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Abstract.

Automated planning research often focuses on developing new al-
gorithms to improve the computational performance of planners, but
effective implementation can also play a significant role. Hardware
features such as memory hierarchy can yield substantial running time
improvements when optimized. In this paper, we propose two state-
reordering techniques for the Topological Value Iteration (TVI) al-
gorithm. Our first technique organizes states in memory so that those
belonging to the same Strongly Connected Component (SCC) are
contiguous, while our second technique optimizes state value prop-
agation by reordering states within each SCC. We analyze existing
planning algorithms with respect to their cache efficiency and de-
scribe domain characteristics which can provide an advantage to each
of them. Empirical results show that, in many instances, our new al-
gorithms, called eTVI and eiTVI, run several times faster than tradi-
tional VI, TVI, LRTDP and ILAO* techniques.

1 Introduction

Markov Decision Processes (MDPs) serve as a powerful tool for
navigating decision-making scenarios in uncertain conditions. These
scenarios typically involve an agent that must accomplish a goal by
choosing actions from a range of possibilities. The agent’s decisions
are guided by a probabilistic model defining potential outcomes of
these actions, which can either be known a priori in the context of
automated planning [18], or learned through real-world or simulated
experiments in the context of (Model-Based) Reinforcement Learn-
ing (RL) [23]. Once an MDP model is established, the primary ob-
jective is to derive an optimal policy, i.e., a mapping that outlines
the action to be taken in each state to maximize reward (or to min-
imize cost). Dynamic programming algorithms such as Value Iter-
ation (VI) [1] and Policy Iteration [14] are commonly employed in
automated planning to find such a policy. Planning algorithms for
solving MDPs have evolved since then to become more efficient, in-
corporating ideas from heuristic search algorithms and trial-based
(sampling) algorithms. Labeled Real-Time Dynamic-Programming
(LRTDP) [3] and LAO* [12] are examples of more contemporary
planning algorithms that merge these two methodologies.

A promising approach to enhance the efficiency of MDP solvers
involves leveraging the advanced capabilities of contemporary CPUs,
including cache memory and vector (Single Instruction Multiple
Data, SIMD) instructions. We argue that modifying existing MDP
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solvers to harness these features could yield substantial performance
boosts, mirroring those observed in High-Performance Computing
(HPC) [9, 17, 11]. In recent times, Machine Learning (ML) algo-
rithms have seen dramatic performance improvements (across mul-
tiple orders of magnitude) by taking into account low-level com-
puter architecture components. For example, the use of specialized
floating-point numbers and SIMD instructions with these number
types have provided significant computational accelerations in nu-
merous ML applications [13, 5]. Additionally, parallelism, achieved
via CPU or GPU, and memory strategies, such as tiling, have en-
abled many ML algorithms to address larger classification prob-
lems [21, 10].

Given the impressive performance enhancements realized in ML,
it is plausible to anticipate that the application of similar techniques
to AI planning could result in MDP solvers which are able of han-
dling efficiently larger real-world problems than is currently feasi-
ble. In this paper, we show that state-of-the-art MDP solvers can run
orders of magnitude faster if they exploit the memory hierarchy of
modern computers. This problem has been previously recognized as
very relevant by the automated planning community:

“We believe that more research on cache efficiency of MDP al-
gorithms is desirable and could lead to substantial payoffs [. . . ]
one may gain huge speedups due to better cache performance
of the algorithms.” [18]

The remainder of this paper is organized as follows. Section 2
presents a quick survey of existing MDP solvers and of recent at-
tempts to consider hardware features in the context of MDP plan-
ning. Section 3 formally defines MDPs and other concepts used in
our study. Section 4 presents the two proposed methods that opti-
mize the use of cache memory by reordering the states according
to, respectively, the graph topology between the strongly connected
components (SCC) and the graph topology within each of them. We
present our empirical evaluation study in Section 5, where we ana-
lyze the cache performance of existing MDP algorithms and show
that our novel methods are capable of outperforming them in almost
all considered instances. Finally, we conclude in Section 6.

2 Related Work

A significant number of MDP solvers draw their foundation from the
Value Iteration (VI) algorithm [1], or more specifically, from asyn-
chronous variants of VI. In these asynchronous versions, the order in
which MDP states are backed up is flexible and does not require a
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uniform consideration. This flexibility can be exploited by assigning
a priority to each state and processing all states based on this prior-
ity. Prioritized Sweeping [20] is an example of an algorithm that em-
ploys this strategy. However, the overhead of maintaining the priority
queue that dictates the order of the state backups often negates the po-
tential acceleration. A solution to this issue consists in grouping the
states into partitions and assign priorities to these partitions rather
than to individual states. This approach is adopted by the General
Prioritized Solvers (GPS) family of algorithms, which have demon-
strated speed improvements of two orders of magnitude on numerous
MDP domains compared to Prioritized Sweeping [26]. A limitation
of GPS is the absence of a universal method for state partitioning,
necessitating efficient partitioning based on specific features of the
MDP domain being considered.

In a more recent development, we need to mention the Topological
Value Iteration (TVI) algorithm [8], which uses a generic method for
partitioning MDP states. TVI takes into account the graphical struc-
ture of the MDP (i.e., the structure of the graph resulting from the
all-outcomes determinization of the MDP) and employs Kosaraju’s
algorithm [22] to identify its strongly connected components (SCCs).
TVI then applies VI to each SCC in reverse topological order. Given
that, by definition, there are no cycles between SCCs, this order is
optimal and each SCC only needs to be considered once [2]. TVI can
significantly outperform general MDP solvers, such as LRTDP [3],
BRTDP [19] and ILAO* [12], particularly on domains with numer-
ous SCCs. MDP domains with state variables that can only change
monotonically (either increase or decrease) will have many SCCs,
and thus are well-suited for TVI. For instance, board games, where
the total number of pieces available to each player can never increase,
as in the game of chess, have many SCCs. A drawback of TVI is
that SCCs can sometimes be large (in the worst case, an MDP in-
cludes only one SCC containing every state), and thus solving these
SCCs with VI can be time-consuming. To address this issue, the
Focused Topological Value Iteration (FTVI) algorithm employs a
heuristic search to rapidly identify sub-optimal actions that can be
pruned from the MDP, potentially allowing for the discovery of more
SCCs [8]. However, FTVI’s performance is heavily reliant on the in-
formativeness of the lower and upper-bound heuristics it requires.

Some studies have considered hardware features of modern com-
puters. For example, the P3VI (Partitioned, Prioritized, Parallel Value
Iterator) algorithm, which is similar to the GPS family of algorithms
mentioned above, but where partitions are solved in parallel [25]. An-
other parallel algorithm, pcTVI (parallel-chained TVI) [7], is based
on TVI instead of GPS. It finds independent partitions that can be
solved in parallel and has the advantage that no inter-thread commu-
nication is needed, thus having minimal overhead.

Some researches tried to improve the cache performance of MDP
planners. There are two different ways to do it: (1) by changing the
data-structures used to store the MDP in memory, and (2) by chang-
ing the algorithms per se. To the best of our knowledge, the former
way has only been considered in one study [6] that proposed to store
MDP instances in a new data-structure, called CSR-MDP, inspired
by the compressed-sparse-row representation of graphs. This CSR-
MDP memory representation consists of five arrays (S,C,A,N, P ),
where S contains the states’ actions ids; C contains the cost of each
action; A contains the actions’ effects ids; N and P contain re-
spectively the effects’ state transitions and probabilities. The latter
way of improving the cache performance has also been proposed
recently [16]. The algorithm, called Cache-Efficient with Cluster-
ing (CEC), subdivides the SCCs found by the FTVI algorithm into
groups of states of size that fits the L3 CPU cache memory. The step

of FTVI consisting in solving an SCC using VI is replaced by a pro-
cedure that cyclically solves every cluster in the SCC until the entire
SCC converges. The authors of CEC indicated that their algorithm
allowed them to achieve a speedup factor varying between 2 and 8,
compared to FTVI. Other works have considered cache memory of
hard drives when MDP instances do not fit totally in the main mem-
ory [24], but we don’t discuss them here since this problem is out of
our scope.

3 Problem Definition

There exist different types of MDPs, including Finite-Horizon MDP,
Infinite-Horizon MDP and Stochastic Shortest Path MDP (SSP-
MDP) [18], where the first two of them can be seen as special cases
of the last one of them [2]. Due to their greater generality, we there-
fore focus on SSP-MDPs in this work, which we describe formally
in Definition 1 below. We refer less familiar readers to Mausam and
Kolobov’s book to gain background necessary to reproduce the re-
sults of our study [18].

Definition 1. A Stochastic Shortest Path MDP (SSP-MDP) is a tuple
(S,A, T, C,G), where:

• S is a finite set of discrete states;
• A is a finite set of actions;
• T : S×A×S → [0, 1] gives the probability T (s, a, s′) of reach-

ing state s′ when applying action a while in state s;
• C : S ×A → R

+ is a cost function, where C(s, a) gives the cost
of applying the action a while in state s;

• G ⊆ S is the set of goal states (assumed to be sink states).

We generally look for a policy π : S → A, indicating which action
should be executed at each state, such that an execution starting at
any state and following the actions given by π until a goal is reached
has a minimal expected cost. The expected cost of following a pol-
icy π when starting at a specific state is given by a value function
V π : S → R. The Bellman Optimality Equations (Definition 2) are
a system of equations satisfied by any optimal policy.

Definition 2. The Bellman Optimality Equations are the following.
For all s ∈ S,

V (s) =

⎧
⎨

⎩

0 if s ∈ G,
min
a∈A

[
C(s, a) +

∑

s′∈S

T (s, a, s′)V (s′)
]

otherwise.

The part between square brackets is called the Q-value of a state-
action pair. When an optimal value function V � (or the optimal Q-
value function Q�) is known, an optimal policy π� can be found
greedily: π�(s) = argmina∈A Q�(s, a).

Many MDP solvers use dynamic programming algorithms like VI,
which update iteratively an arbitrarily initialized value function until
convergence with a given precision ε. In general SSP-MDP prob-
lems, VI takes a polynomial time on the number of states (it is P-
Complete [18]). In acyclic MDPs, VI needs to do at most |S| sweeps
of the state space, where one sweep consists in updating the value es-
timate of every state using the Bellman Optimality Equations. Hence,
in such MDPs, the number of state updates (called a backup) is
O(|S|2). However, in these acyclic MDPs, most of these backups
are wasteful, since the MDP can in this situation be solved using only
|S| backups [2] (ordered in reverse topological order). Therefore, the
state backup order can have a significant impact on the algorithm
performance.
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4 Cache-Efficient Topological Value Iteration

Modern computers have multiple types of memory, forming what is
known as a memory hierarchy. From slowest (and largest) to fastest
(and smallest), there is the data drive (hard drive or SSDs), the main
(RAM) memory, the L3, L2, and L1 CPU cache memory, and the
registers. The caches allow the CPU to retain recently used data for
later use without necessity to access the much slower main memory.
On modern CPUs, the smallest amount of data loaded at a time in
memory, named the cache line size, is generally 64 bytes. The ac-
cess time to the fastest level of cache is usually around three orders
of magnitude faster than the access time to main memory. Moreover,
the cost of an L3 cache-miss (i.e., a load of a memory address not
currently in the L3 cache) on modern computers is two to three or-
ders of magnitude greater than that of an arithmetic operation. For
example, on a 2015 Skylake-based 6th generation Intel Core CPU, a
cache-miss leads to a penalty of 50-70 cycles [15].

In this paper, we focus mostly on minimizing the amount of L3
cache misses. However, the proposed methods will also provide im-
proved performance even if the problem fits entirely in this cache
level. Here are two reasons for this: First, if an MDP fits entirely
in a certain cache level, then the consideration of memory locality
will help reduce the number of cache misses on the lower levels, and
thus the provided advantages of the proposed methods will be simi-
lar; Second, by improving the locality of memory, we are also min-
imizing the amount of wasted memory inside each cache line (and
therefore, wasted memory bandwidth).

In this section, we describe two cache-efficient versions of the TVI
algorithm, named eTVI and eiTVI. We start by summarizing how the
original TVI algorithm works. Algorithm 1 presents its main steps.
First, TVI uses Kosaraju’s graph algorithm on a given MDP to find
the strongly connected components (SCCs) of its graphical structure
(the graph corresponding to its all-outcomes determinization). The
SCCs are found by Kosaraju’s algorithm in reverse topological or-
der, which means that for every i < j, there is no path from a state in
the ith SCC to a state in the j th SCC. This property ensures that every
SCC can be solved separately by VI sweeps if previous SCCs (ac-
cording to the reverse topological order) have already been solved.
The second step of TVI is thus to solve every SCC one by one in that
order.

Algorithm 1 Topological Value Iteration
1: procedure TVI(M : MDP)
2: � SCCs are found in reverse topological order
3: SCCs ← KOSARAJU(M) � Or Tarjan’s algorithm
4: for all scc ∈ SCCs do
5: PARTIALVI(M, scc) � converge with a given ε

Since TVI divides the MDP in multiple subparts, it maximizes the
effectiveness of every state backup by ensuring that only converged
state values are propagated from one SCC to the other. Another, per-
haps less obvious, advantage of TVI is that since fewer states are con-
sidered in an SCC sweep (compared to a total state space sweep), the
probability of having enough space in CPU cache memory to store
the information required by the sweep is higher. Even when an SCC
is too large to fit entirely in the cache memory, the number of cache-
misses will be reduced compared to that obtained by doing a sweep
over the entire MDP. Finally, depending on how TVI is implemented,
there can also be a third factor explaining its improved performance.
Let’s assume that an MDP contains only one SCC. Will TVI behave
similarly to VI in such a case? Not necessarily, because Kosaraju’s al-

gorithm (or Tarjan’s algorithm) will find and store the (unique) SCC
in a postorder depth-first search (DFS). If the PARTIALVI does the
sweep using this order, it will most likely improve the information
flow, and therefore be more efficient than the arbitrary order used by
asynchronous VI.

Although the cache performance of TVI is better than that of VI,
this is mostly “accidental” since this was not a direct motivation
of TVI’s authors. One way we can further improve the cache per-
formance is to subdivide every SCC into smaller subsets of states
whose information (transitions, state values, etc.) fit in the (e.g.,
L3) cache. This is the strategy used by the CEC algorithm men-
tioned in Section 2. Another way, on which we will focus next, is
to reorder the data in the data structure(s) containing the MDP such
that SCCs data are packed contiguously in memory, ensuring eas-
ily predictable memory access patterns and maximizing useful data
content in loaded cache lines. For example, if an MDP has two
SCCs containing respectively the states (0, 2, 4, 6) and the states
(1, 3, 5, 7), we can reorder them so that the MDP states’ data are
stored in the order (0, 2, 4, 6, 1, 3, 5, 7) instead of the original order
(0, 1, 2, 3, 4, 5, 6, 7). This example is not even the worst case: for in-
stance, if we assume that each state of a four-state SCC occupies 16
contiguous bytes in memory and is stored on a different cache than
the three other states, then solving the SCC would require loading
four lines from RAM through all cache levels, whereas by making
the states contiguous, only one cache line load (of 64 bytes) would
be necessary.

The eTVI algorithm we propose (Algorithm 2) here uses this re-
ordering idea to reduce the amount of memory accesses and thus
improve the computation speed. However, reordering the states in
memory to improve cache performance does not make much sense
if the MDP is stored in a cache-inefficient data-structure (e.g., us-
ing linked-lists). Therefore, our algorithm assumes that the MDP
is stored using the CSR-MDP memory representation mentioned in
Section 2.

It is worth noting that the proposed eTVI algorithm is based on
TVI, but it can also directly be incorporated into FTVI. However, the
additional step carried out by FTVI, i.e., pruning suboptimal actions,
is done by a heuristic search algorithm. To the best of our knowledge,
nobody has studied the cache performance of such algorithms (e.g.,
LRTDP and ILAO*). Consequently, we decided not to use FTVI in
our implementation of eTVI to focus specifically on its impact on
cache performance.

The eTVI algorithm first determines the k SCCs as in TVI, but
uses Tarjan’s algorithm instead of Kosaraju’s algorithm since it is
about twice faster. It then assigns a new id to every state in the MDP,
such that there exist ids i0 < i1 < · · · < ik (given by the array
SCCsIDs in the pseudocode) that ensure that all states in the j th

SCC have an id i, where ij ≤ i < ij+1. Once a new id has been
assigned to every state, we iterate over each state, action and proba-
bilistic action effect to rebuild a CSR-MDP memory representation
of the MDP using the new indices. After this step, the five arrays of
the CSR-MDP representation will be implicitly divided into k con-
tiguous regions such that the ith region of an array contains only data
specific to the ith SCC. It is worth noting that we could have gen-
erated a different 5-arrays tuple for every SCC, but we preferred to
implicitly divide the same five arrays into different regions to im-
prove memory locality. When the reordering/rebuilding of the MDP
is done, we solve each SCC one-by-one in reverse topological or-
der (as in TVI) by considering regions of the five arrays one-by-one.
Since SCCs are stored contiguously in the five arrays, the number of
wasted bytes in every cache line stored in cache memory is minimal.
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Algorithm 2 Cache-Efficient Topological Value Iteration
1: procedure ETVI(M : MDP (stored using CSR-MDP))
2: � SCCs are found in reverse topological order
3: SCCs ← TARJAN(M) � array of arrays
4: SCCsIDs ← REORDER(M,SCCs)
5: for i ← 0 to SIZE(SCCs)− 1 do
6: startID ← SCCsIDs[i]
7: endID ← SCCsIDs[i+ 1] � last is excluded
8: PARTIALVI(M, startID, endID)

9: procedure REORDER(M,SCCs)
10: � Step 1: Assign a new id to every state
11: (S, C,A,N ,P) ← M � Unpack CSR-MDP arrays
12: n ← NUMSTATES(M)
13: k ← SIZE(SCCs) � number of SCCs
14: SCCsIDs ← array of capacity k + 1
15: INSERT(SCCsIDs, 0)
16: oldIDs, newIDs ← arrays of size n
17: current ← 0
18: for all scc ∈ SCCs do
19: for all stateID ∈ scc do
20: oldIDs[current] = stateID
21: newIDs[stateID] = current
22: current ← current+ 1

23: INSERT(SCCsIDs, current)

24: REBUILDCSR(M, oldIDs, newIDs)
25: return SCCsIDs
26: procedure REBUILDCSR(M, oldIDs, newIDs)
27: (S ′, C′,A′,N ′,P ′) ← new arrays of the same size
28: for soldid ← 0 to n− 1 do � over all states
29: for all aold

id ∈ Ss do � over all actions of s
30: for all eoldid ∈ Aa do � over all effects of a
31: update N ′ and P ′

32: update A′ and C′

33: update S ′

34: M ← (S ′, C′,A′,N ′,P ′)

So far, we have only considered the order of states in memory with
respect to the SCC they’re part of, which we call the order of states
extra-SCC. What about the order of states within an SCC (which we
call the order of states intra-SCC)? As mentioned previously, TVI
(and for the same reason, eTVI) can sometimes be faster than VI
even on MDPs having only one SCC, because it does the VI sweep
using a different states order. This order will be the one found by the
SCC algorithm (e.g., a postorder DFS order). Is it possible to find a
better one? Since, by definition, an SCC contains loops, the optimal
order may change after each sweep. Algorithms that find a dynamic
state ordering, such as Prioritized Value Iteration [26], have a large
overhead because they need to maintain a priority queue that returns
the states in the dynamic order. Instead, we propose a static backup
order for each SCC given by a reversed Breadth-First Search (BFS)
where, at the start, the BFS queue contains all outward SCC border
states (that we define in Definition 3).

Definition 3. Let M = (S,A, T, C,G) be an MDP and K be an
SCC of M . We say that an outward border state of K is a state
s ∈ K for which there exists an action a ∈ A and a state s′ ∈ S \K
such that T (s, a, s′) > 0.

By starting the reversed BFS at the outward border states of the
current SCC, we make sure that the first backups within the SCC

will “bring” into the SCC the already converged values of the out-
ward neighbor SCC. After that, the reversed BFS order ensures that
the state-values will be propagated so that each state backup has new
values of neighboring states to consider (i.e., no state backup will
ever be useless). Since the SCC containing the goal state(s) do(es) not
have any outward border state, we simply start the reversed BFS from
the goal state. The algorithm that combines eTVI with this intra-SCC
order is called eiTVI. The eiTVI algorithm is implemented by replac-
ing lines 19–22 in Algorithm 2 by a detection of the outward border
states and the reversed BFS from those states. The names eTVI and
eiTVI stand respectively for extra-TVI and extra-intra-TVI, since the
former reorders the states according to an extra-SCC order, whereas
the latter reorders the states according to both the extra-SCC and
intra-SCC orders.

5 Empirical Evaluation

5.1 Evaluated Planners

In this section, we compare the performance of our proposed algo-
rithms, eTVI and eiTVI, to the following traditional algorithms: (1)
VI (we use the asynchronous round-robin Gauss-Seidel variant), (2)
LRTDP, (3) ILAO*, and (4) TVI – the Topological Value Iteration al-
gorithm described in Section 4. For LRTDP and ILAO*, we used the
admissible and domain-independent hmin heuristic first described in
the original paper introducing LRTDP [3]:

h(s) =

⎧
⎨

⎩

0 if s ∈ G,
min
a∈As

[
C(s, a) + min

s′∈S
T (s, a, s′)hmin(s

′)
]

otherwise,

where As denotes the set of applicable actions in state s. We com-
puted the hmin heuristic using the same method proposed in TVI’s
original paper, i.e., we do a backward search in the graph correspond-
ing to the all-outcomes determinization.

The six competing algorithms (VI, LRTDP, ILAO*, TVI, eTVI
and eiTVI) were implemented in C++ by the authors of this pa-
per, and compiled using the GNU g++ compiler (version 12.2). Our
TVI implementation (as well as eTVI and eiTVI) uses Tarjan’s al-
gorithm instead of Kosaraju’s algorithm to compute the SCCs. All
tested MDPs were stored with the CSR-MDP memory representa-
tion. All our experiments were performed on a computer equipped
with a 4.2 GHz Intel Core i5-7600k processor and 16 GB of DDR4
RAM.

Unfortunately, we were unable to reproduce the results reported in
CEC[A]’s research paper [16] (we obtained a significantly smaller
speedup factor than reported in the paper). Therefore, we do not
include these methods (discussed in Section 2) in our benchmark.
When implementing these algorithms, we found that the computa-
tional overhead required to find the “external states” and the SCC
subsets fitting in L3 cache outshone the obtained marginal cache im-
provement. We suspect that the difference between what we observed
and what the authors of the CEC[A] algorithms claim is due to the
poor cache performance of their MDPmemory representation, which
bias their results. Indeed, all of their compared algorithms (includ-
ing their baseline, FTVI) are implemented with MDPs stored using
a linked-list of linked-lists, which leads to many (unrealistic) cache-
improvement opportunities that we cannot reproduce when the MDP
is stored in a cache-efficient way, as is the case of CSR-MDP. There-
fore, the implementation used by CEC[A]’s authors largely overes-
timates the potential cache improvement of their methods (e.g., our
simple VI implementation was faster than their C++ implementation
of CEC[A]).
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5.2 Domains

Note that TVI (and therefore, also eTVI and eiTVI) are designed for
solving enumerative SSP-MDPs, i.e., the problems described explic-
itly, in contrast to the problems described in a factored form (e.g., in
PPDDL or RDDL). Therefore, we evaluated the performance of the
algorithms on three different enumerative MDP domains.

The first domain is the generic Layered domain described in TVI’s
paper [8]. This domain is parameterized by four different parameters:
n, nl, na and ns, respectively describing the number of states, the
number of layers, the number of applicable actions per state and the
maximum number of successor states per action (i.e., every action
a can lead to ka different states, where ka is drawn from a uniform
integer distribution in [1, ns]). Transition probabilities are uniformly
sampled from possible successors. States in this domain are evenly
divided into nl layers, {1, 2, . . . , nl}. A state in layer i can only have
successor states in layers {i, i+1, . . . , nl}, which means that MDPs
in this layered domain have at least nl SCCs. We used na = 10 and
ns = 10 in each test instance.

The second domain considered is the Single-Armed Pendulum
(SAP) domain [26]. This domain represents a two-dimensional
minimum-time optimal control problem in which an agent always
has two possible actions: apply a positive or a negative torque to a
rotating pendulum. The objective of the agent is to balance the pen-
dulum to the top. The state space is defined by two variables: angle
θ and angular velocity ω. We used the SAP instance generator pro-
posed by David Wingate. The details of the discretisation of the state
space are explained in his paper [26].

Finally, the third domain is a variant of the Wetfloor domain [4]. In
this domain, the state space is a square navigation grid in which cells
can be either dry, slightly wet or heavily wet. In the grid, cells are in-
dependently assigned as wet with probability p. Among wet cells, a
second parameter q controls the probability of being slightly wet (q)
or heavily wet (1 − q). The agent starts in a certain position and the
goal is to reach another position with a minimal number of actions.
The actions are {Up, Down, Left, Right}. They are deterministic on
dry cells. On wet cells, the actions outcome is probabilistic and de-
pends on parameters rslightly and rheavy . We fixed the parameters to
p = 0.4; q = 0.5; rslightly = 0.2; and rheavy = 0.33. In our evalu-
ation, we used a modified Wetfloor domain where, instead of having
a single square grid, we have many such grids connected to each
other (intuitively, this represents many wet rooms in a house). This
variant allows us to measure what happens to the cache performance
of the tested algorithms when the number of SCCs is increased.

We also evaluated the performance of the compared algorithms on
the DAP (Double-Armed Pendulum) and the MCar (Mountain Car)
domains, but the results obtained for these domains were similar to
those obtained on the three mentioned domains, and therefore we do
not include them due to lack of space.

5.3 Results

For every test domain, we measured the running time of the com-
pared algorithms carried out until ε-convergence of the value func-
tion (ε was fixed to 10−6 in our study). For every tested parameter
configurations, we ran each competing algorithm on the same 15 ran-
domly generatedMDP instances. Figure 1 illustrates the results of the
six competing algorithms on the tested domains. For the Layered do-
main, we present two figures: one where the number of layers is fixed
(to 10) and the number of states varies (from 100k to 1M), and one
where the number of states is fixed (to 1M) and the number of layers
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Figure 1. Average running times (in s) and 95% confidence intervals of the
six competing algorithms for: (a) the Layered domain with varying number

of states and fixed number of layers (10), (b) the Layered domain with
varying number of layers and fixed number of states (1M), (c) the SAP

domain, and (d) the Wetfloor domain.

J. Champagne Gareau et al. / Cache-Efficient Dynamic Programming MDP Solver 377



varies (from 20 to 214). On each graph plot, we also represented the
95% confidence interval for each algorithm. Since the SAP domain
generator is deterministic, the 15 instances for each tested size are,
in fact, the same for this domain. The very small variations observed
in this case are due to environmental biases (e.g., background tasks
running on the machine), and not to the differences between the gen-
erated instances.

Table 1 reports the detailed results provided for different instances
of the considered Layered, SAP and Wetfloor domains by the TVI,
eTVI and eiTVI algorithms1. The first four columns account for the
characteristics of the considered MDP instances, including the do-
main name, the number of states of the generated instance, the num-
ber of SCCs (we exclude the SCCs containing only one state) and
the size of the largest SCC. The next column accounts for the run-
ning time of Tarjan’s algorithm used to find the SCCs. Finally, we
report for TVI, eTVI and eiTVI the time required to compute the
state reordering and to build the new CSR-MDP memory represen-
tation (Tr), the time required to solve sequentially each SCC in the
reversed topological order (Ts), the total running time of the algo-
rithm (Ttot) and, finally, the number of Bellman backups (B) that
were necessary to reach epsilon-convergence of the value-function.

At the beginning of our empirical evaluation, we measured di-
rectly the number of L3 cache-references and cache-misses2. How-
ever, when we get to this level of measurement, many factors, includ-
ing the hardware prefetcher or the L1 and L2 caches, can have an im-
portant bias on the L3 cache metrics being measured. Therefore, we
would need to add multiple new metrics to our study. Since we were
limited by the paper length, we decided to present our results using
the number of Bellman backups, which might be of greater interest
to the AI community and allows us to measure indirectly the cache
performance. This way, we can use two criteria (running time and
number of Bellman backups) to compare the competing methods.
For example, if we compare the results of TVI and eTVI reported
in column (B) of Table 1, we can see that they are identical (this is
expected, since the only change between TVI and eTVI concerns the
way the states are stored in memory, but not their sweeping order).
Since the number of backups in the two algorithms is the same, but
the running time of eTVI is lower, this supports our hypothesis that
the reordering of the states leads to a better cache performance of
eTVI. We can also use the number of Bellman backups to show that
eiTVI focuses on an improved state-value propagation order in addi-
tion to optimizing the cache-performance as it has a lower number of
backups than TVI and eTVI.

In the Layered domain, we can see that the TVI, eTVI and eiTVI
algorithms greatly outperformed VI, LRTDP and ILAO*. Moreover,
we can observe that eTVI and eiTVI’s advantage over TVI seems to
increase as the number of states increases. When varying the num-
ber of layers, we can see that eTVI and eiTVI are faster than the
other algorithms up until a certain point (in our case, 128 layers), af-
ter which the number of layers becomes so high that the number of
states per layer becomes small enough to fit in cache. When this hap-
pens, cache-misses will only occur on the first sweep in the SCC. The
states’ reordering will minimize this (small) number of cache-misses
but, in this situation (small SCCs), TVI is already very fast, and the

1 A more detailed version of this table reporting the 95% confidence inter-
vals and a second table containing the data for the six compared algo-
rithms (the data used to plot the figures) are available in Supplementary
Material. We also included in it two tables showing, respectively, the ob-
tained cache metrics (cache references and cache misses) and the average
speedup factors obtained for each tested domains. It can be downloaded
from: https://www.jaelgareau.com/en/publication/gareau-ecai23/supp.pdf.

2 By using the Linux perf command.

performance increase by the smaller number of cache-misses is neg-
ligible compared to the cost of the reordering (this cost is around
1% of the total execution time when SCCs are large, but can be as
much as 30% of the total time when the solving of SCCs is already
extremely fast as is the case of small SCCs). LRTDP is also affected
by the number of layers, even though it does not explicitly consider
SCCs, because the number of layers has an impact on the search
depth attained by LRTDP before it reaches a goal.

On the SAP domain, LRTDP has a lot of difficulty to find a so-
lution in a reasonable time (TVI’s authors have observed the same
results). This can be explained by the fact that the hmin heuristic is
not really informative in SAP as well as by the fact that the min-
imum number of actions needed to reach a goal is relatively high.
Interestingly, the difference between eiTVI and eTVI is similar to
the difference between eTVI and TVI, which is also similar to the
difference between TVI and VI. This finding confirms that eTVI and
eiTVI can provide important speedup even for domains containing
a single SCC. In the case of eTVI, the speedup in single SCC do-
mains, such as SAP, is due to the memory organisation differences.
In fact, even though TVI and eTVI use the same state backup order,
the order in which the states are stored in memory when using TVI
does not necessarily match the order in which the states are consid-
ered in successive Bellman backups. In contrast, eTVI rebuilds the
MDP in memory in a way that these two orders match, which im-
proves the cache-performance. In the case of eiTVI, the speedup in
single SCC domains is due to the fact that eiTVI reorders the states
in the order given by a reversed BFS from the goal state. Therefore,
the state-value propagation order is improved.

On the Wetfloor domain, we can see unsurprisingly that both TVI
and eTVI’s performance increase as the number of rooms increases.
More surprising is the fact that eiTVI seems pretty constant even
as the number of rooms change. This is because the information
flow with eiTVI is initially much better and therefore, adding new
SCCs leads to minimal opportunities of additional improvement.
For example, when comparing the (B) column of eiTVI and eTVI,
we see that eiTVI needs less than half of the Bellman backups be-
fore ε-convergence. In comparison, VI’s performance decreases as
the amount of room increases. This is because when the number of
rooms is high, most backups carried out by VI are useless (they prop-
agate unconverged state-values). In the case of LRTDP and ILAO*,
the poor performance when the number of room gets higher can be
explained by the fact that a higher number of rooms corresponds to
a larger search depth from the initial state to the goal state in the
Wetfloor domain, and a less informative heuristic function.

We also evaluated the performance of the compared algorithms
on an Intel Core i5-13500 CPU with 24MB of L3 cache 3 to assess
the impact of newer CPU cache architecture. For the SAP and Lay-
ered domains, each of the competing algorithms was about 2-3 times
faster on the i5-13500 CPU, but the gap between the algorithms was
almost the same. For the Wetfloor domain, the gap between TVI and
eTVI was about 50% smaller on the i5-13500 CPU than on the i5-
7600k CPU, but the gap between eTVI and eiTVI was similar.

Overall, the proposed eTVI and eiTVI algorithms clearly outper-
form their VI, TVI, ILAO* and LRTDP counterparts on almost ev-
ery MDP instance (see Table 1). They are particularly good when
an MDP domain has many large SCCs, but can also outperform the
other algorithms when there is only one SCC (e.g., the SAP domain).
The only case where TVI was faster than both eTVI and eiTVI was
when the number of SCCs was large, but each of them was small.
3 Intel released this CPU in 2023Q1, we received it during last revision of
this paper.
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Table 1. Average running times (in s) and the number of Bellman backups for every tested domain and each of the TVI, eTVI and eiTVI algorithms. Fastest
total time (Ttot) for each domain instance is bolded.

MDP instances characteristics Tarjan TVI eTVI eiTVI
D |S| (k) |K| |kmax| (k) Ts Ttot B (M) Tr Ts Ttot B (M) Tr Ts Ttot B (M)

L
ay

er
ed

100 10 10 0.049 0.276 0.328 1.43 0.052 0.194 0.298 1.43 0.125 0.077 0.253 0.552
200 10 20 0.115 0.844 0.964 3.53 0.111 0.509 0.74 3.53 0.266 0.172 0.561 1.14
300 10 30 0.196 1.53 1.74 5.88 0.176 0.87 1.25 5.88 0.410 0.273 0.886 1.73
400 10 40 0.288 2.24 2.54 8.18 0.246 1.23 1.78 8.18 0.559 0.376 1.24 2.32
500 10 50 0.391 2.92 3.33 10.4 0.320 1.59 2.31 10.4 0.739 0.479 1.62 2.89
600 10 60 0.509 3.85 4.38 13.3 0.399 2.04 2.97 13.3 0.945 0.592 2.08 3.52
700 10 70 0.632 4.25 4.89 14.1 0.483 2.22 3.36 14.1 1.129 0.689 2.47 4.09
800 10 80 0.760 5.64 6.42 18.4 0.562 2.92 4.27 18.4 1.335 0.804 2.92 4.68
900 10 90 0.887 5.89 6.8 18.6 0.652 3.06 4.63 18.6 1.602 0.923 3.44 5.29

1000 10 100 1.026 6.69 7.74 20.4 0.736 3.41 5.19 20.4 1.811 1.05 3.9 5.89

L
ay

er
ed

1000 1 1000 1.309 97.5 98.8 197 0.919 35.5 37.7 197 1.537 34.5 37.3 191
1000 2 500 1.332 32.5 33.9 83.2 0.853 14.7 17 83.2 1.759 14.6 17.7 82
1000 4 250 1.201 16.1 17.4 46.2 0.786 7.93 9.94 46.2 1.819 6.81 9.86 39.3
1000 8 125 1.062 8.46 9.54 25.8 0.750 4.3 6.13 25.8 1.824 1.11 4.01 6.16
1000 16 62.5 0.955 4.89 5.87 15.9 0.716 2.54 4.24 15.9 1.835 0.965 3.79 5.5
1000 32 31.3 0.899 2.7 3.67 9.52 0.691 1.56 3.22 9.52 1.906 0.756 3.64 4.17
1000 64 15.63 0.836 1.4 2.44 5.06 0.687 0.875 2.59 5.06 1.963 0.485 3.47 2.3
1000 128 7.81 0.773 8.04 9.04 31.1 0.675 5.11 6.77 31.1 1.822 0.58 3.37 2.81
1000 256 3.91 0.831 2.57 3.69 10 0.670 1.67 3.43 10 1.955 0.37 3.45 1.44
1000 512 1.96 0.821 1.25 2.39 4.33 0.680 0.763 2.57 4.33 2.015 0.254 3.39 0.782
1000 1024 0.98 0.837 1.64 2.8 6.13 0.691 1.02 2.85 6.13 2.001 0.286 3.42 0.878
1000 2048 0.49 0.823 1.05 2.21 3.37 0.684 0.606 2.42 3.37 2.048 0.233 3.42 0.602
1000 4096 0.25 0.818 0.867 2.02 2.48 0.682 0.476 2.28 2.48 2.025 0.211 3.36 0.54
1000 8192 0.12 0.826 0.92 2.09 2.77 0.686 0.529 2.35 2.77 2.045 0.207 3.41 0.474
1000 16384 0.06 0.824 0.879 2.04 2.57 0.684 0.497 2.32 2.57 2.037 0.204 3.39 0.447

SA
P

10 1 10 0.001 0.011 0.012 1.04 0.001 0.01 0.011 1.04 0.001 0.008 0.009 0.81
40 1 40 0.002 0.102 0.105 9.08 0.002 0.092 0.098 9.08 0.005 0.057 0.065 5.6
90 1 90 0.004 0.431 0.438 32.2 0.005 0.363 0.375 32.2 0.012 0.211 0.23 18.6

160 1 160 0.008 1.37 1.39 88.2 0.009 1.01 1.04 88.2 0.022 0.491 0.526 42.7
250 1 250 0.013 2.79 2.81 165 0.015 1.9 1.94 165 0.036 1.1 1.15 95.2
360 1 360 0.018 4.21 4.24 250 0.021 2.87 2.92 250 0.054 1.83 1.92 160
490 1 490 0.027 6.46 6.5 377 0.029 4.41 4.48 377 0.075 2.8 2.92 241
640 1 640 0.037 10.3 10.4 600 0.038 7.04 7.14 600 0.100 3.97 4.12 339
810 1 810 0.045 13.8 13.8 813 0.050 9.44 9.56 813 0.130 6.37 6.56 549

1000 1 1000 0.055 16.8 16.9 1020 0.061 11.9 12.1 1020 0.162 8.39 8.63 718

W
et
flo

or

500 1 500 0.053 18.4 18.4 413 0.054 9.36 9.48 413 0.104 4.04 4.22 180
500 2 250 0.051 15.8 15.9 372 0.053 8.37 8.49 372 0.097 3.6 3.76 161
500 3 166 0.050 14.1 14.1 336 0.053 7.52 7.64 336 0.095 3.58 3.74 160
500 4 125 0.049 13 13 314 0.053 7.02 7.13 314 0.097 3.51 3.67 157
500 5 100 0.048 12.4 12.4 303 0.053 6.77 6.88 303 0.093 3.49 3.64 157
500 6 83.5 0.048 12.2 12.2 304 0.053 6.77 6.88 304 0.094 3.81 3.96 171
500 7 71.3 0.046 11.4 11.4 289 0.052 6.44 6.55 289 0.093 3.69 3.84 166
500 8 62.5 0.046 10.9 11 289 0.053 6.4 6.52 289 0.092 3.68 3.83 166
500 9 55.7 0.046 10.8 10.9 299 0.052 6.57 6.68 299 0.092 3.97 4.13 181
500 10 50.2 0.046 10.7 10.8 316 0.052 6.88 6.99 316 0.093 4.36 4.52 201

6 Conclusion

The main contributions of this paper are two-fold. First, we proposed
two cache-efficient variants of the TVI algorithm, called eTVI and
eiTVI, that reorder the original states of an MDP according to the
SCC order (and, in the case of eiTVI, according to the order of states
within SCCs as well) and build a corresponding reordered CSR-MDP
representation such that the states frequently used together in com-
putations are located near each other in memory. Second, we evalu-
ated the cache performance of six competing algorithms (VI, LRTDP,
ILAO*, TVI, eTVI and eiTVI) on three planning domains and ana-
lyzed the main factors (general, or specific to some solvers) that may
impact their cache performance. Our C++ implementation, including
domains generators, benchmarking scripts, and the proposed eTVI
and eiTVI algorithms, are available online4.

4 https://www.jaelgareau.com/en/publication/gareau-ecai23/code.zip.

In the future, we plan to design and evaluate an algorithm that
subdivides each SCC into smaller subcomponents with minimal de-
pendencies between them, possibly by finding provably suboptimal
strong-bridges within the SCCs and by using the Louvain algorithm.
We also plan to work on improving the cache efficiency of heuris-
tic search algorithms. This problem is harder to tackle than that of
improving VI/TVI-based methods because the states visiting order
is more difficult to predict. This would allow algorithms such as
LRTDP and LAO*, but also FTVI, to leverage cache memory hi-
erarchy as it was done for TVI in this paper.
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