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Abstract. We study the computational complexity of identifying
a small agreeable subset of items. A subset of items is agreeable if
every agent does not prefer its complement set. We study settings
in which agents either can assign arbitrary utilities to the items; can
approve or disapprove the items; or can rank the items (in which
case we consider Borda utilities). We prove that deciding whether
an agreeable set exists is NP-hard for all variants; and we perform a
parameterized analysis regarding the following natural parameters:
the number of agents, the number of items, and the upper bound on
the size of the agreeable set in question.

1 Introduction

Consider the following illustrative example: Some agents (e.g. kids,
sponsors) are in a room (e.g. playroom, gallery) that contains some
desirable items (e.g. toys, pieces of art). There is a second room,
which initially contains no items. Assuming that each agent will move
to the second room only when they prefer the items in that room to
those in the first room—what is the minimum number of items one
has to move to the second room to ensure that all agents move to the
second room? How can we identify these items?

The problem that is sketched above is called the Smallest Agreeable
Subset (SAS) problem. Manurangsi and Suksompong [29] discuss its
role and potential applications as a very basic model in the context of
fair division of resources.

Remark 1. While the example above is given mainly for illustration
purposes, we note that SAS has other use cases as well. Generally
speaking, SAS captures a basic stability property that, when not met
by an algorithm that selects a subset of elements, may cause group
members to defect. Indeed, the property of preferring the set that is
selected to the complement set containing the elements that were not
selected relates to envy-freeness in other contexts of resource alloca-
tion. More concretely, other application of SAS include organizing a
trip with a shared luggage, picking prize bundles for winning teams,
or splitting resources for settings with several disjoint communities.

With efficient algorithms in relevant special cases (see our contribu-
tions in Section 1.2 for details), finding smallest agreeable subsets may
become applicable as subroutine for more complex decision-making
processes.

Here we are interested in the computational complexity of SAS;
and, hence, consider the following computational problem:

Problem 1. SMALLEST AGREEABLE SUBSET (SAS)
Input: A set C = {c1, . . . , cm} of items, a set A = {a1, . . . , an} of

agents, each a ∈ A with some utility function ua : 2C → N∪{0},
and an integer k ∈ N.

Question: Is there a subset C′ ⊆ C with |C′| ≤ k such that for every
agent a ∈ A it holds that ua(C

′) ≥ ua(C \ C′)?

In this work, we only study additive utility functions, i.e., where

ua(C
′) =

∑
c′∈C′ ua(c

′) for every C′ ⊆ C

(we slightly abuse notation and overload ua as we hence only spec-
ify ua : C → N ∪ {0}). We analyze the parameterized complexity
of this problem up to efficient and effective data reduction (problem
kernelization) for the presumably most natural parameters, namely
the number n of agents, the number m of items, and the size k of
the agreeable set. Concretely, we consider several types of agent
preferences, all being variants of additive (utility-based) preferences:
general additive preferences, approval preferences (each utility value
is either one or zero), t-approval and t-veto preferences (approval
preferences ensuring that there are exactly t ones or t zeros), and ordi-
nal preferences with Borda utilities. In the case of ordinal preferences
with Borda utilities, each agent has an internal linear ordering of the
items and assigns utilitym− 1 to the most preferred, utilitym− 2
to the second most preferred, and so on.

1.1 Related Work

Based on the fairness notion of envy-freeness, agreeable subsets (e.g.
sets of items that are preferred towards their complements) have been
considered in different variants in the context of fair division [2, 9, 10].
The problem of finding minimum size agreeable subsets (SAS) was
formalized by Suksompong [33], who showed tight upper bounds for
the minimum size of agreeable subsets for monotonic preferences
as well as an approximation algorithm for two or three players for
responsive preferences. Manurangsi and Suksompong [29] developed
efficient approximation algorithms for ordinal preferences over single
items, both for the value oracle preference model and for additive
preferences. Particularly relevant for our work, they showed that
computing a minimum-size agreeable subset is strongly NP-hard
and hard to approximate within a factor of (1− δ) lnn for additive
preferences, making their lnn approximation algorithm for additive
preferences essentially tight. Gourvès [26] introduced an extension
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where the agreeable subset must satisfy extra matroidal constraints.
They show worst-case upper bounds on the size of agreeable subsets,
and approximation algorithms (in particular, they show a constant-
factor approximation for two agents having additive preferences).

To the best of our knowledge, no parameterized complexity results
are currently known for SAS. Yet, several multivariate complexity
studies [19] have recently been performed in the context of computing
envy-free allocations, where, in contrast to SAS, each agent gets its
own bundle of items and compares its value to the bundles of the
other agents. The first work in this context is the work of Bliem et
al. [7] who analyzed the parameterized complexity of computing
envy-free and Pareto-efficient allocations focusing on the parameters
number n of agents, number m of items, and the maximum utility
value z. While other works for different parameters and variants
of envy-freeness and efficiency have been performed [13, 14, 21],
only Bliem [7] provided some insight into the kernelization of the
problem, showing a linear problem kernel with respect to m for
additive preferences and (presumably) non-existence of polynomial
kernels for so-called dichotomous preferences. There is a significant
amount of kernelization results for less closely related collective
decision making problems (with kernels mostly apprearing as side
results) [4, 7, 12, 17, 30, 34]. We note that systematic studies of
problem kernelization, where a set of parameters is systematically
analyzed with respect to existance and quality of problem kernels,
as done for graph modification problems, are still rare in context of
fair division (or generally in the field Computational Social Choice;
see, e.g., Key Question 4 of Bredereck et al. [11]), thus we view our
kernelization results as additional contributions on their own.

1.2 Our Contributions

Our results are summarized in Table 1. Of particular interest is the
parameter solution size k: in particular, while for general additive pref-
erences SAS is W[2]-hard and in XP, for approval-based preferences
and for Borda preferences, however, SAS is in FPT but (presum-
ably) admits no polynomial problem kernel; for t-approval and t-veto
preferences SAS even admits polynomial problem kernels. For the
numberm of items, SAS is (trivially) fixed-parameter tractable. We
show, however, that SAS (presumably) admits no polynomial problem
kernel for the number m of items in case of general preferences or
Borda preferences, while it does so for t-approval (t-veto) preferences.
For general preferences SAS is W[1]-hard even for the combined pa-
rameter n + k, while it is fixed-parameter tractable for n alone for
approval preferences. We also consider the parameterm− k, which
is dual to the solution size, and observe an interesting difference be-
tween t-approval and t-veto preferences: SAS remains W[1]-hard
for t-approval preferences but becomes fixed-parameter tractable for
t-veto preferences. This shows that smallest agreeable subsets for
dense approval preferences are easier to find. Indeed, t-approval pref-
erences and t-veto preferences appear “symmetric” at first glance: A
small constant number of disapprovals per agent, however, is easier to
handle compared to a small constant number of approvals per agent.1

Remark 2. We wish to stress that, in our view, we study only the very
natural parameters of the input. In particular, instances with a small

1 For illustration, note that for cases with much more items compared to
agents, for t-veto preferences we will have many items that are approved
by everyone while for t-approval preferences there will be many items
disapproved by everyone. Having an item disapproved by everyone (or not)
does not change the set of smallest agreeable subsets at all. Items approved
by everyone are, however, very helpful. More than (m− t)/2 such items
even guarantee a smallest agreeable subset, which only consists of items
approved by everyone.

set of items to be selected (our parameter k) correspond to limited
budgets or capacities in relevant usecases; while instances with small
number of agents are also well-motivated in the context of resource
allocation.

2 Preliminaries

We use basics from parameterized algorithmics [15]. We have the hier-
archy FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP, where problems in XP are
solvable in polynomial-time for a constant-valued parameter. We call
problems in FPT tractable since the degree of the polynomial does not
depend on the constant value of the parameter. Problems which are
hard for W[1], W[2], etc., are called intractable as they presumably do
not admit running times as problems in FPT. A problem kernel is an al-
gorithm that maps in polynomial time every input instance to an equiv-
alent instance of size upper bounded by the input instance’s parameter.
It is well-known that a decidable problem is in FPT if and only if it
admits a problem kernel. Thus, the class FPT is often partitioned into
those problems which admit polynomial-sized problem kernels, and
those which do presumably not (unless NP ⊆ coNP/poly). Problem
kernels often rely on data reduction rules. For SAS, for instance, we
have the following (recall that an agreeable subset is agreeable for all
agents).

Reduction Rule 1. If there are agents with the same utility func-
tion/preferences, then delete all but one of them.

Details to results marked with � are deferred to a full version.

3 General Additive Utilities

We denote SAS with general additive utility-based preferences by
CARDINAL-SAS. Manurangsi and Suksompong [28] proved that
CARDINAL-SAS with binarily-encoded utilities is NP-hard even for
two agents. We prove that, even for unary encoding, intractability for
the parameters n, k, and n+ k remains.

Theorem 1. For unary encoding, CARDINAL-SAS is NP-hard and
(i) in XP and W[2]-hard when parameterized by the solution size
k, (ii) in XP when parameterized by the number n of agents, and
(iii) W[1]-hard when parameterized by n+ k.

We prove Theorem 1(i) to (iii) through Propositions 1 to 3. We start
with the solution size k as the parameter.

Proposition 1. For unary encoding, CARDINAL-SAS is NP-hard,
W[2]-hard when parameterized by the solution size k, and solvable
in O(

(
m
k

) · (n ·m)) time.

We will reduce from the following.

Problem 2. HITTING SET (HS)
Input: A universeU , a familyF of subsets ofU of maximum size d ∈
N, and k ∈ N.

Question: Is there a subsetU ′ ⊆ U with |U ′| ≤ k such that F∩U ′ 	=
∅ for every F ∈ F?

HITTING SET is NP-hard and W[2]-complete when parameterized
by the solution size k [20].

Proof. A trivial brute-force algorithm that tests every k-sized subset
of C runs in O(

(
m
k

) · (n ·m)) time.
We provide a parameterized reduction from HS when param-

eterized by the solution size k. Note that the reduction is also
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Table 1. Summary of our results. A “–” means that the corresponding combination is not applicable. “PPK” stands for a polynomial problem kernel, while
NoPPK means that, presumably, no PPK exists. (∗: Thm. 1) (♠: Prop. 1) (♣: Prop. 2) (♦: Prop. 3) (♥: Cor. 2) (◦: Thm. 2) (†: Prop. 5) (‡: Cor. 1) (¶: Prop. 4) (×:
Cor. 3) (�: Obs. 2) (	: Obs. 1) (�: Thm. 3) (�: Obs. 3) (#: Obs. 4) ($: Thm. 4) (%: Cor. 5)

-SAS Comput. Parameterized Complexity
Complex. k n n+ k m m− k

CARDINAL NP-c. (∗) XP (♠), W[2]-h. (♠) XP (♣), W[1]-h. (♦) XP, W[1]-h. (♦) FPT, NoPPK (♥) XP (♠), W[1]-h. (♥)
APPROVAL NP-c. (◦) FPT (†), NoPPK (♥) FPT (‡), NoPPK (♥) FPT, O(kn) PPK (¶) FPT, NoPPK (♥) XP (♠), W[1]-h. (♥)

1-APPROVAL P.-time (◦) –
t-APPROVAL NP-c. (◦) FPT, PPK (×) FPT, O(t · n) PPK (�) FPT, O(mt) PPK (�) XP (♠), W[1]-h. (♥)

t-VETO NP-c. (◦) FPT, PPK (×) FPT, O(n2t) PPK (�) FPT, O(tn+ k) PPK (�) FPT, O(mt) PPK (#) FPT, PPK (#)
1-VETO P.-time (◦) –

BORDA NP-c. ($) FPT (%), NoPPK ($) XP (♣), FPT open FPT, O(kn) PPK (%) FPT (%), NoPPK ($) FPT (%), NoPPK ($)

a polynomial-time many-one reduction for the unparameterized
problems. Given an instance (U,F , k) of HS, we construct an in-
stance (C,A, (ua)a∈A, k

′) of CARDINAL-SAS, as follows.
For each element x ∈ U , we add an item cx. Moreover, we add one

special item c∗. For each set F ∈ F , we add an agent aF with utility

uaF (c) =

⎧⎪⎨
⎪⎩
1, if c = cx ∧ x ∈ F,

|F | − 1, if c = c∗,

0, otherwise.

Add an agent a∗ with utility ua∗(c∗) = 1 and ua∗(c) = 0 for all c 	=
c∗. Set k′ = k+1. We claim that (U,F , k) is a yes-instance of HS if
and only if (C,A, (ua)a∈A, k

′) is a yes-instance of CARDINAL-SAS
(see full version).

Recall that CARDINAL-SAS with binarily-encoded utilities is NP-
hard even for two agents [28, Theorem 5]. The upcoming Proposi-
tion 2 shows that CARDINAL-SAS with unary encoding is in XP
when parameterized by the number n of agents.

Proposition 2 ([28, Theorem 5]). For unary encoding, CARDI-
NAL-SAS is solvable in O(m · k · (σ + 1)n) time, where σ =
maxa∈A

∑
c∈C ua(c) is the maximum sum of utilities over all agents.

Remark 3. There is also a straightforward ILP formulation for CAR-
DINAL-SAS with the following constraints:

∑
ci∈C

ua(ci) · (2xi − 1) ≥ 0 ∀a ∈ A

∑
ci∈C

xi ≤ k

xi ∈ {0, 1} ∀ci ∈ C

(1)

Due to Eisenbrand and Weismantel [22], we know that this is
solvable by ((n + 1) · Γ)O(n2) · log2(n · Γ) · m, where Γ =
maxa∈A maxc∈C ua(c), and hence in XP-time. While the dynamic
program yields a better theoretical running time, the ILP might never-
theless work much better in practice. (For the dynamic programming
approach, one may naturally expect the worst case running time for
arbitrary instances, while ILP is typically much faster.) �

We show next that improving this to fixed-parameter tractability is
unlikely. In fact, we prove a stronger statement.

Proposition 3. For unary encoding, CARDINAL-SAS is W[1]-hard
when parameterized by n+ k.

The following proof is inspired by the work of Fluschnik et al. [24].
The reduction is from the following W[1]-complete [23, 32] problem.

Problem 3. MULTICOLORED CLIQUE (MCC)
Input: An undirected, k-partite graph G = (V 1 � · · · � V k, E)
with k ∈ N.

Question: Does G contain a cliqueX = (W,F ) with |W ∩ V i| = 1
for every i ∈ {1, . . . , k}?

Proof. Let G = (V 1 � · · · � V k, E) be an instance of MCC. We
assume that V i = {vi1, . . . , vi�} for all i ∈ {1, . . . , k}. For ev-
ery i, j ∈ {1, . . . , k}, i 	= j, denote by Ei,j the set of edges be-
tween V i and V j and mi,j := |Ei,j |.
For each vertex and edge, we create an item (and slightly abuse

notation). Let C0 denote this set. We introduce one special item z,
and let C := C0 ∪ {z}. We create the following agents:
(i) Agents a1, . . . , ak where

uai(x) :=

⎧⎪⎨
⎪⎩
1, if x ∈ V i,

0, if x ∈ C0 \ V i,

�− 1, if x = z.

(ii) Agents ai,j , {i, j} ∈
({1,...,k}

2

)
, where

uai,j (x) :=

⎧⎪⎨
⎪⎩
1, if x ∈ Ei,j ,

0, if x ∈ C0 \ Ei,j ,

mi,j − 1, if x = z.

(iii) Agents a1
(i,j) and a

2
(i,j), (i, j) ∈ {1, . . . , k} × {1, . . . , k}, i 	=

j, where ua1
(i,j)

(x) is defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p, if x = vip ∈ V i,

�− p+ 1, if x = {vip, vjq} ∈ Ei,j ,

0, if x ∈ C0 \ (V i ∪ Ei,j),

−2(�+ 1) +
∑

x∈C0

ua1
(i,j)

(x), if x = z,

and ua2
(i,j)

(x) is defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�− p+ 1, if x = vip ∈ V i,

p, if x = {vip, vjq} ∈ Ei,j ,

0, if x ∈ C0 \ (V i ∪ Ei,j),

−2(�+ 1) +
∑

x∈C0

ua2
(i,j)

(x), if x = z.
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(iv) Add agent a∗ only approving z, i.e., ua∗(x) = 1 if x = z, and
0 otherwise.

Set k′ = k+
(
k
2

)
+ 1. Note that the number of agents is k+

(
k
2

)
+

2(k − 1)k + 1. It remains to show the correctness of the reduction
(which we defer to a full version).

Bounded Utilities. Let Γ = maxa∈A maxc∈C ua(c) denote the
maximum utility that some item receives from some agent. Com-
bining the parameters n and k with Γ leads to tractability results.
When combined with parameter n fixed-parameter tractability follows
from Remark 3.

Corollary 1. CARDINAL-SAS is fixed-parameter tractable when
parameterized by n+ Γ.

For the solution size k, observe that any unsatisfied agent can have
at most 2kΓ items of strictly positive utility, since otherwise k items
even with utility Γ each cannot satisfy the agent. In fact, we even have
the following.

Reduction Rule 2. If there is an agent with sum of utilities larger
than 2kΓ, then return a trivial no-instance.

Now, there cannot be too many items with non-zero utility and
items that get zero utility from every agent are irrelevant.

Reduction Rule 3. If there is an item c that gets zero utility from
every agent, then delete c.

After the exhaustive application of Reduction Rule 2 and Reduction
Rule 3, we have an instance where every agent’s utilities sum up to at
most 2kΓ and there is no item of zero utility for all the n agents, and
hence a problem kernel that is polynomial in n+ k + Γ.

Proposition 4. CARDINAL-SAS admits a problem kernel of
size O(kΓn).

For any not-yet-satisfied agent, we can branch over the at-most 2kΓ
items with strictly positive utility.

Proposition 5. CARDINAL-SAS is fixed-parameter tractable for the
solution size k combined with the maximum utility Γ and solvable
in O((2kΓ)k · kΓn)) time.

Proof. Let (A,C, (ua)a∈A, k) be an instance of CARDINAL-SAS
with maximum utility Γ. Due to Reduction Rule 2, we can assume
that each agent has at most 2kΓ items with positive utility. Moreover,
due to Reduction Rule 3, we can assume that we have at most 2kΓ · n
many items.
We proceed in at most k branchings where we maintain a partial

solution S. Initially let S = ∅. In each branching we consider those
agents which are currently not satisfied with S; if all agents are satis-
fied, then we output yes. Otherwise, we select one of them arbitrarily
and branch into selecting one of its at most 2kΓ items with positive
utility which is not in S. If after k branchings we still have some
unsatisfied agents then we output no. In each branching, we branch
over at most 2kΓ items, and we stop after k branchings, yielding a
running time of O((2kΓ)k · kΓn)).

Note that binary utilities are a special case of general utilities where
the maximum value is bounded by 1. This is the approval setting,
which we will discuss in the next section.

4 Approval Scores

We continue with the binary setting, where u : C → {0, 1}, which is
equivalent to the setting where agents specify approvals. We hence
express utilities by Bu : A → 2C , where ua(c) = 1 ⇐⇒ c ∈
Bu(a) for every agent a ∈ A and candidate c ∈ C. We first study
the general approval setting (Section 4.1), then we fix the number of
approvals and disapprovals (Sections 4.2 and 4.3).

4.1 Approval Voting

The APPROVAL-SAS problem is quite tractable: While it is NP-
hard in general, it is fixed-parameter tractable for each of n and
k (see Propositions 4 and 5). However, polynomial problem kernel-
ization is presumably not possible regardingm and n. We start with
the NP-hardness result, improving the known general hardness [28]:

Theorem 2. APPROVAL-SAS is NP-hard if each agent approves d ∈
{2, . . . ,m−2} items, and linear-time solvable if each agent approves
one item or if each each agent approves (at least) all but one item.

Proposition 6 (�). Both 1-APPROVAL-SAS and 1-VETO-SAS are
linear-time solvable.

The NP-hardness in Theorem 2 is due to a reduction from HS.

Lemma 1 (�). There is a polynomial-time algorithm that maps every
instance (U,F , k) of HS with maximum set size d to an equivalent
instance (C,A, u, k′) of APPROVAL-SAS with |A| = |F|+1, |C| =
|U |+2(d−2), and k′ = k+d−2, where each agents approves 2d−2
items.

We know that HS is NP-complete for d ≥ 2, and hence The-
orem 2 with d ≥ 2 follows. Dom et al. [18] proved that, un-
less NP ⊆ coNP/poly, HS admits no problem kernel of size polyno-
mial in |U | (note that k, d ≤ |U |) or |F| (see also [15, Chapter 15]).
Moreover, HS already with d = 2 is W[1]-hard when parameter-
ized by the number of elements minus the solution size (due to the
connection to INDEPENDENT SET). Thus, we additionally have the
following.

Corollary 2. APPROVAL-SAS is W[1]-hard when parameterized
by m − k even for two approvals. Unless NP ⊆ coNP/poly, AP-
PROVAL-SAS admits no problem kernel of size polynomial in m
or n.

It remains to show that APPROVAL-SAS is NP-hard when every
agent approves all but two items, which we call 2-VETO-SAS. To this
end, consider the following variant of INDEPENDENT SET, which we
call EXACT INPEDENDENT SET (EIS), where given an undirected
graph G = (V,E) with an even number of vertices and k = |V |/2,
the question is whether there is a subset V ′ ⊆ V with |V ′| ≥ k such
that no two vertices in V ′ are adjacent. EIS is clearly NP-complete.
Reduce this variant to 2-VETO-SAS to obtain the following.

Proposition 7 (�). 2-VETO-SAS is NP-hard.

4.2 t-Approval

For APPROVAL-SAS, we showed that there are no polynomial prob-
lem kernels regarding the number n of agents or the number m of
items unless NP ⊆ coNP/poly. Fixing the number t of approvals, how-
ever, leads to problem kernels of size polynomial in each of n and k.
A polynomial problem kernel regardingm is immediate: If Reduction
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Rule 1 is inapplicable, then every two agents approve different items.
Hence, since there are at most

(
m
t

)
possibilities to approve t items

from a set of m items, we have the following.

Observation 1. t-APPROVAL-SAS admits a problem kernel of
size O(

(
m
t

)
).

A polynomial problem kernel regarding n is also not hard: If Re-
duction Rule 3 is inapplicable, then the set of items is the union of the
t approved items from each agents. Thus, we have the following.

Observation 2. t-APPROVAL-SAS admits a problem kernel of
size O(t · n).

We obtain a problem kernel via the t-HITTING SET (t-HS) problem,
where each set size is bounded by t.

Lemma 2 (�). There is a polynomial-time algorithm that maps ev-
ery instance (C,A, u, k) of t-APPROVAL-SAS to an equivalent in-
stance (U,F , k) of t-HS.

t-HS admits a problem kernel of size O(kt) [1, 6]. Thus, due
to Lemma 2:

Corollary 3. t-APPROVAL-SAS admits a problem kernel of size
polynomial in k.

4.3 t-Veto Scores

We have already seen that 2-VETO-SAS is NP-hard. For t-
VETO-SAS, we have the following important observation.

Observation 3 (�). If k < (m− t)/2 or k ≥ (m− t)/2 + t, then
we have a trivial no- or yes-instance, respectively.

As a consequence, we have that

(m− t)/2 ≤ k < (m+ t)/2 and, consequently,

k,m− k ∈ Θ(m). (2)

As before, since there are at most
(
m
t

)
possibilities to disapprove

t items from a set of m items, together with Reduction Rule 1, we
hence have the following.

Observation 4. t-VETO-SAS admits a problem kernel of
size O(

(
m
t

) · t).
In contrast to t-APPROVAL-SAS, t-VETO-SAS is fixed-parameter

tractable for the parameter m − k which can be seen by a simple
branching algorithm.

Proposition 8 (�). t-VETO-SAS is solvable in O(tm−k · (n ·m))
time.

Interestingly, t-VETO-SAS is NP-hard even ifm/2− k is constant
(Proposition 7) but polynomial-time solvable if m − k is constant
(Proposition 8). We leave open the complexity of t-VETO-SAS with
parameter ε ·m/2− k for 1 < ε < 2.
Finally, we also have a polynomial problem kernel regarding n

for t-VETO-SAS. However, it is quadratic instead of linear as for t-
APPROVAL-SAS.

Theorem 3. t-VETO-SAS admits a problem kernel of size O(n2 · t).

Proof. Let Y denote the set of items that are everywhere approved,
and let Z denote the set of items that are at least once not approved.
We know that |Z| ≤ n · t. Thus, if |Y | ≥ (n − 1) · t, then we can
only pick from Y . This is due to the fact that all other items any
agent a approves next to Y must be from Z, which are without a’s
vetoed items at most (n− 1) · t many. Thus, we can pick min k, |Y |
many items from Y and check whether they form an agreeable subset.
Otherwise, we have |Y | < (n − 1) · t, and thus m = |Z| + |Y | <
n · t+ (n− 1) · t.

5 Borda Scores

Our last preference model assumes that each agent has a linear order
over the items and the item at position i has utility valuem− i. For-
mally, we have ua : C → {0, 1, . . . , |C| − 1} where ⋃c∈C ua(c) =
{0, 1, . . . , |C| − 1} for every agent a ∈ A. We also identify the utili-
ties with rankings, where an agent a ranks c on position i if and only
if ua(c) = m− i. While such preferences are very natural [31], they
have not been considered in context of SAS.

What follows is not covered neither by Theorem 2 nor by the work
of Manurangsi and Suksompong [28]. In fact, similar to coalitional
manipulation for Borda voting [5, 16] (yet requiring a completely
different and new reduction), it was technically most challenging to
obtain hardness for the Borda case.

Theorem 4. BORDA-SAS is NP-complete and, unless NP ⊆
coNP/poly, admits no problem kernel of size polynomial in m.

We introduce the following problem from which we will reduce
to BORDA-SAS:

Problem 4. WEAK-MAJORITY-SAT (WM-SAT)
Input: A boolean CNF formula φ over a setX of N variables.
Question: Is there a truth assignment such that in each clause at least
half of the literals evaluate to true?

We have the following polynomial parameter transformation [8]
from SAT regarding the number of variables.

Lemma 3. There is a polynomial-time algorithm that maps ev-
ery instance (φ,X) of SAT to an equivalent instance (φ′, X ′) of
WM-SAT such that |X ′| ≤ 2|X|.
Unless NP ⊆ coNP/poly, SAT admits no problem kernel of size poly-
nomial in the number of variables [25, 27], implying the following.

Corollary 4. WM-SAT is NP-hard and, unless NP ⊆ coNP/poly,
admits no problem kernel of size polynomial in N .

We further assume that no variable appears both negated and un-
negated in a clause (as to the reduction from SAT).

Construction 1. Let I = (X,φ) be an instance of WM-SAT
with |X| = N and M clauses. We construct an instance I ′ :=
(C,A, (ua)a∈A, k) of BORDA-SAS as follows. Let C := X ∪ Y
where X := {xi, xi | i ∈ {1, . . . , N}} and Y := {yi, yi | i ∈
{1, . . . , N}}. Note that m := |C| = 4N . Let the agents A′ :=
{ax,y, ay,x} ∪ {ai

x, a
i
y | i ∈ {1, . . . , N}} ∪ {ai,j | i 	= j ∈

{1, . . . , N}} and D := {di | i ∈ {1, . . . ,M}}. See Fig. 1 for
the preferences. Let Â′ contain an agent â for each agent a ∈ A′ with
the mirrored profile, i.e., if a ranks c on position i, then â ranks c on
position m+ 1− i. Let A := A′ ∪ Â′ ∪D. Let k := 2N . �

In what follows, we discuss the case of I ′ being a yes-instance. We
start with the following crucial fact that is due to the mirrored agents.
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x1, x1ax,y: x2, x2 · · · · · · xN , xN y1, y1 y2, y2 · · · · · · yN , yN

y1, y1ay,x: y2, y2 · · · · · · yN , yN x1, x1 x2, x2 · · · · · · xN , xN

Rx(i)ai
x: Rx(1) · · · · · · Rx(i− 1) Rx(i+ 1) · · · · · · Rx(N)

Ry(i)ai
y: Rx(1) · · · · · · Rx(i− 1) Rx(i+ 1) · · · · · · Rx(N)

Rx(i)ai,j : Rx(1) · · · Rx(i− 1) Rx(i+ 1) · · · Rx(j − 1) Rx(j + 1) · · · Rx(N) Rx(j)

�ix,1, . . . , �
i
x,|Ki|di: �iy,1, . . . , �

i
y,|Ki| Rx(i1) · · · Rx(iN−|Ki|) �ix,1, . . . , �

i
x,|Ki| �iy,1, . . . , �

i
y,|Ki|

Figure 1. Illustration to Construction 1, where the candidates are ordered from left to right. Here, Rx(i) := xi ≺ xi ≺ yi ≺ yi and Ry(i) := yi ≺ yi ≺
xi ≺ xi. In this example, we have ai,j with 1 < i < j < N .

Lemma 4. If I ′ is a yes-instance, then for every solution C′ ⊆ C
it holds true that (i) for every agent a ∈ A′ we have that ua(C

′) =
ua(C \ C′) and (ii) |C′| = |C \ C′|.
Proof. For every a ∈ A′, for a’s mirror â we have

uâ(C
′) =

∑
c∈C′

uâ(c) =
∑
c∈C′

(m− 1− ua(c))

= |C′| · (m− 1)−
∑
c∈C′

ua(c). (3)

Together with the two facts that u(C′) ≥ u(C \ C′), i.e.,∑
c∈C′ ua(c) ≥ ∑

c∈C\C′ ua(c), and |C′| ≤ 2N ≤ |C \ C′|, we
get the following:

(3) ≤ |C′| · (m− 1)−
∑

c∈C\C′
ua(c) (4)

≤ |C \ C′| · (m− 1)−
∑

c∈C\C′
ua(c) (5)

=
∑

c∈C\C′
(m− 1− ua(c)) =

∑
c∈C\C′

uâ(c) = uâ(C \ C′).

Thus, if (i) or (ii) is false, then we get “<” in (4) or (5), resp., contra-
dicting the fact that uâ(C

′) ≥ uâ(C \ C′).

The next property is due to agents ax,y and ay,x combined
with Lemma 4.

Lemma 5. If I ′ is a yes-instance, then for every solution C′ ⊆ C it
holds true that |C′ ∩X| = |C′ ∩ Y |.
Proof. Suppose not, that is, |C′ ∩ X| 	= |C′ ∩ Y |. Recall
that |C′| = k = |C|/2 due to Lemma 4. Thus, we know that |C′ ∩
X| = |(C \ C′) ∩ Y | and |C′ ∩ Y | = |(C \ C′) ∩ X|. Con-
sider ax,y . Let (pi, qi)

|C′∩X|
i=1 be such that

⋃|C′∩X|
i=1 xpi = C′ ∩X

and
⋃|C′∩X|

i=1 yqi = (C \C′)∩Y . Analogously, let (p′i, q
′
i)

|C′∩Y |
i=1 be

such that
⋃|C′∩Y |

i=1 xp′i = (C \C′)∩X and
⋃|C′∩Y |

i=1 yq′i = C′ ∩ Y .
We know that (due to Lemma 4)

0 = uax,y (C
′)− uax,y (C \ C′)

=

|C′∩X|∑
i=1

(
uax,y (xpi)− uax,y (yqi)

)

+

|C′∩Y |∑
i=1

(
uax,y (yq′i)− uax,y (xp′i)

)
(6)

Moreover, we have that

∀x ∈ X : uax,y (x)−m/2 = uay,x(x), and

∀y ∈ Y : uax,y (y) +m/2 = uay,x(y).
(7)

Thus (due to Lemma 4):

0
(6)
=

|C′∩X|∑
i=1

(
uay,x(xpi)− uay,x(yqi)

)

+

|C′∩Y |∑
i=1

(
uay,x(yq′i)− uay,x(xp′i)

)

(7)
=

|C′∩X|∑
i=1

(
uax,y (xpi)− uax,y (yqi)−m

)

+

|C′∩Y |∑
i=1

(
uax,y (yq′i)− uax,y (xp′i) +m

)
(8)

Recall that since ax,y ∈ A′, we have due
to Lemma 4 that

∑|C′∩X|
i=1

(
uax,y (xpi)− uax,y (yqi)

)
=∑|C′∩Y |

i=1

(
uax,y (xp′i)− uax,y (yq′i)

)
. Thus, it remains to com-

pare |C′ ∩X| ·m with |C′ ∩ Y | ·m, which is different due to our
assumption that |C′ ∩X| 	= |C′ ∩ Y |. Hence, we get

(8) =
|C′∩X|∑

i=1

(
uax,y (xpi)− uax,y (yqi)

)− |C′ ∩X| ·m

+

|C′∩Y |∑
i=1

(
uax,y (yq′i)− uax,y (xp′i)

)
+ |C′ ∩ Y | ·m

	=
|C′∩X|∑

i=1

(
uax,y (xpi)− uax,y (yqi)

)

+

|C′∩Y |∑
i=1

(
uax,y (yq′i)− uax,y (xp′i)

)
= 0,

a contradiction.

The next property is due to agents ai
x, a

i
y and ai,j , combined

with Lemmas 4 and 5.

Lemma 6. If I ′ is a yes-instance, then for every solution C′ ⊆ C
it holds true that for every i ∈ {1, . . . , N} we have that |C′ ∩
{xi, xi}| = |C′ ∩ {yi, yi}| = 1.
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Proof. Suppose not, i.e., there is i ∈ {1, . . . , N} we have that
|C′ ∩ {xi, xi}| ∈ {0, 2}. Note that due to ai

x, a
i
y and the fact

that uai
x
(C′) − uai

x
(C \ C′) = uai

y
(C′) − uai

y
(C \ C′) = 0, we

have that if xi, xi ∈ C′, then also yi, yi ∈ C′. Since |C′ ∩ X| =
|C′ ∩ Y | = N (due to Lemma 5), there is j ∈ {1, . . . , N} such
that C′ ∩ {xj , xj} = ∅. Then, due to Lemma 4, 0 = uai,j (C′) −
uai,j (C \ C′) 	= uaj,i(C′)− uaj,i(C \ C′) = 0, a contradiction.
The proof works analogously for yi, yi.

The next lemma states that if xi is contained in the agreeable subset,
then also yi is, and vice versa.

Lemma 7. If I ′ is a yes-instance, then for every solution C′ ⊆ C it
holds true that for every i ∈ {1, . . . , N} we have that xi ∈ C′ ⇐⇒
yi ∈ C′.

Proof. Suppose that for some i ∈ {1, . . . , N}, xi ∈ C′ (implying
that xi ∈ C \C′) and yi ∈ C′ (implying that yi ∈ C \C′). Then, due
to Lemma 4, 0 = uai

x
(C′) − uai

x
(C \ C′) 	= uai

y
(C′) − uai

y
(C \

C′) = 0, a contradiction.

The following is the last lemma before we prove Theorem 4. It
states that every agreeable subset contains at least half of the items
corresponding to each clause’s literals.

Lemma 8. If I ′ is a yes-instance, then for every solution C′ ⊆ C
it holds true that for every i ∈ {1, . . . ,M} we have that |C′ ∩
{�ix,1, · · · , �ix,|Ki|}| ≥ |Ki|/2.

Proof. Clearly, for every i ∈ {1, . . . ,M}, if
|C′ ∩ {�ix,1, · · · , �ix,|Ki|}| < |Ki|/2, then also |C′ ∩
{�iy,1, · · · , �iy,|Ki|}| < |Ki|/2. Let Λi := {j ∈ {1, . . . , |Ki|} |
�ix,j ∈ C′} and Λi := {1, . . . , |Ki|} \ Λi. Note that we have that

1

2

(
udi(C

′)− udi(C \ C′)
)

=
∑
j∈Λi

�ix,j +
∑
j∈Λi

�ix,j −
⎛
⎝∑

j∈Λi

�ix,j +
∑
j∈Λi

�ix,j

⎞
⎠

=
∑
j∈Λi

(
�ix,j − �ix,j

)
+

∑
j∈Λi

(
�ix,j − �ix,j

)

=
∑
j∈Λi

(
�ix,j − �ix,j

)
−

∑
j∈Λi

(
�ix,j − �ix,j

)

= κ · |Λi| − κ · |Λi|,

where κ = 4(N −|Ki|)+2|Ki|, which is the difference between the
Borda-scores of �ix,j and �ix,j for every j ∈ {1, . . . ,Ki}. Hence, if
|C′ ∩ {�ix,1, · · · , �ix,|Ki|}| < |Ki|/2, then we have that udi(C

′) <
udi(C \ C′).

We are set to prove Theorem 4.

Proof of Theorem 4. Given an instance I = (X,φ) of WM-SAT
with |X| = N and M clauses, construct instance I ′ :=
(A,C, (ua)a∈A, k) of BORDA-SAS using Construction 1. We prove
that I is yes-instance if and only if I ′ is a yes-instance.

(⇒) Let f : X → {�,⊥} be an assignment that for each clause
evaluates at least half of its literals to�. LetC′ ⊆ C be the committee
with for every i ∈ {1, . . . , N}, we have xi, yi ∈ C′ if f(xi) = �
and xi, yi ∈ C′ if f(xi) = ⊥. We claim that C′ is a solution.
Firstly, note that |C′| = 2N = k. By construction, we know that for

every a ∈ A′ we have ua(C
′) = ua(C \ C′). Finally, for each i ∈

{1, . . . ,M}, we have that udi(C
′) ≥ udi(C \ C′) if and only if the

number of literals in Ki evaluated to � by f is at least |Ki|/2. The
latter holds since f is a solution, and hence the claim follows.

(⇐) Let C′ be a solution. Let f : X → {�,⊥} be defined
by f(xi) = � if xi ∈ C′ and f(xi) = ⊥ if xi ∈ C′. Due
to Lemma 6, f is well-defined. Moreover, due to Lemma 8, for each
clauseKi, at least half of the literals are evaluated to �.
Clearly, BORDA-SAS is in FPT when parameterized by m and

in XP when parameterized by n (see Proposition 2). We have the
following relation of k tom:

Lemma 9 (�). Let I be an instance of BORDA-SAS with m items
and solution size k. If

k < m− 1

2

(√
2m2 − 2m+ 1 + 1

)
or

k ≥ 1

2

(√
2m2 − 2m+ 1 + 1

)
,

(9)

then I is a trivial no- or yes-instance, respectively.

By Lemma 9, we know that k ∈ Θ(m). Thus, we have the following.

Corollary 5. BORDA-SAS is in FPT when parameterized by k and
when parameterized by m− k, and admits a problem kernel of size
polynomial in n+ k.

6 Discussion

We have reported on a systematic study of the parameterized complex-
ity of several variants of SAS. Putting our results in a broader context,
resource allocation problems are studied in AI mainly due to the im-
portance of allocating resources between agents in multiagent systems.
As such, better understanding of SAS improves our understanding of
resource allocation algorithms and of the possibilities of agreeably
allocating goods in the context of SAS. Our specific results advance
the understanding of the computational complexity of finding such
agreeable allocations. Moreover, with efficient algorithms in relevant
special cases, finding a smallest agreeable subset becomes applicable
as subroutine for more complex decision-making processes, when the
parameter values are known to be bounded.
Concretely, the main message of our paper (cf. Table 1) reads as

follows: SAS with utility-based additive preferences is NP-hard and
hard for all natural parameters considered in our work—including
combinations—excluding the number m of items, for which a trivial
brute-force FPT-algorithm but, presumably, no polynomial problem
kernel exists. With approval preferences, SAS stays NP-hard yet be-
comes significantly easier and a polynomial kernel exists (w. r. t. n+k).
Restricting further to t-Approval and t-Veto enables even more poly-
nomial kernels. Surprisingly, this effect is stronger for t-Veto (recall
the dual parameter m− k). With Borda utilities, SAS remains NP-
hard. In terms of parameterized complexity, BORDA-SAS seems to
be very similar to APPROVAL-SAS, possibly with even more positive
results; the latter may unfold with our most intriguing open question:
Is BORDA-SAS fixed-parameter tractable when parameterized by the
number n of agents? Moreover, do the Borda results translate to other
scoring vectors?

It is worth to analyze further structural parameters and to extend our
study to other preference models (such as submodular preferences [3]).
Perhaps the most natural related model for future work may be to
consider the multidimensional optimization goal of minimizing the
number of items in the agreeable set while maximizing the number of
agents who agree on it.
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