
Selective Learning for Sample-Efficient Training in
Multi-Agent Sparse Reward Tasks

Xinning Chena;*, Xuan Liua;**, Yanwen Baa, Shigeng Zhangb, Bo Dingc and Kenli Lia

aCollege of Computer Science and Electronic Engineering, Hunan University, China
bSchool of Computer Science and Engineering, Central South University, China

cSchool of Computer Science, National University of Defense Technology, China

Abstract. Learning effective strategies in sparse reward tasks is
one of the fundamental challenges in reinforcement learning. This
becomes extremely difficult in multi-agent environments, as the con-
current learning of multiple agents induces the non-stationarity prob-
lem and sharply increased joint state space. Existing works have
attempted to promote multi-agent cooperation through experience
sharing. However, learning from a large collection of shared expe-
riences is inefficient as there are only a few high-value states in
sparse reward tasks, which may instead lead to the curse of di-
mensionality in large-scale multi-agent systems. This paper focuses
on sparse-reward multi-agent cooperative tasks and proposes an ef-
fective experience-sharing method, Multi-Agent Selective Learning
(MASL), to boost sample-efficient training by reusing valuable ex-
periences from other agents. MASL adopts a retrogression-based se-
lection method to identify high-value traces of agents from the team
rewards, based on which some recall traces are generated and shared
among agents to motivate effective exploration. Moreover, MASL
selectively considers information from other agents to cope with the
non-stationarity issue while enabling efficient training for large-scale
agents. Experimental results show that MASL significantly improves
sample efficiency compared with state-of-the-art MARL algorithms
in cooperative tasks with sparse rewards.

1 Introduction

Deep reinforcement learning (DRL) has shown its advantage in se-
quential decision-making control tasks by employing neural net-
works as approximators, such as Atari games, game theory and robot
control [6, 8, 13, 18]. However, recent success depends heavily on a
well-formed reward function that provides explicit feedback to each
agent at each step. For some complex tasks with sparse reward, such
as autonomous driving and robotic control, learning an optimal pol-
icy becomes extremely difficult for agents due to the lack of feed-
back signals. Sparse rewards are delayed, which provide feedback
to agents only in a few states (e.g., when the agent reaches a goal),
while in most cases, agents are not rewarded. Discovering high-value
states in sparse reward tasks is a hard exploration problem for agents,
which has not been well studied in the RL domain.

For single-agent environments, previous studies on sparse reward
have improved exploration efficiency by using additional supervised
signals, such as expert demonstrations [37, 40], intrinsic rewards

∗ Email: chenxinning@hnu.edu.cn
∗∗ Corresponding Author. Email: xuan_liu@hnu.edu.cn

[1, 29, 38]. However, without considering the complex interactions
between multiple agents, these methods cannot be directly applied
to multi-agent settings. In multi-agent tasks, the sparse reward chal-
lenge is aggravated by the need for policy coupling and the non-
stationarity of environments.

To promote cooperation in large state space, existing multi-agent
reinforcement learning (MARL) algorithms take advantage of expe-
rience sharing. The centralized training with decentralized execution
(CTDE) paradigm is widely used to enable agents to share their expe-
rience during centralized training [9, 19, 24]. However, fully sharing
experience among agents may lead to the curse of dimensionality as
the joint state-action space grows exponentially with the number of
agents [27]. Recent works have tried to simplify the learning pro-
cess by adopting techniques of inverse kinematic [17, 30], attention
mechanism [14, 15, 23], mean field theory [39] and dropout [16].
However, useful information may be overlooked in the process of re-
ducing interaction. How to maximize the valuable experiences while
simplifying the interaction remains a question, which is particularly
important in the tasks with sparse reward.

In this paper, we focus on sparse reward in cooperative multi-
agent scenarios, where both the challenges brought by sparse reward
and inherent non-stationarity greatly reduce learning efficiency. We
propose a method called multi-agent selective learning (MASL) to
achieve sample-efficient training. The key idea of MASL is to select
only valuable experiences of other agents instead of the whole huge
trajectory space to accelerate the learning process. First, inspired by
the advanced idea of using a backtracking model to improve sam-
ple efficiency[10], we introduce a centralized backtracking model for
multiple agents, which generates recall traces from high-value sam-
ples. More importantly, each agent not only speeds up learning by
imitating its own recall traces, but also shares the traces with other
agents for aiding effective exploration. Second, we propose to selec-
tively use information of the related agents but not all, which effec-
tively mitigates the non-stationarity of the multi-agent environments
and enhances the scalability of our approach in scenarios with more
agents. Last but not least, considering that it is difficult to identify
high-value experiences when all agents obtain a shared team reward,
we specifically consider fully cooperative tasks with shared team re-
ward and design a retrogression-based selection method to overcome
the difficulty of recognizing contributors from the shared reward.

The contribution of this paper is summarized as fourfold:
1) We propose multi-agent selective learning (MASL), an effective

method to boost learning efficiency in multi-agent cooperative tasks

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230298

413



with sparse rewards.
2) We introduce a centralized backtracking model to guide cooper-

ative exploration and exploit a retrogression-based selection method
to extract high-value agent trajectories from the team’s success.

3) We propose a selector to selectively use information from other
agents based on their relevancy to improve the training speed of cen-
tralized learning.

4) We conduct several cooperative multi-agent tasks with sparse
reward setting to evaluate the performance of MASL. Experiment
results show that MASL achieves higher sample efficiency than the
baselines, especially in sparse tasks with large-scale agents.

2 Background

2.1 Multi-agent Reinforcement Learning

Multi-agent tasks are generally modeled as a partially observable
Markov Game (POMG)[21]. When agents face a cooperative task
with a shared reward function, the POMG is then known as decentral-
ized Partially Observable Markov decision process (DEC-POMDP).
It can be formally defined as a tuple 〈S,A,O,Z, P, r, γ〉, where S
is the set of environment state s. Each agent i ∈ {1 · · ·N} chooses
its own action ai ∈ A, forming a joint action a ∈ A ≡ An which
induces a state transition according to the state transition function
P (s′|s,a) : S × A × S → [0, 1]. Each agent receives a partial
observation oi ∈ Z, which is drawn from the observation function
O(s, i) : S × N → Z. Each agent i obtains a reward as a function
of the state and agent’s action ri : S × A → R.

In cooperative tasks, each agent of a team always shares the same
reward, i.e., r1 = r2 = · · · = rN . The shared reward may lead to
the credit assignment problem, which is a key problem that restricts
agents from identifying and reusing their high-value experiences in
sparse reward tasks. The agent aims at learning a policy πi (oi)
that maximizes the accumulation of expected future rewards E [Ri]
where Ri is the discounted reward defined as Ri =

∑T
t=0 γ

trti and
T is the time horizon. γ ∈ [0, 1) is the discount factor. We denote
joint quantities over agents in bold.

2.2 Multi-Agent Deep Deterministic Policy Gradient

Applying single-agent RL algorithms to the multi-agent case causes
environment instability. To alleviate this problem, multi-agent DDPG
(MADDPG[24] is proposed to learn a centralized critic for each
agent, which allows agents to obtain the other agents’ observations
and actions during training.

Specifically, the centralized critic for agent i is represented by
Qμ

i (s,a) taking the environment state s = (o1, · · · , oN ), and the
joint action a = (a1, · · · , aN ) as inputs, where μ = {μ1, · · · , μN}
is the set of all agents’ policies parameterized by θi. The centralized
critic parameterized by ωi is updated based on:

L (ωi) = Es,a,r,s′∼D
[
(Qμ

i (s,a)− yi)
2
]
, (1)

where yi = ri + γQμ′
i (s′,a′)|a′

j=μ′
j(oj ′)

and μ′ = {μ′
1, · · · , μ′

N}
is the set of target policies with delayed parameters ω′

i.
Note that the centralized critic is only used in the training phase,

and the policy is decentralized based on local observation which is
updated by maximizing the objective J (θi) = E

[∑T
t=0 γ

trti

]
as:

∇θiJ (θi) =Es,a∼D
[∇θiμi (oi)∇aiQ

μ
i (s,a) |ai=μi(oi)

]
. (2)

2.3 Backtracking Model

Training a well-performing policy in sparse reward tasks through
random exploration is challenging, as only a few states yield high
value and thus the sample efficiency is low. [4, 10] simultaneously
propose to learn a backtracking model to generate traces that lead to
high value states. The generated recall traces are used to improve the
agents’ policy by guiding the agent to effectively explore the high-
value states.

More concretely, given a high-value state st+1, the backtracking
model Bφ = qφ (st, at|st+1) parameterized by φ predicts a previous
state st and an action at that given state st can lead to state st+1,
thus produces sequences of (st, at)-tuples forming recall traces. The
policy πθ is updated based on trajectories collected by RL algorithm.
Agents imitate recall traces given by:

LI =
∑H

t=0
log πθ (at|st) , (3)

where (st, at)-tuples are sampled from the recall traces stored in
buffer B and H is the time horizon.

At each iteration, the backtracking model is trained with agent tra-
jectories filtered by returns. For training stability with continuous-
valued states, backtracking model models the density of state varia-
tion Δst = st − st+1 rather than the raw st and is updated as:

LB = log
∏H

t=0
q (Δst, at|st+1) (4)

To build an effective backtracking model, it is required to collected
high value states, which can be easily selected in single-agent RL
algorithms based on the received rewards or Q-values estimated by
the critic. However, in multiple-agent scenarios where agents share
a team reward, how to identify which agent has visited a high value
state remains an issue.

3 Methodology

As discussed before, both the challenge of sparse reward and non-
stationarity hinder the learning process. To address these challenges,
MASL utilizes two techniques: 1) it backtracks the trajectories of
high-value states to help agents avoid the unguided exploration pro-
cess to speed up training. 2) it selects the information of other K
agents based on the relevancy, rather than all agents, stabilizing the
environment appropriately.

MASL is built on the framework of centralized training and decen-
tralized execution. As shown in Fig.1, each agent i learns an indepen-
dent deterministic policy μi(ai|oi; θi) parameterized by θi and a Q-
network Qi(o1, · · · , oN , a1, ·, aN ;ωi) parameterized by ωi, where
oi and ai represent observation and action, respectively. More impor-
tantly, the selectors for agents and a centralized backtracking model
Bφ are used for selective learning in the training phase. During the
execution, the backtracking model, selectors and Q-value networks
will be removed, allowing each agent to act based on its local policy.

3.1 Backtracking Based on Optimal Trajectory
Selection

To improve sample efficiency in sparse reward tasks, we introduce
the backtracking model in RL to multi-agent tasks. However, it is in-
efficient to directly apply the model to MARL because of the need to
identify high-value states and the neglect of collaboration. Therefore,
we mainly deal with two key problem: 1) How to improve multi-
agent cooperation using the backtracking model? 2) How to identify
high-value trajectory when all agents share a reward?

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks414



Figure 1. The architecture of MASL.

First, we design a global backtracking model that is shared among
all agents to facilitate cooperative exploration. When an agent dis-
covers a high-value state within the vast state space, we expect that
all agents could benefit from the valuable experience. Instead of di-
rectly sharing past experiences, we utilize the high-value states to
generate recall traces, which are then shared among agents to expe-
dite the exploration process. An example is shown in Fig.2, where
two agents are exploring the environment to reach the targets. When
agent A2 discovers a target (e.g., a landmark) and successfully iden-
tifies a high-value state (i.e., observation in partially observable envi-
ronments), A2 shares the recall traces generated from this high-value
state to guide the other agent to reach the known high-value states
from a new path. In this way, agent A1 can quickly recognize the
target and acquire the individual ability to reach a certain target in
the early stage. Second, we propose a retrogression-based selection
method to select the optimal trajectories for backtracking.

Backtracking model for multi-agent scenarios. Consider a fully
cooperative game with N agents with policies parameterized by
θ = {θ1, . . . , θN}. Each agent i shares a team reward and only has
a partial observation oi, which is treated as the agent’s private state.

In the training phase, we maintain a centralized backtracking
model Bφ shared by all agents. The backtracking model Bφ utilizes
agents’ good private states to generates traces for N agents to train
their policies. As shown in Fig.1, Bφ is composed of a observation
generator and an action generator. Given a high-value observation
oHi of agent i, the action generator q

(
ãi|oHi

)
generates an action

ãi that may cause the high-value state. The observation generator
q
(
Δoi|oHi , ãi

)
outputs the observation variation Δoi = õi − oHi

according to oHi and ãi, by which we get a previous observation õi
indirectly and then further obtain a sequence of (õi, ãi)-tuples as re-
call trace τ̃i for policy training.

To achieve cooperation exploration, a natural idea is knowledge
sharing. Therefore, each agent shares their recall traces with the other
agents. We omit the the subscript of recall traces in the following
content. Given observation õ, the policy μi parameterized by θi is
updated to guide agents to take action ã as:

L (θi) = log μi(τ̃) =
∑M

t=0
log μi(ã|õ) (5)

Since the backtracking model Bφ predicts previous actions and
observations based on agents’ high-value observations, the distri-
bution of recall traces should match the distribution of the high-
value trajectory as closely as possible. Given a high-value trajectory
τ = (o1, a1, r1, · · · , oT , aT , rT ), Bφ is trained by:

L (φ) = log
∏T

t=0
q (Δot, at|ot+1)

=
∑T

t=0
log q (at|ot+1) + log q (Δot|at, ot+1) .

(6)

Figure 2. An example of exploiting optimal experience to provide guid-
ance.
Note that agents only share the recall traces with other agents during
training, and act independently during execution.

Retrogression-based trajectory selection. Effective identifica-
tion of high-value agent trajectories is crucial for training both poli-
cies and backtracking models. When each agent receives an indi-
vidual reward, it becomes easy to identify high-value states based
on this reward. However, in fully cooperative environments where
all agents receive the same reward, extracting high-value agent tra-
jectories from the team’s success poses a challenge. To address this,
we propose a retrogression-based selection method for shared reward
tasks to identify high-value agent trajectories. Inspired by the concept
that one step backward for two steps forward, we deduce contributors
by observing the change of shared reward after taking steps back.

When agents get a high value team reward on the journey of ex-
ploration, all the agents take a step backward in turn and observe
how reward changes. Then, it is able to infer which agent con-
tributes to the high-value reward (e.g., achieving the target). Specif-
ically, according to the team reward obtained by agents, we define
a dynamically changing baseline reward Rb as a high-value judg-
ment criterion. Moreover, since it is always unrealistic to make the
system state recovery, we use a rule-based strategy as an auxil-
iary policy for selecting the high-value trajectories. Given experi-
ences

{(
oti, a

t
i, o

t+1
i , rti

)}N

i=1
, if rti > Rb, we test each agent in

turn to identify the high value state in the set
{
ot+1
i

}N

i=1
: Agent i

(from i = 1 to N) takes an action following a rule-based strategy
ai = πr(oi), getting back to its previous position. And the other
agents take actions to keep themselves staying on the spot. If the
backward behavior of agent i leads to a reduction in the reward ob-
tained, it is asserted that the agent i contributes to the team’s reward.
Therefore, we select the private state ot+1

i of the agent i as a high
value observation. In the end of each episode, the selected high-value
agent trajectories are deposited to a high-value buffer B̃. Note that
the rule-based strategy can be conducted based on the system prin-
ciples or using some pre-training policies. Moreover, to maintain the
stability of policy learning, the transitions collected by using the rule-
based strategy will not be put into the replay buffer.

Considering that the policies of the agents co-evolve with training,
it is inefficient to perform the selection process every time a high-
value reward is obtained. Actually, with the improvement of poli-
cies, the team reward obtained by agents gradually increases. For a
powerful team, setting a large baseline reward to promote them to
explore a more optimal policy is necessary. Therefore, to make the
retrogression-based trajectory selection process more efficient, we
periodically update the baseline reward Rb to the highest reward ob-
tained as a measure of learning progress. The retrogression-based
trajectory selection process begins when rti > Rb, and ends when
all the contributors are identified (r ≤ 0) or the game ends (t ≥ T ).
Moreover, agents only execute the retrogression-based selection pro-
cess once in an episode. Thus, it needs to expend N time steps (in
the case that agent N is the contributor to great reward) at most inter-
acting with the environment for selecting the high-value trajectories.

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks 415



3.2 Training Based on Key Information Selection

Although sharing and imitating backtracking trajectories improves
sample efficiency, agents still suffer from the unstable environment.
Therefore, we allow agents to obtain information from the other
agents for stable training, and select key information for learning ef-
ficiency and scalability.

Driven by an intuitive sense that, for an agent, there is little impact
from the agents not urgently related. Instead of constantly paying at-
tention to all teammates, agents should focus on agents who are cor-
related. It is important to note that limiting the information consid-
ered by agents can increase the environment’s instability. To mitigate
this and expedite training, we introduce a selector for each agent that
learns to select K agents’ information. Moreover, we measure agent
correlation based on the similarity of their observations, driven by
the intuition that neighboring agents are more likely to interact.

Specifically, the selector of agent i takes all agents’ observa-
tions and actions (o,a) = {(oi, ai) , (o

−i,a−i)} as input, where
(o−i,a−i) = {(oj , aj) , j ∈ {1, · · · , N}, j 
= i}. To learn which
agents need to be coordinated with, the selector computes the rele-
vancy weight wij for each agent j by matching their observations.

As shown in Fig.1, the weight wij compares oi with oj by us-
ing the computationally efficient scale dot score function to get

sij (oj , oi) =
oTj oi√

d
, where d is the dimensionality of the observa-

tion. Then the matching values are passed into a softmax function to
obtain relevancy weights:

wij =
exp (sij (oj , oi))∑

j �=i

exp (s (ok, oi))
. (7)

Then, we get a normalized weight vector Wi �
(wi1, · · · , wij , · · · , wiN ), j 
= i, which satisfies

∑
j �=i wij ≡ 1.

According to the weight vector Wi, we select K agents in a sample
way and obtain an vector zi = {(zi1, · · · , zij , · · · , ziN ) , zij ∈
[0, 1], }, where

zij =

{
1, if agent j is selected or j = i

0, if agent j is unselected
. (8)

By combining zi, the other agents’ information (o−i,a−i) are
transfered to (ô−i, â−i), given by

ô−i = {zi1 · oi1, · · · , zij · oij · · · , ziN · oiN , j 
= i}
â−i = {zi1 · ai1, · · · , zij · aij · · · , ziN · aiN , j 
= i}

. (9)

where the filtered out agents’ information is replace by a zero vector.
Finally, the selector outputs (ô, â) = {(oi, ai), (ô

−i, â−i)}.
Take the case of 3 agents as an example, we have the two possible

output configurations for agent 1:

{(o1, a1) , (o2, a2) , (
−→
0 ,
−→
0 )}, {(o1, a1) , (

−→
0 ,
−→
0 ), (o3, a3)}.

In off-line learning, networks are updated with mini-batch samples
from the replay buffer D. Therefore, the selector selects K agents
based on the average weight of the mini-batch samples. Then, it can
be seen as the information of the unselected agents is dropped out in
current training round, thus narrowing the critic networks and yield-
ing faster training.

With the selector applied, the centralized critic is trained to mini-
mize the loss function:

L (ωi) = Eo,a,r,o′∼D
[
(Qμ

i (ô, â;ωi)− yi)
2
]
, (10)

where ô = (ô1, · · · , ôN ) and â = (â1, · · · , âN ) is the observations
and actions selected by the selector, respectively. And target Q-value

yi = ri + γQμ′
i (ô′, â′;ω′

i)|a′
j=μ′

j(o
′
j ;θ

′
j)

, where ω′
i and θ′i are the

parameters of target critic network and the target policy network for
agent i respectively.

The policy for agent i is updated by maximizing the objective,
J (θi) = E [Ri], and the gradient is:

∇θiJ (θi) =Eo,a∼D
[∇θiμi (oi)∇ai(Q

μ
i (ô, â;ωi))|ai=μi(oi;θi)

]
.

(11)
Finally, the policy for each agent is updated by two terms, one over
the trajectories collected by interaction as Eq.11 and another over the
recall traces generated by the backtracking model as Eq.5.

4 Experiments

In this section, we perform experiments to investigate the effective-
ness of our method on two continuous control tasks of resource col-
lection and rover exploration, which are modified from the widely
used multiple-particle environment (MPE) benchmark [24].

4.1 Setup

In this section, we evaluate the proposed algorithm against several
MARL methods and answer the flowing question:1) Does MASL
improve sample efficiency and yield faster learning? 2) Is it still
available in large state space? 3) Does it achieve more advanced
results than state-of-art algorithms? We compare MASL with sev-
eral state-of-the-art solutions, including MADDPG [24], DDPG [20],
MADDPG-MD [16], mean field reinforcement learning(MF) [39],
multiple-actor-attention-critic (MAAC) [14] and independent gener-
ative adversarial self-imitation learning (IGASIL) [11].

Metrics. Three metrics are used to measure the performance of
an algorithm: 1) Episode Reward: the accumulated reward of each
episode; 2) Quantity: the number of goals finished at the end of each
episode; 3) Distance: the sum of the agent distance to the nearest
goal at the final step of episode.

Training Details. For all scenarios, the backtracking model gen-
erates trajectories of 3 steps for training. We set K=2,3,4 for the re-
source collection task with N=5,8 and 10 agents respectively. For the
rover exploration task with N=6, 8 and 12 agents, we set K=4, 5, 6
respectively. More details can be found in Appendix A.2.1

4.2 Resource Collection Tasks

Environment Settings. The resource collection task requires
agents to collect resources in multiple resource pools. There are N
agents and L resource pools, as shown in Fig.3(a). The agents are
generated at random locations and try to mine all the resource pools
while avoiding collision. Each agent gets a positive reward related to
the number of mining resource pools and a negative reward when col-
lisions happen. In the fully shared reward setting, each agent shares a
global reward at each time step, equal to the sum of each agent’s indi-
vidual reward. To evaluate the learning efficiency of our method, we
first observe whether MASL learns faster compared to the baselines
described above. Then we compare the final achievement to answer
the second question. We evaluate the performance of MASL in the
cases of (N = 5, L = 5), (N = 8, L = 8) and (N = 10, L = 12),
where we add the mean field reinforcement learning (MF) algorithm
as a baseline in the more general case of (N=10, L=12).

1 Appendix is available in https://github.com/CCConcerning/MASL.

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks416

https://github.com/CCConcerning/MASL


(a) Resource collection (RC) (b) RC-5: N = 5, L = 5 (c) RC-8: N = 8, L = 8 (d) RC-10: N = 10, L = 12

Figure 3. Resource collection tasks: (a) Task description; (b-d) Episode rewards in the case of (N = 5, L = 5), (N = 8, L = 8) and (N = 10, L = 12).

(a) Rover exploration (RE) (b) RE-6: N = 6, L = 3 (c) RE-8: N = 8, L = 4 (d) RE-12: N = 12, L = 3

Figure 4. Rover exploration tasks: (a) Task description; (b-d) Episode rewards in the case of (N = 6, L = 3), (N = 8, L = 4) and (N = 12, L = 3).

Results. As shown in Fig. 3, where we plot the episode reward of
different algorithms as the training progresses, MASL outperforms
the other methods in all the cases. It is clear that MASL learns more
rapidly and reaches higher episode rewards earlier than the base-
lines. In contrast, the other methods converge to suboptimal perfor-
mance due to limited exploration. Moreover, it is noteworthy that as
the number of agents increases, MASL maintains its superior perfor-
mance in terms of learning speed and final reward attainment.

In the case of 5 agents, DDPG performs slightly worse than MAD-
DPG. However, when the number of agents increases to 8, DDPG
achieves similar performance as MADDPG. This result suggests that
considering all other agents from the beginning might hinder the
learning process, especially with a larger number of agents. The com-
parison between MASL and MAAC reveals that MASL’s selection
mechanism outperforms the soft attention method used in MAAC.
The use of multiple attention heads in MAAC increases network
complexity and requires significant time to learn attention distribu-
tions. In contrast, MASL, which considers K key agents based on
raw observations, proves to be more effective. IGASIL exhibits poor
performance as it fails to identify valuable experiences from shared
rewards. Moreover, IGASIL incurs a training and running time that
is more than triple that of MASL, due to its use of a discriminator
for each agent. In contrast, MASL identifies high-value trajectories
from the shared rewards and selectively shares experiences, thereby
improving sample efficiency.

To test the final performance during execution, we evaluate the al-
gorithms in the Distance and Quantity metrics. As shown in Table
1, MASL mines more resource pools and causes a smaller agent dis-
tance to each resource pool.

4.3 Rover Exploration Tasks

Environment Setting. The rover exploration task requires a team
of agents to coordinately explore an area simultaneously, as shown
in Fig.4(a). N agents learn to cooperatively explore different L tar-
get areas separately. The number of agents required to explore a tar-
get area is termed the coupling requirement, which is unknown for

Table 1. Resource collection: The number of resource pools being
mined and the sum of agents distance to the resource pools.

Quantity Distance
N=5 N=8 N=5 N=8

MASL 4.32 6.81 0.46 0.91

MADDPG-D 3.99 5.51 0.70 1.72
DDPG 3.52 5.48 1.17 1.85
MADDPG 3.66 5.50 1.17 1.60
MAAC 4.11 4.99 0.54 2.20
IGASIL 3.10 1.88 3.18 2.80

agents. Agents receive a shared reward related to the number of the
explored areas. The rover exploration tasks bring more challenges
to agents due to the requirement of deep cooperation. We evaluate
MASL in the cases of (N = 6, L = 3), (N = 8, L = 4) and
(N = 12, L = 3).

Results. We first summarize the results of the (N = 6, L = 3)
and (N = 8, L = 4) rover exploration scenarios, where the coupling
requirement is 2. As shown in Fig. 4(b), the reward curve of MASL
grows significantly faster than the other methods. MASL agents learn
quickly to form a team of two to explore an area in RE-6 scenarios.
Similar results can be found in RE-8 scenario (N = 8, L = 4). As
the number of agents increases, the size of joint state space increases
rapidly, which slows down the training process. However, MASL still
maintains an advanced performance (see Fig. 4(c)). We observe in
the experiments that the independent DDPG agents quickly learn to
reach the nearest target, while MADDPG agents learn to explore dif-
ferent areas but often fail to form a team. In contrast, once an agent
reaches a target occasionally, MASL quickly learns to form teams to
explore different targets.

To evaluate the performance of MASL in long-horizon tasks, we
conduct experiment on the 100-step rover exploration task with 12
agents and 3 areas (N = 12, L = 3), which require agents to explore
3 areas with a high coupling requirement of 4. As shown in Fig.4(d),
MASL still achieves higher sample efficiency in the long-term games
compared with the baselines of MADDPG-MD and MADDPG.

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks 417



(a) (b) (c) (d)
Figure 5. Ablation results(a)-(c): (a) Results of setting different backtracking sizes. (b) Results of selecting different number of agents. (c) The results of
different selection mechanisms. Scalability results (d): The target completion rates in the resource collection tasks with different number of agents.

Table 2. Rover Exploration: the number of fully explored targets and
the sum of agents distance to target areas.

Quantity Distance
N=6 N=8 N=6 N=8

MASL 2.14 3.05 2.61 3.13

MADDPG-D 1.19 1.12 7.77 14.25
DDPG 1.11 1.0 10.21 18.79
MADDPG 1.23 1.34 8.10 6.83
MAAC 1.93 2.60 3.21 4.11
IGASIL 0.54 0.36 2.26 3.73

Table 2 demonstrates the number of fully explored targets by
teams of two agents and the sum of agent distance to target areas
in the tasks with coupling requirement of two. The superiority of our
method shows that the proposed selective learning method improves
sample efficiency and promotes effective exploration, while becomes
more significant as the number of agents increases.

4.4 Ablation Study

We perform ablation experiments on a 6-agent rover exploration
task(RE-6:N=6, L=3) to study the effectiveness of key components
of MASL: 1) the backtracking model that generates recall traces and
2) the selector that selects the information of the other K agents.

Ablation on the backtracking model. We study the impor-
tance of learning from recall traces by comparing against MASL with
backtracking removed, which refers to Select. To demonstrate the
sensitivity of our algorithm to the parameter of backtracking length,
we set the length to 1, 3 and 10 respectively. Fig. 5(a) shows the
performance in the training phase, the x-axis is the training episode,
and the y-axis is the accumulated reward of each episode. It’s clearly
shown that MASL strictly dominates Select in the final performance,
which indicates that learning from recall traces yields deeper explo-
ration. It is seen that different backtracking lengths may result in
rather different results. A long backtracking length (10 steps) leads to
insufficient exploration, while a short length (1 step) cannot provide
enough guidance. MASL with backtracking 3 steps provides appro-
priate guidance for the rover exploration tasks.

Ablation on the hyperparameter K of the selector. We study
the effectiveness of the selector by changing the number of selected
agents K. The hyperparameter K can be seen as a trade-off factor be-
tween training speed and stability. Note that from the perspective of
agents, the larger the K, the more stable the environment. However,
the input space also grows quickly with the increase of K, leading
to slow policy learning and sub-optimal performance. The case of
K=0 equals to a variant of MASL called DDPG+BM, which applies
the backtracking model to DDPG. The case of K = 6 equals to a
MASL variant that removing the selector. As shown in the Fig.5(b),

the setting of K = 4 is the best in this environment, which speeds up
training while ensuring stationary to a certain extent. It suggests that
the trade-off between efficient training and stability can be found by
selectively considering the information of other agents.

Ablation on the similarity metrics of the selector. We further
study the effectiveness of similarity metric based on observations.
The key information selection mechanism selects the other related
agents based on their observations. However, the measurement of the
relevancy between agents is an open question. Therefore, since the
observations and actions is shared between agents, we add two vari-
ants: 1) MASL-oa which select key information based on both ob-
servations and actions as the criterion; 2) MASL-act which measures
relevance based on actions; 3) MASL-random that selects K agents
randomly. The original version of MASL is denoted as MASL-o. We
conduct experiments in the rover exploration task of 6 agents to ver-
ify the effectiveness of using the matching degree of observations
as a correlation measurement between agents. The experimental re-
sult is shown in the Fig. 5(c), all of the selection mechanisms based
on relevance outperform the random selection mechanism (MASL-
random), which indicates that it is useful to focus on related agents.
Compared with MASL-oa and MASL-act, MASL-o has better per-
formance. Although we allow the agents to access all observations
and actions during the training process, observations contain more
information than actions and thus become a better measure of rel-
evance. Actions may act as noise in the selection process, which
affects the accuracy of related agents’ information selection when
MASL-oa agents learning.

4.5 Discussions

In this section, we study the scalability and applicability of MASL to
best show its advantage in sparse reward tasks.

Scalability study. To evaluate the scalability of MASL, we train
agents in the resource collection scenarios with N = [5, 8, 10, 20]
agents respectively, and then report the final target completion rates
of MASL compared with MADDPG-MD and mean field reinforce-
ment learning (MF) [39], which are designed to address large-scale
agents. The MF algorithm is added as a baseline method, which ap-
proximates the interaction within agents using an average effect to
enable coordination between large-scale agents. As shown in the Fig.
5(d), MASL achieves higher target completion rates than the other
baselines, even in the large-scale scenario with 20 agents. We ob-
serve that MASL only sacrificed 0.93% of the computation time (see
Appendix A.4 for the detailed computational complexity analysis) to
improve the sample efficiency by 8.8% compared with MADDPG-
MD when N = 5. The sample efficiency of MASL is improved

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks418



by 30.2% in the case of N = 20. We also study the scalability
of the trained MASL agents by transferring the trained policies of
5 agents to 30 agents, and testing MASL in the environment of 30
agents (N = 30, L = 30). We observed that the trained decentral-
ized policies of MASL in easy tasks can be directly scale to complex
tasks with large-scale agents, while achieving a higher target com-
pletion rate of 36%, surpassing MADDPG-MD (24.7%). MASL im-
proves the sample efficiency for sparse reward tasks, especially in
large-scale scenarios.

Applicability study. Since we propose MASL in the context of
tasks with shared reward, we further study the applicability of MASL
by considering tasks with reward forms of individual rewards and
partially shared rewards. We change the reward function of the re-
source collection environment to use individual reward and partially
shared reward respectively, where each agent gets a positive reward
when it mines a resource pool in the individual reward setting. For
the partially shared reward setting, agents obtain a reward related to
the number of resource pools mined by the whole team and are pun-
ished when it collides with other agents. As shown in Fig. 6, MASL
achieves faster learning efficiency than the baselines in both cases.
We observe that the algorithms perform better in both cases com-
pared to the fully shared reward setting. It suggests that different
reward functions greatly affect the performance of the algorithms,
while the shared sparse reward brings difficulties in credit assign-
ment. When agents access individual rewards, the contribution of
agents can be differentiated directly based on the rewards. In this
case, MASL accelerates learning by utilizing the backtracking model
and selectors without the need of performing the retrogression-based
selection process. In the case of partially shared reward, the learn-
ing process of agents is similar to that of shared reward case, since
the individual contributions cannot be clearly distinguished. MASL
generally improves sample efficiency, especially in tasks with shared
rewards. Moreover, MASL has broad applicability to sparse reward
tasks beyond the shared reward settings.

5 Related Work

Sparse reward in reinforcement learning. To deal with the
sparse reward challenge, an intuitive method is reward shaping [26],
but it requires domain knowledge and lacks design generality and
expandability. Return decomposition paradigm is proposed recently
to redistribute sparse environmental feedback [5]. RRD [32] learns
long-term reward redistribution via randomized return decomposi-
tion. Intrinsic motivation based methods have been widely studied
to aid in exploration by adding intrinsic rewards [1, 29, 38]. Re-
cent works have benefit from leveraging past experiences to pro-
mote sample efficiency [33, 28, 4, 10]. Self-imitation learning (SIL)
[28] imitates the agent’s own past good experiences. Some works
[4, 10] generate traces from past high-value states by a learned back-
tracking model. GPRIL [34] reasons demonstrated states from expert
demonstrations by using generative models. However, these meth-
ods usually cannot be directly applied to multi-agent environments
with shared rewards, since they rely on the identifiability of high-
value samples (high-reward transitions or expert demonstrations).
There are some works making tentative exploration to solve sparse
reward in multi-agent tasks. MAGAIL [36] extends GAIL [12] to
multi-agent cases by using expert demonstrations. MERL [25] in-
troduces evolutionary algorithm to maximize the sparse team-based
objective under the assumption that dense agent-specific rewards are
accessible. IGASIL[11] combines SIL with GAIL to guide agents to

(a) Individual reward (b) Partially shared reward

Figure 6. The number of resource pools in resource collection tasks with
individual reward (a) and partially shared reward (b).

explore around high-reward regions. CMAE [22] learns coordinated
exploration in restricted state spaces, which only works well on tasks
with discrete state space. MAGIC [2] drives efficient exploration by
learning consistent goal recognition.

Multi-agent reinforcement learning. Policy learning in cooper-
ative multi-agent tasks suffers from the non-stationary environment.
To deal with the non-stationarity problem, MADDPG [24] extends
DDPG [20] to multi-agent setting and proposes to use a centralized
critic. Since MADDPG gets all agents’ information as input, its train-
ing efficiency and scalability are limited by the dimension of state
and action spaces. To improve the efficiency of centralized training,
MADDPG-MD [16] introduces the dropout technique to drops out
the received messages from other agents with a certain probability.
Unlike MADDPG-MD that chooses agents randomly, our work se-
lects agents based on relevancy by an effective selector. Mean Field
method [39] reduces the input dimension by approximating the in-
teractions within the population of agents with an average effect.
MAAC [14] aggregates all weighted agent information by using at-
tention mechanism. SePS [3] recognizes heterogeneous agents and
shares parameters among them for improving computational effi-
ciency. Some work has developed an attractive way to exploit central-
ized learning by learning a joint state-action value function and ad-
dress the credit assignment problem to some extent [7, 9, 31, 35]. The
proposed retrogression-based selection method addresses the credit
assignment problem of sparse team reward tasks by interacting with
the environment and reasoning from the changes in rewards.

None of the existing works explicitly solve the sparse reward prob-
lem and the scalability problem of centralized training. In stark con-
trast, MASL fully considers the cooperation among agents and im-
proves sample efficiency by sharing recall traces. Moreover, MASL
yields efficient learning of large input dimensions by selecting key
information.

6 Conclusions

In this paper, we propose an efficient training method called multi-
agent selective learning (MASL), to improve sample efficiency for
multi-agent sparse-reward tasks. By using a centralized backtrack-
ing model, MASL learns not only from traces obtained by interact-
ing with the environment but also from recall traces generated by
the backtracking model. Moreover, we design a selector to improve
learning efficiency while balancing stability. Experiments show that
MASL significantly speeds up learning in several multi-agent sparse-
reward tasks, especially in tasks with large-scale agents. Ablation
studies show that both learning from recall traces and focusing on
relevant agents jointly accelerate training and aid in exploration un-
der sparse rewards.

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks 419



Acknowledgements

This work was supported by the National Key Research and Devel-
opment Program of China (2022YFC3400404), the National Science
Foundation of China (62172154), the Hunan Provincial Natural Sci-
ence Foundation of China under grant No. 2023JJ30702. Prof. Xuan
Liu is the corresponding author of the paper.

References

[1] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul,
David Saxton, and Rémi Munos, ‘Unifying count-based exploration
and intrinsic motivation’, in Proc. Adv. Neural Inf. Process. Syst., pp.
1471–1479, (2016).

[2] Xinning Chen, Xuan Liu, Shigeng Zhang, Bo Ding, and Kenli Li, ‘Goal
consistency: An effective multi-agent cooperative method for multi-
stage tasks’, in Proceedings of International Joint Conference on Ar-
tificial Intelligence, pp. 172–178.

[3] Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Ste-
fano V. Albrecht, ‘Scaling multi-agent reinforcement learning with se-
lective parameter sharing’, in Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139, pp. 1989–1998, (2021).

[4] Ashley D. Edwards, Laura Downs, and James C. Davidson, ‘Forward-
backward reinforcement learning’, CoRR, abs/1803.10227, (2018).

[5] Yonathan Efroni, Nadav Merlis, and Shie Mannor, ‘Reinforcement
learning with trajectory feedback’, in Proc. AAAI Conf. Artif. Intell.,
pp. 7288–7295, (2021).

[6] David Silver et al., ‘Mastering the game of go with deep neural net-
works and tree search’, Nat., 529(7587), 484–489, (2016).

[7] Peter Sunehag et al., ‘Value-decomposition networks for cooperative
multi-agent learning based on team reward’, in Proc. AAMAS, pp.
2085–2087, (2018).

[8] Volodymyr Mnih et al., ‘Human-level control through deep reinforce-
ment learning’, Nat., 518(7540), 529–533, (2015).

[9] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson, ‘Counterfactual multi-agent policy
gradients’, in Proc. AAAI Conf. Artif. Intell., pp. 2974–2982, (2018).

[10] Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal,
Timothy P. Lillicrap, Sergey Levine, Hugo Larochelle, and Yoshua Ben-
gio, ‘Recall traces: Backtracking models for efficient reinforcement
learning’, in Proc. ICLR, (2019).

[11] Xiaotian Hao, Weixun Wang, Jianye Hao, and Yaodong Yang, ‘Inde-
pendent generative adversarial self-imitation learning in cooperative
multiagent systems’, in Proc. AAMAS, pp. 1315–1323, (2019).

[12] Jonathan Ho and Stefano Ermon, ‘Generative adversarial imitation
learning’, in Proc. Adv. Neural Inf. Process. Syst., pp. 4565–4573,
(2016).

[13] Ionel-Alexandru Hosu and Traian Rebedea, ‘Playing atari games with
deep reinforcement learning and human checkpoint replay’, CoRR,
abs/1607.05077, (2016).

[14] Shariq Iqbal and Fei Sha, ‘Actor-attention-critic for multi-agent rein-
forcement learning’, in Proc. Int. Conf. Mach. Learn., (2019).

[15] Jiechuan Jiang and Zongqing Lu, ‘Learning attentional communication
for multi-agent cooperation’, in Proceedings of Conference on Neural
Information Processing Systems, pp. 7265–7275, (2018).

[16] Woojun Kim, Myungsik Cho, and Youngchul Sung, ‘Message-dropout:
An efficient training method for multi-agent deep reinforcement learn-
ing’, in Proc. AAAI Conf. Artif. Intell., pp. 6079–6086, (2019).

[17] Daniel Kubus, Rania Rayyes, and Jochen J. Steil, ‘Learning forward
and inverse kinematics maps efficiently’, in International Conference
on Intelligent Robots and Systems, pp. 5133–5140. IEEE, (2018).

[18] Haoran Li, Qichao Zhang, and Dongbin Zhao, ‘Deep reinforcement
learning-based automatic exploration for navigation in unknown en-
vironment’, IEEE Trans. Neural Networks Learn. Syst., 31(6), 2064–
2076, (2020).

[19] Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart J.
Russell, ‘Robust multi-agent reinforcement learning via minimax deep
deterministic policy gradient’, in Proc. AAAI Conf. Artif. Intell., pp.
4213–4220, (2019).

[20] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra, ‘Con-

tinuous control with deep reinforcement learning’, in Proc. ICLR,
(2016).

[21] Michael L. Littman, ‘Markov games as a framework for multi-agent
reinforcement learning’, in Machine Learning, Proceedings of the
Eleventh International Conference, pp. 157–163, (1994).

[22] Iou-Jen Liu, Unnat Jain, Raymond A. Yeh, and Alexander G. Schwing,
‘Cooperative exploration for multi-agent deep reinforcement learning’,
in Proceedings of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, volume 139, pp. 6826–
6836, (2021).

[23] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and
Yang Gao, ‘Multi-agent game abstraction via graph attention neural
network’, in Proc. AAAI Conf. Artif. Intell., pp. 7211–7218, (2020).

[24] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor
Mordatch, ‘Multi-agent actor-critic for mixed cooperative-competitive
environments’, in Proc. Adv. Neural Inf. Process. Syst., pp. 6379–6390,
(2017).

[25] Somdeb Majumdar, Shauharda Khadka, Santiago Miret, Stephen
McAleer, and Kagan Tumer, ‘Evolutionary reinforcement learning for
sample-efficient multiagent coordination’, in Proc. Int. Conf. Mach.
Learn., volume 119, pp. 6651–6660, (2020).

[26] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell, ‘Policy invariance
under reward transformations: Theory and application to reward shap-
ing’, in Proc. Int. Conf. Mach. Learn., pp. 278–287, (1999).

[27] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi, ‘Deep
reinforcement learning for multiagent systems: A review of challenges,
solutions, and applications’, IEEE Trans. Cybern., 50(9), 3826–3839,
(2020).

[28] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee, ‘Self-
imitation learning’, in Proc. Int. Conf. Mach. Learn., pp. 3875–3884,
(2018).

[29] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell,
‘Curiosity-driven exploration by self-supervised prediction’, in Proc.
Int. Conf. Mach. Learn., pp. 2778–2787.

[30] Adolfo Perrusquía, Wen Yu, and Xiaoou Li, ‘Multi-agent reinforcement
learning for redundant robot control in task-space’, Int. J. Mach. Learn.
Cybern., 12(1), 231–241, (2021).

[31] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gre-
gory Farquhar, Jakob N. Foerster, and Shimon Whiteson, ‘QMIX:
monotonic value function factorisation for deep multi-agent reinforce-
ment learning’, in Proc. Int. Conf. Mach. Learn., pp. 4292–4301,
(2018).

[32] Zhizhou Ren, Ruihan Guo, Yuan Zhou, and Jian Peng, ‘Learning long-
term reward redistribution via randomized return decomposition’, in
Proc. ICLR, (2022).

[33] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver, ‘Prior-
itized experience replay’, in Proc. ICLR, (2016).

[34] Yannick Schroecker, Mel Vecerík, and Jonathan Scholz, ‘Generative
predecessor models for sample-efficient imitation learning’, in Proc.
ICLR, (2019).

[35] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and
Yung Yi, ‘QTRAN: learning to factorize with transformation for coop-
erative multi-agent reinforcement learning’, in Proc. Int. Conf. Mach.
Learn., volume 97, pp. 5887–5896.

[36] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon, ‘Multi-
agent generative adversarial imitation learning’, in Proc. Adv. Neural
Inf. Process. Syst., pp. 7472–7483, (2018).

[37] Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever, ‘Third person imi-
tation learning’, in Proc. ICLR, (2017).

[38] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen,
Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel, ‘#ex-
ploration: A study of count-based exploration for deep reinforcement
learning’, in Proc. Adv. Neural Inf. Process. Syst., pp. 2753–2762,
(2017).

[39] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and
Jun Wang, ‘Mean field multi-agent reinforcement learning’, in Proc.
Int. Conf. Mach. Learn., pp. 5567–5576, (2018).

[40] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K.
Dey, ‘Maximum entropy inverse reinforcement learning’, in Proc. AAAI
Conf. Artif. Intell., pp. 1433–1438, (2008).

X. Chen et al. / Selective Learning for Sample-Efficient Training in Multi-Agent Sparse Reward Tasks420


	Introduction
	Background 
	Multi-agent Reinforcement Learning
	Multi-Agent Deep Deterministic Policy Gradient
	Backtracking Model

	Methodology
	Backtracking Based on Optimal Trajectory Selection
	Training Based on Key Information Selection 

	Experiments
	Setup
	Resource Collection Tasks
	Rover Exploration Tasks
	Ablation Study
	Discussions

	Related Work
	Conclusions

