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Abstract. Hierarchical reinforcement learning is an increasingly
demanded resource for learning to make sequential decisions towards
long term goals. Feudal hierarchies are among the most deployed
frameworks. However, there are few theoretical results for hierarchi-
cal structures. In this work, we formalize the common two-level feu-
dal hierarchy as two Markov decision processes, with the one on the
high level being dependent on the policy executed at the low level.
Despite the non-stationarity raised by the dependency, we show that
each of the processes presents stable behavior. We then build on the
first result to show that, regardless of the convergent learning algo-
rithm used for the low level, convergence of both prediction and con-
trol algorithms at the high-level is guaranteed. Our results contribute
with theoretical support for the use of feudal hierarchies in combina-
tion with standard reinforcement learning methods at each level.

1 Introduction

The field of hierarchical reinforcement learning is receiving grow-
ing attention [29]. While the most well-known frameworks that give
rise and exploit hierarchies on sequential decision making problems
remain virtually unchanged [3, 36, 4, 28], their use is both expand-
ing and diversifying [40, 15, 2]. As an example that attests for its
power, hierarchies and reinforcement learning, combined with ex-
pert demonstrations, set the state of the art on the game of Minecraft
[7, 20, 33, 24]. Hierarchical reinforcement learning is also piercing
through the multi-agent field [23, 14, 1]. Hierarchies seduce planning
and reinforcement learning theorists and practitioners by claiming to
allow for temporal abstraction and easing long-term credit assign-
ment and exploration. As a side product, a suitably constructed hier-
archical policy allows for flexible extension and replacement of the
decision blocks that naturally emerge at each level of the hierarchy.
Feudal hierarchies were the first hierarchical structure proposed
for sequential decision making with reinforcement learning [3]. As
the name may suggest, an agent on a higher level sets goals for an
agent on a lower level to achieve. While learning a hierarchical policy
at both levels simultaneously, an added difficulty of non-stationarity
arises [27, 16, 12]. As a practical example of this non-stationarity,
suppose that, in the beginning of training, a high-level agent issues
a suitable goal for a low-level agent; if the low-level agent does not
achieve its goal, the high-level agent’s decision is not assigned its due
credit. To learn each level of a hierarchical policy using standard re-
inforcement learning methods is to underlyingly assume that, on such
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level, a Markov decision process (MDP) is present. The assumption
is both intuitive and convenient. However, it is not clear which hi-
erarchies sustain a stable behavior of each MDP. In this work, we
bridge theory and application of hierarchical reinforcement learn-
ing by (i) sculpting the Markovian properties of feudal hierarchies,
formalizing the hierarchy as coupled uneven Markov decision pro-
cesses; (ii) presenting sufficient conditions for their stability under
an assumption on the stopping time of low-level episodes; (iii) prov-
ing the convergent behavior of learning algorithms for prediction and
control of hierarchical policies, resorting to the previous stability re-
sult. Specifically, we prove that the TD(0) and Q-learning algorithms
at the high-level converge with probability 1 (w.p. 1) if the low-level
policy is converging. The assumption is weak and only requires in-
finitely often state-action visitation.

2 Background

A Markov decision process [30] formalizes the interaction of an
agent and its environment through a tuple (X, A, P,r,v), with X
a finite state space; A a finite action space; P a transition probability
tensor with [P], . .+ the probability that state ' follows from the
execution of action a in state z, P(z’ | z,a); 7 : X X A — R the
expectation of the reward, which has bounded variance; ~y in [0, 1) a
discount factor. A policy 7 : X x A — [0, 1] maps states and actions
to probabilities.

Solving a Markov decision problem means learning a policy m
that, for every state and action, has maximal value. By value we mean
Ve : X — R such that

V(@) = Er[r(z0,a0) +7 > ¥'r (w41, ae41) | w0 = 2],
t=0
where we use the policy as a subscript to the expectation to denote
that a; ~ w(x¢,-) and x441 ~ P(- | x¢,a:). Algorithms such as
TD(0) [38] solve the prediction problem of computing V.. We can
also define the action value function Q- : X x A — R as

Qr(z,a) =E, [r(m, a) +yVx(z")],

with 2’ ~ P(- | z,a). A greedy policy with respect to an action
value function @ uniformly selects, at each state x, actions from the
set argmax, Q(x,a). It is an established fact [30] that an optimal
policy 7* exists and has maximal action value Q™ := Q= verifying

Q" (z,a) = E[r(z,a) + ymax Q" (', a")],
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where the subscript 7 was dropped from the expectation since the
expression holds no randomness regarding actions. Conversely, the
greedy policy with respect to Q™ is optimal. The problem of comput-
ing Q" or ™ is called the control problem.

The mentioned fact that, from @™, we can trivially obtain an op-
timal policy 7™ legitimizes the existence of value-based algorithms,
that do not explicitly improve the policy, and rather construct a se-
quence of value functions {Q; }+en, converging to Q*." Q-learning
[42] is the bedrock of most value-based methods [26, 39, 41, 8].
Contrarily, policy-based methods hold on the policy gradient the-
orem [35] to construct a sequence of policies {7 }ren, such that
m — m*. The actor-critic architecture [13] is the general form of
most policy-based algorithms [19, 25, 31, 6, 31]. In the actor-critic
architecture, the actor consists of a policy and the critic consists of
a value function. In the previous sense, solving both prediction and
control problems is necessary in the class of policy-based methods.

3 Feudal hierarchies

In a feudal hierarchy, a task (represented as an MDP) is addressed
by several agents operating at different levels: higher-level agents act
by selecting goals for lower-level agents; the lower-level agents, in
turn, act to achieve the goals set by the higher-level agent. As our first
contribution, we formalize each level as a Markov decision process.

We refer to the original (non-hierarchical) MDP as a shallow
Markov decision process and we use superscripts h and ! to de-
note the high-level and low-level components of a two-level hier-
archy, respectively. Consider a shallow Markov decision process
M = (X, A, P,r,7), as described in Section 2. We thus define a
two-level hierarchy as a pair (M", M"), with

M () = (&, Q, PM ("), 7" (x'),4");
M= (X x QA PP T ’

where, adding to the notation already established for Markov deci-
sion processes, we used {2 to denote the action space of the high-
level MDP and, simultaneously, one of the components of the state
space of the low-level MDP. We also call €2 the goal space. We focus
on finite goal spaces. However, the formalism extends to continuous
goal spaces, including embeddings of €2 as previously considered in
applications: the former was used in [27]; the latter in [40].

On the high-level process M"™, we note the dependency of the
high-level transition probabilities P and reward " on the policy
7! of the agent at the low level. On the low-level process M, the
low-level reward function r' : (X x Q) x A — R can technically
be any. We also observe that, even though we set the discount fac-
tor on M as 1, and thus do not discount the low-level rewards, we
will very soon formalize a stopping time for each low-level episode,
parameterized by the discount factor y, through Assumption 1 . The
assumption is equivalent, regarding the optimization objective and
corresponding solution, to considering long term discounted rewards
while ensuring that every low-level episode eventually terminates.

We now provide further detail on each non-trivial component of
both M" and M’, starting with the latter. We refer to the decision-
maker in the MDP M" as the high-level sub-agent and the decision
maker in the MDP M! as the low-level sub-agent.

1 Unless otherwise noted or clear from context, we consider throughout the
document pointwise convergence of functions, such as value functions and
policies, and the topology induced by the Euclidean metric over R. If the
topological space is strictly contained in R, we consider the usual sup-space
induced topology. We also use f — f* to be read as f converges to f*.

Low-level Markov decision process We start by describing the
dynamics of the low-level MDP. After the high-level sub-agent sets a
goal w € €, the low-level sub-agent observes the current state of the
environment, x, and the current goal, w. A low-level episode takes
place at the low-level MDP, M, for T time steps. We assume that 7
is a stopping time random variable following a geometric distribution
parameterized by ~.

Assumption 1. The stopping time of a low-level episode, T, is a
random variable supported in No with probability mass function

) =P(r=1t)=(1—-)""

The value of v determines the “urgency” of the stopping time—
larger values of ~y yield shorter episodes. Regarding the optimization
objective of the MDP, Assumption 1 is equivalent to considering a
discount factor of v without stopping the episode. However, Assump-
tion 1 ensures that every low-level episode eventually terminates and
a new decision may take place at the high-level once more. Addi-
tionally, even though many practical implementations assume that
the stopping time 7 takes a specific value 7" w.p. 1, our assumption is
not far, in the sense that our results would hold up to fixed temporal
shifts of 7" and v < 1, while still allowing for infinite exploration of
low-level state-action pairs.

On the low level, for each goal, the dynamics of the original
Markov decision process M are preserved, so we define

. 1 Plage, fw=d
[P ]a,(ac,w),(:c’,w’) = {0’ if w # w, .
Intuitively, it is possible to think of the low-level MDP as “aggregat-
ing” a set of MDPs, one for each goal w € (2, that share the same
transition dynamics.

Contrarily to the transition structure P', the reward structure ' is
not necessarily inherited from the original process M and, in practi-
cal applications, the architect of a hierarchy can design any ' struc-
ture that is meaningful in the sense of high-level goal achievement.
It should, however (i) lead the low-level agent towards achieving the
goal w € € set at the high-level; (ii) restrict the low-level agent to
achieving its goal w, i.e., agnostically to the long-term plan of the
high-level agent. Such structure over the low-level reward is, there-
fore, amenable to previously implemented hierarchies [40, 27, 3]. We
respectively denote Vil and Qir, the value and action value functions
of a policy 7 at the low level.

l

High-level Markov decision process After the high-level sub-
agent issues a goal w € €2, the low-level sub-agent executes its policy
7! until the stopping time. Consider

[Pi)ew =Y 7' ((z,w),a) P(z' | z,a) (1)

a

the transition dynamics of the Markov reward process induced by the
policy 7 on M". For each goal w, [P"(7')],, ... is the probability
that, at the stopping time, the low-level sub-agent is at state (x’, w).
Formally,

[P ()],
where we are taking the expectation with respect to the stopping time
T, appearing as the power of the Markov matrix P;.

Regarding the high-level rewards, for each goal w and low-level

policy 7!, they equal the expected discounted rewards, until the stop-
ping time, of the original Markov decision process which is obtained

L =E[Pa7],
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by following policy 7. The high-level agent is rewarded by the en-
vironment. Formalizing once more,

T

(7Y (@, w) =K [Zr(wt,at) | xo = x|.

t=0

The expectation is taken with respect to the stopping time 7 and states
and actions according to ',

We finally argue for the choice a discount factor of M” as 7%, SO
that, on average, the sum of rewards is discounted by the same factor
~ as in the original process M, even though such assumption is not
necessary to establish the results below. On a different but related
context, the same suggestion is made in [22].

Before moving on to the theoretical results on the stability of feu-
dal hierarchies and asymptotic behaviour of reinforcement learning
over them, we present an example of a Markov decision process and,
especially, its decomposition as a feudal hierarchical process. The
example could be skipped without loss of comprehension but serves
the purpose of providing intuition over the just proposed formal def-
inition of the feudal hierarchical process.

3.1 Example of a feudal hierarchical process

Suppose our shallow reinforcement learning agent, corresponding to
the original Markov decision process M, is an ant set on a 7 X 7 maze
grid world depicted in Figure 1. Even though cells are numbered,
we omit the numbers from the figure to avoid visual overhead. The
goal state of the environment is the southwestern-most cell on the
grid. The ant receives a positive unit reward at the goal state and null
otherwise, describing the reward structure r. Adding some difficulty
to the ant’s navigation task, the grid world is set on a windy place.
At each time step, the wind blows north, south, east or west with
uniform equal probability. The pairs composed of the ant’s position
and the wind direction form the state space /X'. The ant is not strong
enough to move in a contrary direction to the wind and, therefore,
the ant can either stand at its current position or let itself move in
the direction of the wind. Both actions are successful unless the wind
blows the ant toward a wall cell, in which case the ant stays in the
same cell, forming the transition probabilities P. The action space A
is then composed of the actions stand and move.

Now we move on to describing a feudal hierarchical structure over
the Markov decision process presented. We start with the high-level
M". At the high-level, the agent has the same state space X as in
the shallow environment, observing both the position of the ant and
wind direction. It can then set a goal for the low level to achieve. Such
goals are to move north, south, east or west, forming the goal action
space €. The high-level observes a new state and outputs a new goal
after the low-level episode terminates. The number of low-level time
steps between high-level observations is random with a geometric
distribution of y € [0, 1).The transition probabilities depend on the
policy operating at the low level as well as the termination of the low-
level episode. The reward received by the high-level is the sum, over
the length of the low-level episode, of rewards it would have received

in the shallow environment, . If the high-level discount factor is 'y% ,
on average, the rewards of the high-level are discounted by the same
factor as in the shallow Markov decision process, .

Finally, we focus on the low-level process M!. The state of the
agent at the low level is the triple of ant’s position, wind direction and

2 The example is inspired by the Ant Maze environment from [5], which was
also adapted in [27], and by the Windy Maze environment in [18].

goal set by the high-level agent. Its action space is equal to .A. When
the low level takes an action, the transitions happen as in the shallow
environment, modelled by P!, regardless of the goal. The low-level
agent receives a positive unit reward if it moves in the direction of the
goal, a negative unit reward if it moves in a direction away from the
goal, and a null reward if its position remains unchanged, forming 1.

North
West FEast
South

G

Figure 1: Depiction of the windy ant maze grid world. The goal state
is marked as G. The position of the ant is marked with the diamond.
The wind direction is indicated as a bent arrow. At the current time
step, wind is blowing east. The optimal action in the shallow envi-
ronment is therefore to stand. In the hierarchical environment, the
optimal goal to be set by the agent at the high-level is west. With the
current wind direction, for such goal, the optimal action at the low
level is to stand, which give a null reward.

4 Stability of feudal hierarchies

In the remainder of the document, we respectively denote Vil and
Qirl the value and action value functions of a policy 7' at the low
level and respectively denote by V", (7') and Q",, (') the value and
action value functions of a policy " at the high-level MDP M (x').
We present our first result, on the stability of a two-level feudal hier-
archy as formalized above.

Theorem 1 (Stability of feudal hierarchies). Consider the Markov
decision processes M, M" and M', and a converging sequence of
low-level policies 7t — 7, t € N. Under Assumption 1, we have:

Ph(ﬂ'i) — Ph(ﬂ'),’
() = " (),
vh (7r,l) — Vﬂhh (m);

QM () = QM (m),

KN~

for each high-level policy ©".

Proof. Before proving assertions 1 through 4, we recall that, in met-
ric spaces, if an element f; — f*, G(f:) — G(f*) if and only if G
is a continuous mapping. Therefore, the theorem equivalently states
that, for every high-level policy 7", the functions P", r", Vﬂhh, and
QZ » are continuous on the low-level policies 7'. With the previous
remark in mind, we start proving each assertion of the theorem.

1. We show that the transition probabilities P"(7!) vary continu-
ously with 7! for each w. First note that the transition dynamics
Markov reward process induced by the low-level policy on M
PY,, computed through Equation (1), is a continuous function of
m". Now recall that

[P*(x")],,.. =E[Pa7).

Wiyt
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Finally note that

M]3

E[PaT] =) &(r)Pa”

T7=0

(1= Pa"

p”qg

o

I
= 2
I

— NI =P

The inverse is well defined and continuous.
2. Recall that, for all w € €,

.

:Eﬁz‘w[Zr(rt,at) | zo :x].

t=0

r () (a, w)
After defining the real vector

[r)s = Z 7 ((:c7 w), a)r(x, a),

a

we write the expected sum of discounted rewards

T

Ewa‘w[Zr(mt,at) | w0 = ]

t=0

- [ enyari],
=0 t=0

[if (I —yP2)™

(1= (PR )]
=[P

(== =7"Pa)" "

PR

x

T

The conclusion follows again from continuity.
3. The value function V”}, (7') : X — R is defined as

() () (@, we) | 2o = 2],

NgE

z)=FE.n|

t

I
o

where w; ~ 7" (¢, ) and 2111 ~ PP(7) (- | 24, we).

We observe that
Vﬂ.hh (7rl) = (I — ’yhPh(ﬂl))ilrh(wl)

and that the expression varies continuously with 7, by 1 and 2.
4. Building on assertion 3, we observe that

Qun (), w) = E[r" (') (2, 0) + 7V (x') (2")]
continuously maps 7’ at every state-action pair.

O

For a final remark, consider that we say a sequence of Markov de-
cision processes is converging if both the transition and reward func-
tions are converging. In such sense, Theorem 1 guarantees that, if the
low-level policy is converging, then the high-level Markov decision
process is also converging.

5 Convergence of feudal hierarchical
reinforcement learning

In this section, we focus on evaluating and learning feudal hierarchi-
cal policies. In our setting, the low level learns using any learning
algorithm at any learning rate, as long as it converges to the optimal
policy of the low-level Markov decision process and the high-level
uses TD(0) for prediction and @Q)-learning for control. We show that,
even though the algorithms operate over a non-stationary Markov de-
cision process, convergence still holds w.p. 1.

Before we move to the theorem, we introduce some nota-
tion. r++1(x,a) denotes a reward sample distributed according to
rh(wi)(az a); Yy (ac w) a next state sample distributed according to
Ph(mh)(z,w); Vi " denotes the value function of the high-level pol-
icy 7" when the low-level policy is ™ and Q; " denotes the opti-
mal action value function of the high-level Markov decision process
MM (wl), where 7! is the low-level policy at time step ¢.

Theorem 2 (Convergence of feudal hierarchical reinforcement learn-
ing). Consider the Markov decision processes M, M" and M.
Consider a sequence of low-level policies w,t € N, converging to
the optimal low-level policy *"!

1. Suppose that the high-level learning rates o
such that, for all x,

{zt a(z) =

Y, ai(z) <oco w.p.l.

: X — [0,1] are
oo w.p.l;

Then, the TD(0) algorithm on the high level, given by
Via(e) = Vi (@)+

+ (@) (rea (2, 0) + 7"V (el w) = Vi (@)),

converges to V:,;h w.p. 1 for any high-level policy ",
2. We assume the high-level learning rates o : X x Q — [0,1] are
such that, for all (x,w),

Et O‘t( ) =
>, ai(r,w) < oo w.p.l.
Then, the Q-learning algorithm on the high level, given by
Qtii(z,w) = Q (z,w)+
+ au,0) (e () + " max Q! (2, w), ')~

- Qi(a,w)),

oo w.p.l;

converges to Q" wp. 1.

Proof. We start with recalling a convergence result for stochastic
processes [32]. Consider the random iteration

(1 — ai(2)) Au(z) + ar(2) Fi(2),

where z € Z and Z is finite. Consider also the sequence of o-fields
Fi such that (ow(2), Ae(2), Fi(2)) € Fr. The sequence {A;} con-
verges to O w.p. 1 under the following conditions, for each z in Z:

At (Z) =

L [E[F:(2) | Felll < [l A¢ll +ce,ce = Owp. 13
2. var(Fy(z) | Fe) < K(1+ [|Ad])?
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Note that the assumptions on the learning rates require, in partic-
ular, infinitely often state action visitation. We refer to the original
manuscript [32] for clarifying details over the learning rates.

Once we prove convergence of Algorithm 2, for control, conver-
gence of Algorithm 1 for prediction follows as a particular case: the
high-level policy induces a Markov reward process over M", for
each low-level policy 7!, which is a particular case of a Markov de-
cision process, with a singleton action space; in a Markov reward
process, TD(0) updates are equivalent to the ones of Q-learning.
Therefore, to establish Theorem 2, we must only verify conditions
1 and 2 hold for Algorithm 2.

Consider the stochastic processes

At(x>w) = Q?(zaw) - Q*’h(maw)
Ft(il',w) = Tt+1(x7w)+
o ma Q) (3, ), ) — @ (2, 0)

1. After focusing on the definition of Fi(x,w), we observe that
E[Fi(z,w) | Fi]
=F [rt+1(x,w) +4" max Qr (yt (z,w), w/)—
— Q" (x,w) | .Ft] +
+ IE[ f’h(aj,w) — Q*’h(x,w) | .7-}].

From Theorem 1 we know the second term vanishes. For the first
term we use the theorem again and also the contractiveness of the
Bellman operator to conclude the assertion:

HIE[?}H(@LU)—Pyh max Qr (yt(;m w),w/) — Q:’h(x,w) | J:t]

<"t — @i
S ’Y}LHAtH + 'Y}LHQ*JL _ :,h”'

2. We must show that, for each t, the variance of F}(z, w) is bounded
by a linear combination of 1, || Q¥ (x,w)|| and HQ?Q(QC7 w)||. We
call for attention on the definition of F}(z,w) once more. Now
we recall that the reward function has bounded variance (see Sec-
tion 2). Additionally, the contribution of the term Q™" to the vari-
ance is additive, since it is independent from Q! given the history
F;. Finally, the dependence of F;(x,w) on Qf (x,w) is, at most,
linear. We conclude the result. The present proof, on a bound of
the variance of the updates, closely resembles one from [32].

O

While Theorem 2 assumes the limit of the low-level policies is the
optimal low-level policy, the convergence result would still hold if
the limiting policy was any, 7, not necessarily optimal. The limits
of the value function would be, in that case, with respect to m. The
result requires the low-level policies to be converging to the optimal
and infinitely often state action visitation at the high-level. Numer-
ous learning algorithms are known to converge in the tabular case.
Examples of those algorithms are (-learning [11], SARSA [37] and
actor-critic variations [13], requiring as sufficient the GLIE hypothe-
sis [32] of being greedy in the limit with infinite exploration. Suppose
that the low-level policy being learned is itself a GLIE policy. Then,
if at the high-level actions are chosen from the Q-values estimates ac-
cording to Boltzmann [35] or decreasing e-greedy [34] distributions,
greed and exploration at the low level are not harmed.

6 Discussion

Extension to n-level hierarchies In this work, we established that
(i) the commonly employed two-level feudal hierarchy for reinforce-
ment learning is stable, in the sense that, when the low-level policy
is converging, the high-level Markov decision process is also con-
verging and that (ii) standard tabular reinforcement learning algo-
rithms converge on non-stationary but convergent Markov decision
processes. Putting the two results together, we conclude that rein-
forcement learning converges in two-level feudal hierarchies. Never-
theless, our conclusion does extend to any n-level feudal hierarchy.
To see (i), we can fix a low-level policy 7! and define an extra higher-
level hierarchy on top of M" (7!) the same way we did for two-level
hierarchies; we can then use the base case proven in the text and
conclude the induction step. To see (ii), no further proof is required.
Even though two-level hierarchies are significantly more employed,
three-level hierarchies also appeared in the literature [16].

Comparison with previous results Our work is not the first that
looks at the asymptotic behaviour of reinforcement learning on non-
stationary Markov decision processes [17, 9, 21, 10]. We establish a
convergence result for prediction and control on the high level of a
feudal hierarchy if the low level is convergent. Equivalently, we prove
convergence of TD(0) and ()-learning on convergent sequences of
Markov decision processes. The control result is not, in general, a
particular case of the one from [21], as optimal ()-values are not in-
dependent of the history of the process throughout the interaction.
In fact, the optimal @)-values are time dependent, even though they
converge to a time-independent solution. Additionally, we do not im-
pose ergodicity of the underlying processes. For similar reasons, the
prediction result is not a particular case of the one in [10].

7 Conclusion

Our work formalizes a two-level feudal hierarchy as two layers of
Markov decision processes that preserve the structure of the underly-
ing environment. We then show that, despite non-stationarity of the
high-level with respect to the policy operating at the low level, the
dependency is smooth in the continuity sense. Finally, we prove the
convergent behavior of a feudal hierarchical learning algorithm.
Future work should build on the convergence results for the case
where other learning algorithms, such as actor-critic ones, encom-
passing both prediction and control steps, are used at the high-level.
It should also be worth considering function approximation at the
high-level, even though most shallow reinforcement learning algo-
rithms are known not to necessarily converge in such setting. Finally,
while our setting is purposely very general, adding assumptions on
the learning rates could allow considerations on the ones to use at
high and low levels in order to achieve improved convergence rates.
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