding the parameterization
by the number of agents and the number of item types. Specifically,
we relax the requirement of unary encoded item multiplicities and
utilities thereby allowing binary encodings.
Our result expands the range of values that we can deal with ef-

ficiently in the case of small numbers of agents and item types. Ar-
guably, the case is quite relevant in practice, as all scenarios in the
experimentally studied [15] data from spliddit.com [27] mostly con-
sidered at most 8 agents and 10 item types (with very few instances
having at most 15 agents and 30 item types). Additional examples
could include stock inheritance. Here, a portfolio consisting of around
30 companies (item types) is commonly advised by the experts. As
the portfolio value grows, the number of share units (item multi-
plicities) of each company to share in the inheritance process can
easily reach thousands. For such scenarios, algorithms guaranteeing
fixed-parameter tractability for binary encoding of item multiplicities
are a better bet for obtaining practically relevant running times than
algorithms assuming unary encoding.
Furthermore, similarly to their result, our technique is applicable

to a broad family of allocation problems emerging from different
desiderata chosen to represent fairness (e.g., (group) envy-freeness,
(group) envy-freeness up to one good, (group) envy-freeness up to
any good, maximin share) and efficiency (e.g., completeness, welfare
maximization, group Pareto-efficiency).

Overall, providing our result, we mainly contribute to the improve-
ment of algorithmic tools allowing for searching provably fair and
efficient allocations of indivisible items. Notably, our technique does
not only allow for answering the question of the existence of fair and
efficient allocations but it outputs such an allocation if it exists.

1.1 Related Work

Our work brings together the two worlds of fair allocations and pa-
rameteric Integer Linear Programs. Hence, we split the discussion of
the related work into two parts organized thematically. We note that
due to a flurry of literature dealing with fair allocations, we only focus
on the works most relevant to ours.

Efficient and Envy-free Allocations of Indivisible Resources.

Bouveret and Lang [13] were the first to study the computational
complexity of computing Pareto-efficient and envy-free allocations
of indivisible items in a systematic way. Their findings include ΣP

2 -
completeness for the so-called monotonic dichotomous preferences
as well as NP-hardness and polynomial-time solvability for several
special cases. Most relevant to our setting with additive utility-based
preferences, they showed that even if there are just two agents or if
every agent assigns either utility value 0 or 1 to each item, the problem
of finding a Pareto-efficient and envy-free allocation remains NP-hard.
Moreover, de Keijzer et al. [32] showed that ΣP

2 -completeness even
holds for positive additive preferences. Bliem et al. [10] analyzed
the parameterized complexity, showing that the problem becomes
tractable for the parameter “number of items” and various special
settings but remains intractable for the parameter “number of agents.”

Multiple approaches have been developed to relax fairness concepts
in order to circumvent computational intractability as well as possible
non-existence of Pareto-efficient and envy-free allocations. For in-
stance, Lipton et al. [36] considered the concept of envy-freeness up to

one good (EF1). Herein, every agent compares its bundle with the bun-
dles of all other agents and she is envious if any other bundle minus
the most valuable item in there is better than her own bundle. Further
studied concepts include envy-freeness up to any good (EFX) [19, 37],
minimum envy [36], group envy-freeness, group Pareto-efficiency [2],
or graph envy-freeness [1, 9, 17, 4]. Amanatidis et al. [3] provide a
comparison of approximate or relaxed fairness notions.
Caragiannis et al. [19] showed how to compute an allocation that

maximizes Nash welfare and thus yields Pareto-efficiency and EF1.
Barman et al. [8] improved this result and developed an algorithm that
computes an allocation that is Pareto-efficient and EF1 with pseudo-
polynomial running time (being polynomial in the number of agents,
the number of items, and the maximum utility). While a round-robin
allocation of items can be used to obtain a complete EF1 allocation in
polynomial time when all items have positive utilities, Aziz et al. [5, 6]
have argued that this procedure fails when items may have negative
utilities. Leaving the complexity of computing Pareto-efficient and
EF1 allocation (when negative utilities are allowed) open, they showed
that a complete EF1 allocation can be found in polynomial time even
when items with negative utilities are present.

The setting of high-multiplicity items (where items come in mul-
tiple copies) deserves a separate treatment. Copies of items played
an important role in the seminal work of Budish [18]. However, there
each agent’s bundle was assumed to have to at most a single copy of a
given resource (this follows from the fact that the author was focusing
on an assignment problem, like assigning students to courses). Later,
Gafni et al. [24] proposed a framework for studying the existence of
EFX allocations in this model. The setting where an agent can obtain
more resources of the same type was, to the best of our knowledge,
first considered by Bredereck et al. [16] (on whose work we improve
on). They establish a theoretical ILP-based framework for computing
various types of efficient and fair allocations. The framework was
later implemented and tested on real-data by Bredereck et al. [15].
Implicitly, the high-multiplicity setting is also present in the work
of Eiben et al. [22]. They study parameterized complexity of finding
graph envy-free allocations considering a parameterization (among
others) by the number of item-types. The high-multiplicity regime has
also been reinvented by Gorantla et al. [28] in the context of studying
the conditions under which EF1 allocations exist.

Parametric ILP Aplications. Eisenbrand and Shmonin [23, Theo-
rem 4.2] gave an algorithm that, if the number of variables is fixed,
solves the given instance of Parametric ILP (PILP) in polynomial
time (we formally define PILP in the Preliminaries). Köppe et al. [34]
showed that one can express the negation of bilevel integer programs
(a family of certain linear programs) as PILP and used the result of
Eisenbrand and Shmonin to obtain polynomial-time solvability of
bilevel integer programs in some restricted cases.
To the best of our knowledge, Crampton et al. [20, Corollary 2.2]

were the first to give an “interpretation” of the result of Eisenbrand and
Shmonin [23] in terms of parameterized complexity analysis. More
specifically, they showed membership in the complexity class FPT,
that is, they showed a running time f(p, n) · |I| for an instance I
of PILP provided that the coefficients of the matrix A are encoded
in unary. Using this result Crampton et al. [20] initiated the parame-
terized study of the so-called resiliency problems (such as the RE-
SILIENCY CLOSEST STRING problem).
Knop et al. [33] used the interpretation of Crampton et al. [20] to

solve a decade-long-standing open question of FPT-membership of a
variant of the BRIBERY problem in the field of elections manipulation.
Recently, Bredereck et al. [16] also used the interpretation of Cramp-
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ton et al. [20] in the context of fair allocation. More specifically, they
showed [16, Corollary 5] that finding a fair and efficient allocation
is fixed-parameter tractable for few agents and few item types. The
result holds for numerous different concepts of fairness and efficiency.
Yet, their result holds only when the maximum utility value an agent
assigns to an item type and item multiplicities are encoded in unary.
As we shall shortly see, we are improving upon this result by allowing
item multiplicities to be encoded in binary.

1.2 Organization

In the following Section 2, we first give necessary notation and for-
mal preliminaries regarding allocations, parameterized complexity,
and parameterized integer linear programs. Then, in Section 3, we
lay foundations for proving our main result by presenting a conve-
nient interpretation of Theorem 4.2 from the work of Eisenbrand
and Shmonin [23] (our interpretation is more detailed than the one
provided by Crampton et al. [20]). We proceed with formally stating
our result and proving it in Section 4. Later, in Section 5 we discuss
how to extend our main result to cover multiple further prominent
fairness and efficiency concepts. In the last section (Section 6) we
give conclusions.

2 Preliminaries

For a positive integer n, by [n] we denote the set {1, 2, . . . , n}. We
use boldface letters, like x,y, to represent vectors. A vector x consist-
ing of n coordinates is said to be in n dimensions or n-dimensional
and we denote its i-th coordinate, i ∈ [n], by xi. For two vec-
tors x and y in dimensions nx and ny respectively, vector (x,y)
is a (nx + ny)-dimensional vector (x1, . . . , xnx , y1, . . . , yny ). We
symbolically denote some real matrix A with n rows and m columns
by A ∈ Rn×m. We treat n-dimensional vectors as matrices with
n rows and 1 column. A polyhedron is an intersection of half-spaces,
that is, for some dimensionsm and n, a polyhedron is a set {x ∈ Rn :
Ax ≤ b} of vectors, for some A ∈ Rm×n and b ∈ Rm. Similarly,
assuming the same notation and defining Ā and b̄ analogously, a
partially open polyhedron is an intersection of half-spaces and open
half-spaces, that is, a set {x ∈ Rn : Ax ≤ b, Āx < b̄} of vectors.

2.1 Allocations, Envy-Freeness, and Pareto-Efficiency

Consider a set A = {a1, a2, . . . , an} of n agents, a set I =
{1, 2, . . . ,m} of m item types with multiplicities mi for each
item i ∈ I. An allocation π is an integral (n · m)-dimensional
vector π =

(
π1
a1
, . . . , π1

an
, π2

a1
, . . . , πm

an

)
, whose entries describe

for each agent how many items of each item type are allocated to the
agent. For each agent a ∈ A, let ua : I → Z be the agent’s utility
function (in fact, utility values may be rational numbers, in which case
an equivalent problem instance with integral values can be obtained
without loss of generality by multiplying each values by the least
common multiplier of the denominators). We assume the preferences
of the agents to be additive, which means that the utility value for a
set of items is the sum of the items utility values. Thus, we define the
satisfaction of agent a ∈ A from allocation π as

∑
i∈I ua(i) · πi

a;
for brevity, we slightly abuse the notation and denote it by ua(π).
Before we proceed, let us fix a set A of n agents and a set I

of m item types with multiplicities mi for each item type i ∈ I.
Let π be an allocation of the items to the agents inA. In the following
two definitions we provide formal phrasings of envy-freeness and
Pareto-efficiency, which play a central role in our study.

Definition 1. An allocation π of the items I with multiplicitiesmi,
i ∈ I, to agents A is envy-free if there is no two agents a ∈ A
and a′ ∈ A such that ua(π) <

∑
i∈I ua(i) · πi

a′ .

Definition 2. An allocation π of the items I with multiplicitiesmi,
i ∈ I, to agents A is Pareto-dominated if there exists another al-
location π′ (over the same sets of agents and items together with
their multiplicities) such that for every agent a ∈ A it holds
that ua(π

′) ≥ ua(π) and for at least one agent the inequality is
strict. An allocation is Pareto-efficient if it is not Pareto-dominated.

In our work, we focus on a decision problem in which we ask
whether for given sets of agents and resources, an allocation that is
simultaneously envy-free and Pareto-efficient exists.

Input: A set A of n agents, a set I of m item types,
agent utilities ua : I → Z for every a ∈ A, and
item multiplicitiesmi ∈ N for each i ∈ I.

Question: Is there an envy-free Pareto-efficient allocation?

EEF–ALLOCATION

The name of the problem, standing for “efficient envy-free” allo-
cation might be misleading in the light of the fact that in the litera-
ture “efficiency” has multiple embodiments (besides Pareto-efficiency,
perhaps the most frequent ones are completeness or social welfare
maximization). However, for clarity, we decided to keep the name as
defined by Bouveret and Lang [13] and then consequently used by
the follow-up works [10, 16].

2.2 Parameterized Complexity

A parameterized (decision) problem’s input consists of a decision
problem instance I and a parameter value k; the task is then to de-
cide whether (I, k) is a “yes”-instance. We say that a parameterized
problem is fixed-parameter tractable with respect to k (belongs to the
class FPT with respect to k) if there is an algorithm deciding (I, k)
in f(k) · poly(|I|) time, where |I| is the size of the input and f(k) is
an arbitrary computable function of parameter k. Intuitively, the expo-
nential blow-up is then related only to the value of parameter k, which
allows for efficient computation of the problem if k is small. The
following proposition describing a relation between various functions
values will come handy later.

Proposition 1 ([29, Lemma 3.10]). For every two computable func-
tions g : N → N and h : N → N with g(n) = o(log(n)), there exists
a computable function f : N → N such that for every k and n we
have 2g(n)h(k) ≤ f(k) · n.

2.3 Parametric Integer Programming

For a rational polyhedron Q ⊆ Qm+p, the integer projection of Q,
denoted by Q/Zp, is a collection of all vectors b ∈ Rm for which
there exists an integral vector z ∈ Zp such that (b, z) ∈ Q. Thus,
formally

Q/Zp := {b ∈ Q
m : (b, z) ∈ Q for some z ∈ Z

p} .

Parametric Integer Programming (PILP) is the following problem.
Given a matrix A ∈ Qm×n and a rational polyhedron Q ⊆ Qm+p,
decide if for all vectors b ∈ Qm in the integer projection of Q, the
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system of inequalities Ax ≤ b has an integral solution. In other
words, one has to decide the validity of the sentence

∀b ∈ Q/Zp ∃x ∈ Z
n : Ax ≤ b . (PILP)

Intuitively, PILP consists of a collection of integer linear programs
defined by A and right-hand side vectors b, where the latter ones
come from the integer projectionQ/Zp. The question then is whether
each of these integer linear programs has some feasible solution. The
PILP problem is complete for the class Πp

2 [40, 43].

3 Preparation for Main Result

We devote this section to describe important consequences resulting
from the work of Eisenbrand and Shmonin [23, Theorem 4.1 and
Theorem 4.2]. Most importantly, their results allow for efficiently
solving PILP subject to additional constraints. As it will turn out, we
are able to formulate EEF–ALLOCATION in a way that respects these
constraints. Yet, before we show the formulation in Section 4, we
discuss the aforementioned consequences in detail and present them
formally in Proposition 2.

Despite theΠp
2-completeness of the PILP problem, Eisenbrand and

Shmonin [23, Theorem 4.1 and Theorem 4.2] gave a polynomial-time
algorithm for PILP for the fixed number of variables and dimension n
(their work extended the pioneering—to the best of our knowledge—
works of Kannan [30, 31] on efficient algorithms for PILP). An
analysis of their algorithm leads to the following Proposition 2; we
discuss its details afterwards.

Proposition 2. There is an algorithm deciding the sentence (PILP)
in

f(m,n, p) · φh(n) · poly(L)
time, where φ is the size (encoding length) of any column in A, L
is the encoding length of the sentence and (the description of) the
polyhedron Q, and f and h are computable functions. Moreover, if
the sentence (PILP) is not valid, then a certificate b ∈ Q is provided
(i.e., Ax ≤ b has no integral solution with such a b).

Proposition 2 essentially follows from an in-depth analysis of a
known result [23, Theorem 4.2]. A similar investigation has also been
provided by Crampton et al. [20]. However, we decided to slightly
adjust it to our needs and hence we present it in more detail. Since
Proposition 2 plays an important role in our result, we believe that
discussing its argument explicitly is important for the completeness
of our paper.

In the algorithm backing Proposition 2, we first utilize the Fourier–
Motzkin elimination procedure to make sure that for all b ∈ Q the
system Ax ≤ b has a fractional solution. If this is not the case, then
a corresponding vector b is reported which certifies the right-hand
side vector for which the PILP sentence has no solution. Running
this procedure for all b ∈ Q yielding the corresponding integer linear
programs Ax ≤ b, requires solving f ′(m,n) many mixed integer
linear programs in dimension p. This can be done in pO(p) poly(L)
time using Lenstra’s celebrated result [35] about solving integer linear
programs in bounded dimensions.
Second, we partition the polyhedron Q into t partially open poly-

hedrons Si, i ∈ [t]. Due to a result by Eisenbrand and Shmonin [23,
Theorem 4.1], the number t of partially open polyhedra Si, i ∈ [t], is
expressed (using helper constants ω̄(n) and h(n), which we describe
below) as

t = O
((

m2nφn−1)nω̄(n)
)
= f ′′(m,n) · φh(n) .

Here, ω̄(n) = Πn
i=1ω(n), where ω(n) is the constant from the

flatness theorem (the current best value is ω(n) = O(n3/2) [7]),
and h(n) = n(n − 1) · ω̄(n). Importantly, Eisenbrand and
Shmonin [23, Theorem 4.1] show that each Si, i ∈ [t], is an integer
projection of some partially open polyhedron S′

i, that is Si = S′
i/Z

�i ;
additionally they show that �i = O(ω̄(n)), i ∈ [t]. Lastly, the result
of Eisenbrand and Shmonin [23, Theorem 4.1] gives, for each i ∈ [t],
a collection of ki = f ′′′(n) specific transformations Tij , for j ∈ [ki].
The transformations are very specific in the sense that for each b ∈ Si

there is an integral point in the polyhedron Pb := {x : Ax ≤ b}
if and only if Tij(b) ∈ Pb for some j ∈ [ki]. The negation of
this condition can be verified using a mixed integer linear program
for each i ∈ [t]; such an ILP has (ki + 1)n + �i + p integral
variables. It holds that if the input sentence (PILP) is not valid,
then one of the above mixed ILPs is feasible; thus, again, provid-
ing the claimed certificate b. Carefully inspecting the two parts of
the above-sketched algorithm reveals that it runs in the requested
f(m,n, p) · φh(n) · poly(L) time.

4 Finding EEF–Allocations via PILP

The interpretation of Theorem 4.2 of Eisenbrand and Shmonin [23]
presented in Section 2 contains an important bit. Specifically, we
observed that it is possible to derive a certificate of infeasibility of a
given PILP sentence. This inspired us to consider the following rea-
soning, which we employ to derive our result about finding envy-free
and Pareto-efficient allocations. Instead of focusing directly on EEF–
ALLOCATION, we decided to work with the complementary problem.
This way, by obtaining the certificate of infeasibility for the comple-
mentary problem, we in fact get a (membership) certificate for the
original problem. In more details, we think of a problem of deciding
whether “every envy-free allocation is Pareto-dominated.” If such a
sentence is invalid, then a certificate proving it is an envy-free al-
location that cannot be Pareto-dominated. It is worth pointing out
that due to the certificate, we do not only answer the question posed
by EEF–ALLOCATION but we also find an envy-free and Pareto-
efficient allocation, which makes our approach constructive.
The method described above leads us to the main contribution of

our work, which strengthens Corollary 5 of Bredereck et al. [16] about
fixed-parameter tractability of EEF–ALLOCATION with respect to
the combined parameter “number of agents plus number of items.”
Therein, the authors devise the negation of EEF–ALLOCATION in a
similar spirit to ours (however, their approach is fundamentally differ-
ent as it is based on analyzing a collection of improving steps among
which none can be added to improve a given allocation) employing
the big-M method to do so. We avoid this method, which (as used
in the mentioned paper) forces a unary encoding of the input item
multiplicities and utility values, arriving at our Theorem 1, which
offers the same computational complexity guarantees but does not
require the unary encoding of the discussed input elements.

Theorem 1. Let I be an instance of the EEF–ALLOCATION problem
with the maximum input utility value umax = 2o(log |I|). Then, there
is an algorithm that decides I in f(m+ n) · poly(|I|) time, for some
computable function f : N → N and |I| being the size of I .

Before we proceed with proving Theorem 1 in the following Sec-
tion 4.1, we remark that our technique also applies to other variants
of EEF–ALLOCATION where we replace envy-freeness or Pareto-
efficiency with related concepts. We devote a separate section (Sec-
tion 5) to a detailed discussion about these additional applications.
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4.1 Proving the result

Employing Proposition 2, we now show how to efficiently solve the
EEF–ALLOCATION problem for the (combined) parameter “number
of agents plus number item types,” obtaining a proof of Theorem 1.
From now on, we fix a setA of n agents and a set I = {1, 2, . . . ,m}
ofm item types with multiplicitiesmi, i ∈ I.
As already discussed, we show the FPT-membership of EEF–

ALLOCATION for the parameter n+m by constructing a PILP sen-
tence deciding whether every envy-free allocation of a given collection
of items is dominated by some other allocation. The high-level idea is
as follows. We first construct the PILP sentence (which essentially
corresponds to the matrix A in Formula (PILP)) assuming that we
have a polyhedron Q that describes all envy-free allocations. Then
we show how to construct the polyhedron Q such that it meets our
assumptions. (In fact, the polyhedron also contains additional techni-
cal parts needed to represent that there is an allocation that dominates
some allocation from the polyhedron.) Eventually, we use the results
from Proposition 2. Starting our proof with assuming that we have
polyhedronQ and showing its construction later is due to the fact that
the former will develop our intuition how the polyhedron Q should
look like. Before we go ahead with the proof, we recall that an al-
location x consists of entries xa

i , for each agent a ∈ A and item
type i ∈ I, with the meaning “we give xi

a items of item type i to
agent a.”

Describing Domination of Allocation with Matrix A. Let us
assume such a polyhedron Q that we have (b, z) ∈ Q, where z is
an allocation (we do not discuss b as it is still to be defined in the
next point of the proof where we construct a proper Q). Our aim
is to design a matrix A such that Ax ≤ b if and only if x is an
allocation that dominates z. We first focus on constraints enforcing
that x is a proper allocation (not necessarily allocating all items to
the agents; this will be guaranteed later due to the requirement of
Pareto-efficiency).

∑
a∈A

xa
i ≤ mi ∀i ∈ I (1)

xa
i ≥ 0 ∀a ∈ A, ∀i ∈ I (2)

Condition (1) ensures that x does not allocate “more items than avail-
able,” while Condition (2) guarantees that each agent a ∈ A is al-
located a non-negative number of items by x. It is now not hard to
see that x satisfies Conditions (1) and (2) if and only if x is a valid
allocation.
Thus, it remains to model that x Pareto-dominates z. One can do

so with the following system of inequalities. Note that on the right-
hand side we use the (entries of the) vector z; we do so for brevity
of our proof. In the final PILP sentence the right-hand side must be
defined by b and we will indeed use the insights from the following
inequalities to define b (as a part of defining Q) in the next step of
our proof.

∑
i∈I

ua(i) · xa
i ≥

∑
i∈I

ua(i) · zai ∀a ∈ A (3)

∑
a∈A

∑
i∈I

ua(i) · xa
i ≥ 1 +

∑
a∈A

∑
i∈I

ua(i) · zai (4)

The system of inequalities above guarantees that x dominates z if
and only if it satisfies Conditions (3) and (4). Note that Condition (3)
ensures that the total utility of each agent a ∈ A in allocation x is at
least as good as that of agent a in allocation z. Furthermore, given the

above, the condition described by Inequality (4) ensures that there is
at least one agent a ∈ A for whom it holds that

∑
i∈I ua(i) · xa

i >∑
i∈I ua(i) · zai , that is, whose utility is greater in allocation x than

that in z.

The Polyhedron Q. We now aim at designing an appropriate poly-
hedron Q, existence of which we (only) assumed in the first step.
Given the above discussion and Conditions (1)–(4), we have that the
claimed b is in dimensionm+mn+n+1, that is b ∈ Qm+mn+n+1.
Indeed, the summands in b’s dimension expression come directly
from the numbers of inequalities in, respectively, Conditions (1)–(4).
Since we assumed that z is an allocation, we have z ∈ Zmn by
definition. Overall, it must hold that Q ⊆ Qm+2mn+n+1.
Let us now split the vector b = (b1,b2,b3, b4) according to

Conditions (1)–(4) above—that is, b1 is the vector of right-hand sides
coming from Condition (1) and so forth. Based on the first two subject
conditions, we thus have

b1 = m , (5)

b2 = 0 , (6)

where m is the vector of item multiplicities. Clearly, if we now use
the above-defined b1 and b2 substituting the right-hand sides of,
respectively, Conditions (1) and (2), the meaning of Conditions (1)
and (2) stays intact. More precisely, both conditions still encode the
fact that x is an allocation.
We proceed with constructing vector b3 and the value of b4. To

achieve this, we first ensure that z is an envy-free allocation and then
derive b3 and b4 from this analysis. The following conditions ensure
that z is an envy-free allocation.

∑
a∈A

zai ≤ mi ∀i ∈ I (7)

zai ≥ 0 ∀a ∈ A, ∀i ∈ I (8)
∑
i∈I

ua(i) · zai ≥
∑
i∈I

ua(i) · za
′

i ∀a, a′ ∈ A (9)

Conditions (7) and (8) ensure that z encodes an allocation. These
expressions and hence the argument are analogous to those of Con-
ditions (1) and (2) for x. Further, Condition (9) ensures that z is
envy-free, since the left-hand side is the total satisfaction of agent a
(under allocation z) and the right-hand side is the total value of the
bundle of a′ viewed via the utility function of agent a (that is, the
satisfaction of a if she got the bundle that a′ gets under allocation z).
At the moment, intuitively, Conditions (5)–(9) describe the “part” of
polyhedron Q that defines b1, b2, and z. What remains, is to de-
fine the remaining b3 and v4 in a way that we can use them as the
right-hand sides of Conditions (4) and (3), respectively. We can do
so by binding z to (b3, b4) as follows, thus obtaining the final two
expressions describing polyhedron Q.

∑
i∈I

ua(i) · zai = ba3 ∀a ∈ A (10)

∑
a∈A

∑
i∈I

ua(i) · zai = b4 (11)

Observe that the left-hand side of Condition (10) is exactly the right-
hand side of (3). Similarly, the right-hand side of (11) contains exactly
(up to the constant 1) the right-hand side of Condition (4). Conse-
quently, we can replace the right-hand sides of Conditions (3) and (4)
with the right-hand sides of Conditions (10) and (11) while keeping
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the meaning of the latter unchanged. Observing that in this last step
we defined the whole b in a way that allows us using b in the right-
hand sides of Conditions (1)–(4), we arrive at the next lemma, which
summarizes (and follows) from the above discussion.

Lemma 1. Let Q ⊆ Qm+2mn+n+1 be a polyhedron defined by the
conditions (5)–(11). Then, (b, z) ∈ Q if and only if

• z is an envy-free allocation of the items described by m,
• b is the vector of right-hand sides of Conditions (1)–(4).

We remark that the fact that Conditions (9) and (11) are presented
in a way that the right-hand side is not a constant is not important
in the light of the definition of Q from Lemma 1. Clearly, to obtain
a constant on the right-hand sides it is enough to substract the right-
hand side from both sides starting from the expressions presented in
Conditions (9) and (11).

Using Proposition 2. Having described how to construct the para-
metric ILP representing EEF–ALLOCATION, we finish the proof of
Theorem 1 by applying Proposition 2. More specifically, for a given
instance I of the EEF–ALLOCATION problem, we construct matrixA
and polyhedron Q as described earlier and directly build a parametric
PILP instance I ′ out of them. Then we run the algorithm from Propo-
sition 2 on instance I ′. If the algorithm returns “yes,” then for every
envy-free allocation there exists one that dominates it, so the answer
to the original instance I is “no.” In the opposite case, we know that I
admits some Pareto-efficient envy-free allocation x, so we output
“yes” as an answer to I . Moreover, due to the fact that Proposition 2
guarantees returning a certificate, the “no”-certificate computed by
the algorithm is in fact the envy-free Pareto-efficient allocation x.
It remains to analyze the running time of the invocation of the

algorithm from Proposition 2 on the constructed instance I ′. In the
presented model, described by (1)–(11), forming instance I ′, the di-
mension of x is m · n, where n is the number of agents in I and m is
the number of item types. Hence, the value of parameter p from Propo-
sition 2 is p = m · n. It remains to estimate the parameter φ thereof.
Recall that φ is the maximum encoding length of a column inA, which
is, in our case, the matrix of left-hand sides in Conditions (1)–(4). The
columns of the matrix A are vectors of length mn+ 2m+ 1—this
length is equal to the number of constraints (inequalities) required
to implement these conditions. Hence, there arem(n+ 2) many de-
limiter symbols in the encoding of a single column. Recall that each
such column corresponds to a pair, a single agent a ∈ A and a single
item i ∈ I, and let us fix some pair (a, i). So, in the column of (a, i),
there are 2 ones, one coming from Condition (1) and one from Condi-
tion (2). In addition to this, there are 2 numbers, both equal to ua(i).
Since we assumed a binary encoding, that is ua(i) = 2o(log |I|), we
overall obtain the encoding length 2o(log |I|)+1+m(n+2) of a single
column, which, after dropping the asymptotically irrelevant terms,
gives φ = 2o(log |I|). Due to Proposition 1, we thus get that there is
a function f̂(n) such that φh(n) ≤ f̂(n) · |I|. Applying this value
for φ(h(n)), together with the one for p shown earlier, proves that
the algorithm from Proposition 2 runs in the running time required to
show fixed-parameter tractability of EEF–ALLOCATION with respect
to the parameter m+ n.

5 Generalizing Our Approach

Envy-freeness is an appealing yet demanding concept. Consider a
very simple example of two agents desiring a single item. Already in
this situation an allocation that allocates the item cannot be envy-free.

Hence, there is no nontrivial envy-free allocation of items (recall that
an empty allocation is always envy-free).

The experimental results of Bredereck et al. [15] give empirical ev-
idence that non-existence of envy-free and Pareto-efficient allocations
poses a real threat to applicability of these concepts in real-world
instances. The authors show that there were no envy-free and Pareto-
efficient allocations for 63% of the instances in their dataset from
spliddit.org. The observed phenomenon clearly motivates the need for
general approaches. In practice, in the case of a scenario with no envy-
free and Pareto-efficient allocation, a reasonable algorithm should not
only report the non-existence but also offer a possibly-best alternative
allocation, which yields weaker desiderata. The current state of the
art in the form of both, an extensive literature on envy-freeness relax-
ations (see our Related Work section for the references) and general
frameworks presented by Bredereck et al. [15, 16] strongly suggest
that providing generalizable results is of high value.
Our method meets this criterion and can be used with numerous

other problem variants that aim at finding efficient fair allocations.
Indeed, it turns out that our technique can be applied to the E -EF-
FICIENT F -ALLOCATION problem [16], which is a more general
variant of the EEF–ALLOCATION where Pareto-efficiency is replaced
by some efficiency notion E and envy-freeness is replaced by some
fairness notion F . Formally, the problem, as defined by Bredereck
et al. [16], is as follows.

Input: A set of agents A, a set of item types I , agent
utilities ua : I → Z for every a ∈ A, and item
multiplicitiesmi ∈ N for i ∈ I .

Question: Is there an F-free allocation which is E-
efficient.

E -EFFICIENT F -ALLOCATION

In fact, our approach can be used to show fixed-parameter tractabil-
ity of the above problem with respect to the parameterization by the
number n of agents plus the number m of item types for various
efficiency and fairness notions. Besides relaxed notions of Pareto-
efficiency (e.g., where one only cares about being dominated by allo-
cations to some extent similar to the to-be-dominated one) or relaxed
envy-freeness such as EF1 [8, 19, 36] or EFX [19, 37], our approach
can also deal with generalizations of the concepts of Pareto-optimality
such as such as group Pareto-efficiency [2] or generalizations of envy-
freeness such as graph envy-freeness [17]. Additionally, our method
is adaptable to further somewhat related fairness concepts such as
MaxiMinShare [18, 38] or a basic efficiency concept completeness,
which only requires that all resources are allocated.

Summarizing, with our technique we can show that E -EFFICIENT

F -ALLOCATION is fixed-parameter tractable for parameter n +m
even if item multiplicities and utilities are binary encoded when

• E is a combination of (graph/group) Pareto-efficiency or com-
pleteness, and

• F is a combination of (graph/group) EF, (graph) EF1, (graph)
EFX, MaxiMin, or MaxiMinShare.

To avoid repetitiveness, we refer to the work of Bredereck et al. [16]
on how to model these notions within the ILP framework.

6 Conclusion

We described a somewhat new usage of Parametric ILPs in fixed
dimension in the design of parameterized algorithms, enabling to
improve a previous fixed-parameter tractability result. To the best of
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our knowledge, we are the first to model (and solve) the negation of
a given instance to obtain a solution to the original in the context of
parameterized complexity. Thus, we believe to have contributed to
the, recently gaining increased attention (see, for example, a survey
by Gavenčiak et al. [25]), understanding of how the theory of integer
(linear) programming impacts the theory of parameterized complexity.
We hope our approach leads to further new results in parameterized
algorithms, including applications beyond social choice.
Our work also brings up new challenges and highlights the impor-

tance of some yet unexplored research directions, mostly in the area
of empirical study of efficient and fair allocations of indivisible items.
First of all, given a practically applicable implementation [15] of

the approach of Bredereck et al. [16], it appears valuable to pursue
an empirical study of our approach as well. It is not uncommon that
algorithms with appealing (worst-case) computational complexity
guarantees do not perform that well when applied to real-life instances.
Hence, designing an implementation of our method and comparing it
against the existing methods of computing efficient and fair allocations
is a necessary step in judging the usability of our study in practice.
Performing computational experiments is a natural next step to

gain additional insights into the problem nature (like, a sharp phase
transition in the existence of efficient envy-free allocations reported
by Dickerson et al. [21]). Offering a next tool in the algorithmic
toolbox for seeking fair allocations, we also highlight the need for
further efforts towards obtaining realistic data or, at least, designing
diversified synthetic models of generating allocation instances. By
now, to the best of our knowledge, except for the relatively small
dataset of real-world data from the website spliddit.org [27] and
two very simple synthetic models by Dickerson et al. [21], such
data is lacking. Our method might not only turn out to be useful in
spotting new phenomena of fair allocation instances, but might also
well complement other existing methods to form a robust framework
for finding fair and efficient allocations.
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