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Abstract. Abductive explanations (AXp’s) are widely used for un-
derstanding decisions of classifiers. Existing definitions are suitable
when features are independent. However, we show that ignoring con-
straints when they exist between features may lead to an explosion
in the number of redundant or superfluous AXp’s. We propose three
new types of explanations that take into account constraints and that
can be generated from the whole feature space or from a sample (such
as a dataset). They are based on a key notion of coverage of an ex-
planation, the set of instances it explains. We show that coverage is
powerful enough to discard redundant and superfluous AXp’s. For
each type, we analyse the complexity of finding an explanation and
investigate its formal properties. The final result is a catalogue of
different forms of AXp’s with different complexities and different
formal guarantees.

1 Introduction

Given a decision of a classifier, a user may want, and may even have
a legal right to, an explanation of this decision. Concrete examples
include an explanation as to why a loan/job/visa application was re-
fused or why a medical diagnosis was made. See [21, 22] for more
on explainability and interpretability.

The majority of existing explanation functions explain a decision
in terms of relevance of the input features. One of the most studied
types of feature-based explanations is the so-called abductive expla-
nation (AXp), or prime implicant explanation [10, 19, 25]. It pro-
vides a (minimal) sufficient reason for the decision.

In the literature, AXp’s have two sources: they are generated either
from a subset of instances as done by the two prominent explanation
functions Anchors [24] and LIME [23] and those introduced in [1, 3],
or from the whole feature space (eg., [4, 5, 6, 8, 10, 11, 14, 15, 25]).
Whatever the source, features are implicitly assumed to be inde-
pendent. However, constraints on values that features may take are
ubiquitous in almost all real-world applications including analysis of
election results, justifying medical treatments, etc.

Constraints have been extensively studied in databases where sev-
eral types have been distinguished [26]. In the context of classifiers
and their abductive explanations, we focus on two categories: in-
tegrity constraints (IC) and dependency constraints (DC). The for-
mer are of two types: i) they may express impossible assignments of
values to features like “men cannot be pregnant”, here ICs impact
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locally individual instances, ii) global constraints preventing the co-
existence of two or more instances such as “no two distinct students
may have the same ID card value”. When such constraints exist, the
feature space necessarily contains impossible instances. Dependency
constraints are a specific sub-type of the first type of IC. They ex-
press the following: if some attributes take specific values, then other
attributes take also specific values. Examples of DCs are: "a person
who is pregnant is necessarily a woman" and “if it rains, then the
road is certainly wet". This type of constraint may exist between fea-
tures of feasible instances. Therefore, they may lead to dependencies
between AXp’s, and thus redundancies (as some follow from others).

In [8, 13], ICs (in the sense of constraints on possible feature vec-
tors) were considered when generating abductive explanations while
DCs (in the sense of dependencies between AXp’s) were totally ig-
nored. In this paper, we show that disregarding dependency con-
straints when explaining decisions may lead to exponentially more
AXp’s many of which may be redundant or superfluous. To bridge
this gap, we investigate explanation functions that generate AXp’s
while taking into account both IC and DC constraints. Our contribu-
tions are fourfold: The first consists of proposing three novel types of
abductive explanation that deal with constraints. They are generated
from the whole set of instances that satisfy the constraints, thus dis-
carding any instance that violates an integrity constraint. However,
this is not sufficient for considering dependencies expressed by DCs.
As a solution, the new types of explanation are based on the key
notion of coverage of an explanation, i.e., the set of all instances it
explains. Coverage is powerful enough to capture those constraints,
and ensures the independence of explanations of every decision.

The second contribution consists of a thorough analysis of the
complexity of explaining a decision. We show that finding a prime-
implicant explanation becomes computationally much more chal-
lenging in a constrained setting.

The third contribution consists of proposing a paradigm for mak-
ing the three solutions feasible. The idea is to avoid exhaustive search
by examining a sample of the constrained feature space. We adapt the
three types of explanations and show that the worst-case complexity
of finding sample-based explanations is greatly reduced.

The fourth contribution consists of introducing desirable proper-
ties that an explanation function should satisfy, then comparing and
analysing the novel functions against them. The results show, in par-
ticular, that when explanations are generated from a sample, com-
plexity is greatly reduced but at the cost of violating a desirable
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property, which ensures a kind of global coherence of the set of all
explanations that may be returned by a function.

The paper is structured as follows: Section 2 recalls previous defi-
nitions of AXp and Section 3 discusses their limits. Section 4 defines
the three novel types of AXp’s, Section 5 analyses their complexity,
and Section 6 studies their sample-based versions. Section 7 intro-
duces properties of explainers and analyses the discussed functions
against them. The last section concludes.

2 Background

Throughout the paper, we consider a classification theory as a tu-
ple made of a finite set F of features (also called attributes), a func-
tion dom which returns the domain of every feature f ∈ F, where
dom(f) is finite and |dom(f)| > 1, and a finite set Cl of classes
with |Cl| ≥ 2. We call literal any pair (f, v) where f ∈ F and
v ∈ dom(f). A partial assignment is any set of literals with each fea-
ture in F occurring at most once; it is called an instance when every
feature appears once. We denote by E the set of all possible partial
assignments and by F the feature space, i.e., the set of all instances.
For all E,E′ ∈ E, the notation E(E′) is a shorthand for E ⊆ E′.
The reason for this notation is that if E is a partial assignment, then
E can be viewed as a predicate on instances x: E(x) means that x
agrees with E on the subset of features on which it is defined.

Definition 1 (Theory). A classification theory is a tuple 〈F, dom, Cl〉.

We consider a classifier κ, which is a function mapping every in-
stance in F to a class in the set Cl. We make the reasonable assump-
tion that κ can be evaluated in polynomial time.

Abductive explanations (AXp) answer questions of the form: why
is instance x assigned outcome c by classifier κ? They are partial
assignments, which are sufficient for ensuring the prediction c. We
recall below the definition of AXp [8, 25].

Definition 2 (wAXp, AXp). Let x ∈ F. A weak AXp (wAXp) of
κ(x) is a partial assignment E ∈ E s.t. E(x) and ∀y ∈ F.(E(y) →
(κ(y) = κ(x))). An AXp of κ(x) is a subset-minimal weak AXp.

Example 1. Let F = {f1, f2}, with dom(f1) = dom(f2) = {0, 1},
and Cl = {0, 1}. Consider the classifier κ1 s.t. for any x ∈ F,
κ1(x) = (f1, 1)∨(f2, 1). Its predictions are given in the table below.

f1 f2 κ1(xi)

x1 0 0 0
x2 0 1 1
x3 1 0 1
x4 1 1 1

• E1 = {(f1, 1)}
• E2 = {(f2, 1)}
• E3 = {(f1, 1), (f2, 1)}
• E4 = {(f1, 0), (f2, 0)}

The decision κ1(x4) has three weak abductive explanations
E1, E2, E3 and two AXp’s: E1, E2. The decision κ1(x1) has a sin-
gle wAXp/Axp, namely E4.

Explaining decisions made by classifiers is in general not tractable
(assuming P
=NP) as shown in [8, 9].

Property 1. ([8, 9]) The problem of testing whether a set E ∈ E
is a weak AXp is co-NP-complete. The problem of finding one AXp
is in FPNP, the class of functional problems that can be solved by a
polynomial number of calls to a SAT oracle.

In [8, 9, 13], the authors investigated AXp’s under constraints.
They assume, as we do in this paper, a finite set C of constraints
between features, which can be considered as a predicate. For any
partial assignment E, C(E) means that E satisfies all the constraints
in C, ¬C(E) means E violates at least one constraint, and if C = ∅
then C(y) ≡ . They took into account constraints in the defini-
tion of an AXp by checking only feasible instances which gave the
following definition [8, 9, 13].

Definition 3 (AXpc). Let x ∈ F be s.t. C(x), where C is a finite set
of constraints. A weak AXpc (wAXpc) of κ(x) is a partial assign-
ment E ∈ E such that: E(x), C(E), and ∀y ∈ F.(C(y) ∧ E(y) →
(κ(y) = κ(x))). An AXpc of κ(x) is a subset-minimal weak AXpc.

Example 1 (Cont) Assume the existence of the constraint f1 ∧
¬f2 → ⊥, which means the instance x3 is impossible. According
to the above definitions, the decision κ1(x1) has two weak AXpc’s:
E4 and E5 = {(f2, 0)}, and one AXpc which is E5.

The example shows an AXpc that is a subset of an AXp. The next
result confirms this link between the two notions.

Proposition 1. Let x ∈ F such that C(x), and E ∈ E. If E is an
AXp of κ(x), then ∃E′ ∈ E s.t. E′ ⊆ E and E′ is an AXpc of κ(x).

However, an AXpc of a decision is not always related to an AXp
of the same decision as shown below.

Example 2. Consider the theory of Example 1 and the classifier
κ2 such that for x ∈ F, κ2(x) = ¬f1. Suppose C contains one
constraint, f1 ∧ ¬f2 → ⊥, which is violated by x3.

f1 f2 κ2(xi)

x1 0 0 1
x2 0 1 1
x3 1 0 0
x4 1 1 0

• E1 = {(f1, 0)}
• E2 = {(f2, 0)}
• E3 = {(f1, 0), (f2, 0)}

The decision κ2(x1) has E1 as its sole AXp. However, it has two
AXpc’s: E1 and E2.

3 Limits

The definition of AXp implicitly assumes independence of features,
i.e. there are no constraints between the values they may take. The
definition of an AXpc accounts for constraints but only partially. In
what follows, we discuss three undesirable consequences of ignor-
ing dependency constraints: existence of superfluous explanations,
redundancy of explanations and explosion in their number.

Superfluous Explanations. We show next that ignoring con-
straints may lead to generating gratuitous explanations.

Example 2 (Cont) Recall that the decision κ2(x1) has two AXpc’s:
E1 = {(f1, 0)} and E2 = {(f2, 0)}. From the definition of κ2

(∀x ∈ F, κ2(x) = ¬f1), it follows that E1 is correct while E2,
although logically correct, is superfluous. The correlation between
E2 and κ2(x1) is due to the dependency constraint stating: whenever
f2 takes the value 0, f1 takes the same value (and consequently, κ2

assigns 1 to the corresponding instance).
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Redundancy. The following example shows that some AXp’s may
be redundant with respect to others due to dependency constraints
between values of features.

Example 3. Assume that F = {f1, f2}, where f1 and f2 stand
respectively for gender (0 for male, 1 for female) and being preg-
nant, dom(f1) = dom(f2) = {0, 1}, and Cl = {0, 1}. Consider
the constraint stating that only women can be pregnant. The in-
stance {(f1, 0), (f2, 1)} is then impossible. Consider the classifier
κ3(x) = f1 ∨ f2 whose predictions for the possible instances are
given in the table below.

f1 f2 κ3(xi)

x1 0 0 0
x2 1 0 1
x3 1 1 1

• E1 = {(f1, 1)}
• E2 = {(f2, 1)}
• E3 = {(f1, 1), (f2, 1)}

The decision κ3(x3) has two AXpc’s: E1 and E2. Note that the two
explanations are not independent, and E2 is somehow redundant
with E1 since decisions concerning women in general hold for those
who are pregnant.

Exponential number of explanations. In the above examples,
only one explanation is redundant. However, the number may be ex-
ponential as shown in the next example.

Example 4. Let F = {f1, . . . , fn}, ∀i ∈ {1, . . . , n}, dom(fi) =
{0, 1}, Cl = {0, 1}, and let κ4 be the classifier κ4(x) = fn. Assume
also that there is a constraint: fn ≡ (

∑n−1
i=1 fi ≥ �n/2�). Let x =

{(fi, 1) | i = 1, . . . , n}, so κ4(x) = 1. The decision κ4(x) = 1
has

(
n
k

)
AXpc’s, where k = �n

2
�: all size-k subsets of {(fi, 1) |

i = 1, . . . , n − 1}, as well as the AXpc {(fn, 1)}. Observe that
{(fn, 1)} subsumes all other AXpc’s. Therefore, one could discard
all explanations other than {(fn, 1)} since they are superfluous.

To sum up, defining abductive explanations that deal with depen-
dency constraints remains a challenge that has never been addressed
in the literature. We propose in the next sections the first solutions
and investigate their complexity and formal properties.

4 Explanations and feature-space coverage

We revisit in this section the definition of abductive explanations for
constrained settings. In the rest of the paper, we assume a fixed but
arbitrary classification theory 〈F, dom, Cl〉 and a finite set C of con-
straints on the theory, and more precisely on its set E of partial as-
signments. For E ∈ E, the notation C(E) means E satisfies all con-
straints in C, ¬C(E) means E violates at least one constraint, and
F[C] = {x ∈ F | C(x)}, i.e., the set of instances in F that satisfy the
constraints. The set C satisfies the following properties:

(C1) F[C] 
= ∅ (constraints in C can be satisfied all together).
(C2) Let E,E′ ∈ E. If E ⊆ E′, then C(E′) → C(E).

We consider a classifier κ which is a function mapping every instance
in F[C] to a class in Cl. We assume that the test x ∈ F[C] and the
calculation of κ(x) are polynomial.

We have seen that there are two types of constraints. Integrity con-
straints describe impossible assignments of values. The definition of
an AXpc takes them into account by checking instance feasibility.

Our approach starts by removing all unrealistic instances and focuses
only on F[C]. However, we have seen in the previous section that this
solution is not sufficient for dealing with dependencies between par-
tial assignments that follow from constraints C. Before showing how
we deal with such dependency constraints, let us first define them.

Definition 4 (DC). A dependency constraint (DC) is any formula of
the form E → E′ such that:

• E,E′ ∈ E \ {∅},
• E 
= E′,
• For any x ∈ F[C], if E(x) then E′(x).

We denote by C∗ the set of all such constraints.

DC’s are defined on the entire set F[C] of feasible instances. A
DC E → E′ means that whenever E holds, E′ holds as well. In
Example 3, the constraint {(f2, 1)} → {(f1, 1)} means that when
the feature f2 takes the value 1, the feature f1 necessarily takes the
same value.

Our approach takes advantage of such information for reducing
the number of abductive explanations by avoiding dependent expla-
nations, and therefore discarding redundant or superfluous ones. Be-
fore defining the novel notions of explanation, let us first introduce
some useful notions. The first one is the coverage of a partial assign-
ment, which is the set of instances it covers.

Definition 5 (Coverage). Let X ⊆ F and E ∈ E. The coverage of
E in X is the set covX(E) = {x ∈ X | E(x)}. When X = F[C],
we write cov(E) for short.

Example 3 (Cont) For E = {(f1, 1)}, cov(E) = {x2, x3}.

The second notion, which is crucial for the new definition of ex-
planation, is a subsumption relation defined as follows.

Definition 6. Let X ⊆ F and E,E′ ∈ E. We say that E′ subsumes
E in X if ∀x ∈ X.(E(x) → E′(x)). E′ strictly subsumes E in X
if E′ subsumes E in X but E does not subsume E′ in X .

We show that subsumption is closely related to coverage.

Proposition 2. Let X ⊆ F and E,E′ ∈ E.

• The following statements are equivalent.

– E′ subsumes E in X .

– covX(E) ⊆ covX(E′).

• If E′ ⊂ E, then E′ subsumes E in X . The converse does not
always hold.

• If E 
= E′, then covF(E) 
= covF(E
′).

Example 3 (Cont) The partial assignment E1 = {(f1, 1)} strictly
subsumes E2 = {(f2, 1)} in the space F[C]. Indeed, cov(E1) =
{x2, x3} and cov(E2) = {x3}.

The subsumption relation is not monotonic meaning that a partial
assignment E may subsume another (say E′) in a set of instances X
but not in some Y ⊃ X as shown in the following example.

Example 1 (Cont) Assume again the existence of the constraint f1∧
¬f2 → ⊥, which means F[C] = {x1, x2, x4}. Let E1 = {(f1, 0)}
and E2 = {(f2, 0)}. Note that E2 subsumes E1 in X = {x1} but
not in F[C].
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We show that every constraint in C∗ can be expressed as a sub-
sumption relation, which holds in any subset of instances.

Proposition 3. Let E,E′ ∈ E. If E → E′ ∈ C∗, then ∀X ⊆ F[C],
E′ subsumes E in X .

Let us now introduce our novel notion of coverage-based prime-
implicant explanation (CPI-Xp). The first idea is to generate AXp’s
from the set of instances that satisfy the available constraints, thus
discarding impossible instances. Furthermore, it selects AXp’s which
subsume the others, thus taking into account DCs. This is equivalent
to selecting AXp’s that apply to more instances in F[C].

Definition 7 (CPI-Xp). Let x ∈ F[C]. A coverage-based PI-
explanation (CPI-Xp) of κ(x) is any E ∈ E such that:

• E(x),
• ∀y ∈ F[C].(E(y) → (κ(y) = κ(x))),
• �E′ ∈ E such that E′ satisfies the above conditions and strictly

subsumes E in F[C].

While a CPI-Xp is clearly a weak AXpc, the two notions do not
always coincide when the set of constraints is empty.

Example 1 (Cont) Let C = ∅ (F[C] = F). Note that cov(E1) =
{x3, x4}, cov(E2) = {x2, x4}, cov(E3) = {x4} showing that E3

is strictly subsumed by E1 and E2 in F. So E3 is not a CPI-Xp of
κ1(x4) while it is a wAXpc and a wAXp.

Let us now show how the notion of CPI-Xp solves the three prob-
lems discussed in the previous section.

Example 2 (Cont) Recall that f1 ∧ ¬f2 → ⊥ is a constraint, so
{(f1, 1)} → {(f2, 1)} ∈ C∗ and F[C] = {x1, x2, x4}. The de-
cision κ2(x1) has three weak AXpc’s in F[C]: E1 = {(f1, 0)},
E2 = {(f2, 0)}, and E3 = {(f1, 0), (f2, 0)}. Note that cov(E2) =
cov(E3) = {x1} ⊂ cov(E1) = {x1, x2}. So E1 is the sole CPI-
Xp of κ2(x1), discarding the superfluous AXpc E2. This shows that
subsumption is powerful enough to detect gratuitous correlations

between features and decisions.

Example 3 (Cont) Recall that C∗ = {E2 → E1}, E1 = {(f1, 1)},
E2 = {(f2, 1)}, and F[C] = {x1, x2, x3}. The decision κ3(x3) has
two AXpc’s: E1 and E2. However, it has a single coverage-based PI-
explanation, namely E1 which subsumes E2. The redundant AXpc
E2 is thus discarded.

Example 4 (Cont) Recall that x = {(fi, 1) | 1 ≤ i ≤ n} and the
decision κ4(x)=1 has a combinatorial number of AXpc’s: all subsets
of {(fi, 1) | 1 ≤ i ≤ n−1} of size

(
n

�n/2�
)
. Due to the constraint

fn ≡ (
∑n−1

i=1 fi ≥ �n/2�), the decision κ4(x)=1 has a single CPI-
Xp, namely {(fn, 1)}. So, there is a drastic reduction in the number
of explanations.

Despite a significant reduction in the number of abductive expla-
nations (AXp’s), a decision may still have several coverage-based
PI-explanations. In what follows, we discuss two criteria to further
reduce the number of CPI-Xps: conciseness and generality. Let us
start with the first criterion. We show that CPI-Xp may contain irrel-
evant information.

Example 5. Consider a theory made of three binary features
f1, f2, f3. Let E1 = {(f1, 1), (f2, 1)} and E2 = {(f3, 1)}. As-
sume C∗ = {E1 → E2, E2 → E1}, then cov(E1) = cov(E2) =
cov(E1 ∪ E2). Suppose that E2 is a CPI-Xp. Then E1 ∪ E2 is also
a CPI-Xp but is not subset-minimal.

Concision of explanations is important given the well known cog-
nitive limitations of human users when processing information [20].
A common way for ensuring concision is to require minimality in
order to avoid irrelevant information in an explanation.

Definition 8 (Minimal CPI-Xp). Let x ∈ F[C]. A minimal coverage-
based PI-explanation (mCPI-Xp) of κ(x) is a subset-minimal CPI-Xp
of κ(x).

Example 5 (Cont) The set E1 ∪ E2 is not a minimal CPI-Xp since
E1 and E2 are CPI-Xps.

Let us now turn our attention to the generality criterion, which
concerns the coverage of an explanation. Example 5 shows that
coverage-based PI-explanations of a decision may have exactly the
same coverage. Indeed, if E1 is a minimal CPI-Xp, then so is E2,
and both have the same coverage. We say that such explanations are
equivalent.

Definition 9 (Equivalence). Let X ⊆ F[C]. Two sets E,E′ ∈ E are
equivalent in X , denoted by E ≈ E′, iff they subsume each other in
the set X .

Notation: Let X be a set and ≈ an equivalence relation on X . A
set of representatives of X is a subset of X containing exactly one
element of every equivalence class of X , i.e., one element among
equivalent ones.

We propose next preferred coverage-based explanations that con-
sider only one mCPI-Xp among equivalent ones (obviously in F[C]
since mCPI-Xp are produced from F[C]).

Definition 10 (Preferred CPI-Xp). Let x ∈ F[C]. A preferred
coverage-based PI-explanation (pCPI-Xp) of κ(x) is a representative
of the set of miminal CPI-Xp’s of κ(x).

Example 5 (Cont) Definition 10 selects either E1 or E2 (but not
both) as a pCPI-Xp.

The three novel notions of explanation are clearly related to each
other. Furthermore, when the set of constraints is empty, AXpc ex-
planations presented in [8] (see Def. 3) coincide with both AXp’s and
minimal CPI-Xp’s. In the general case, a mCPI-Xp is an AXpc but
the converse does not hold. This confirms that AXpc deals only with
integrity constraints and ignores dependency constraints. Before pre-
senting a summary of the links, let us first introduce the notion of
explanation function or explainer.

Definition 11 (Explainer). An explainer is a function Ly map-
ping every instance x ∈ F[C] into the subset of E con-
sisting of y-explanations of the decision κ(x), for y ∈
{wAXp,AXp,wAXpc,AXpc,CPI-Xp,mCPI-Xp, pCPI-Xp}.

Proposition 4. Let x ∈ F[C].

1. LAXp(x) ⊆ LwAXp(x),
2. LCPI−Xp(x) ⊆ LwAXpc(x),
3. LmCPI−Xp(x) ⊆ LAXpc(x) ⊆ LwAXpc(x),
4. LpCPI−Xp(x) ⊆ LmCPI−Xp(x) ⊆ LCPI−Xp(x),
5. If C = ∅, then LAXp(x) = LAXpc(x) = LmCPI−Xp(x).

To sum up, we introduced three novel types of abductive expla-
nations that better take into account constraints, and solve the three
problems (superfluous, redundant, exponential number of explana-
tions) of the existing definitions.
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5 Complexity analysis

Let us investigate the computational complexity of the new types
of explanation. We focus on the complexity of testing whether a
given partial assignment is a (minimal, preferred) coverage-based PI-
explanation, and the complexity of finding one such explanation.

We first consider the computational problem of deciding if a partial
assignment is a coverage-based PI-explanation (CPI-Xp). We show
that the problem can be rewritten as an instance of ∀∃SAT, the prob-
lem of testing the satisfiability of a quantified boolean formula of
the form ∀x∃yφ(x, y), where x, y are vectors of boolean variables
and φ is an arbitrary boolean formula with no free variables other
than x and y. It is well known that ∀∃SAT is complete for the com-
plexity class ΠP

2 . It turns out that testing whether a weak AXpc is a
coverage-based PI-explanation is also ΠP

2 -complete.

Theorem 1. The problem of testing whether a weak AXpc E is a
coverage-based PI-explanation is ΠP

2 -complete.

We now consider the problem of actually finding a coverage-based
PI-explanation. In the supplementary material we give an algorithm
which returns one CPI-Xp of a given decision κ(v) = c. It is based
on the following idea: if a weak AXpc E is not a coverage-based PI-
explanation, then this is because there is a weak AXpc E′ that strictly
subsumes E. We call such an E′ a counter-example to the hypoth-
esis that E is a coverage-based PI-explanation. Therefore, starting
from a weak AXpc E, we can look for a counter-example E′: if
no counter-example exists then we return E, otherwise we can re-
place E by E′ and re-iterate the process. This loop must necessarily
halt since there cannot be an infinite sequence of partial assignments
E1, E2, . . . such that Ei+1 strictly subsumes Ei (i = 1, 2, . . .). We
can be more specific: the following proposition shows that the num-
ber of iterations is bounded by the number of features.

Theorem 2. Let n = |F|. A CPI-Xp can be found by n calls to an
oracle for testing whether a given weak AXpc is a coverage-based
PI-explanation.

It follows that the complexity of finding one coverage-based PI-
explanation is essentially the same (modulo a linear factor) as testing
whether a given weak AXpc is a coverage-based PI-explanation.

The following proposition shows that imposing minimality (for
set inclusion) does not change the complexity. A minimal CPI-Xp
can be found by n calls to an oracle (for testing whether a given
weak AXpc is a CPI-Xp) together with 2n calls to a SAT oracle.
Note that since finding a preferred CPI-Xp (i.e. pCPI-Xp) consists
of finding one minimal CPI-Xp, there is no change in complexity.
The difference between pCPI-Xp’s and minimal CPI-Xp’s becomes
apparent when enumerating all explanations: there can be many less
pCPI-Xp’s which is an advantage for the user.

Theorem 3. Let n = |F|. A mCPI-Xp (resp. pCPI-Xp) can be found
by n calls to an oracle for testing whether a given weak AXpc is
a coverage-based PI-explanation together with 2n calls to a SAT
oracle.

To sum up, we have shown that taking into account constraints
(in the definition of coverage-based prime implicants) may produce
less-redundant explanations, but at the cost of a potential increase in
computational complexity.

6 Sample-based explanations

When a classifier is a black-box or a deep neural network which can-
not be realistically written down as a function, the only algorithm

for testing whether a set of literals is a (weak) AXp is an exhaus-
tive search over the whole feature space. This explains why they are
costly from a computational point of view. We have seen in the pre-
vious section that the computational complexity of the three novel
types of explanations that deal with constraints (CPI-Xp, mCPI-Xp
and pCPI-Xp) is even worse. In this section, we propose a paradigm
for making the solutions feasible. The idea is to avoid the exhaus-
tive search by examining only a sample of the feature space. The
obtained explanations are approximations that can be obtained with
lower complexity as we will see next.

In this section, we concentrate on a sample (or dataset) T ⊆ F[C]
and the associated values of a black-box classifier κ. Note that T may
be the dataset a classifier has been trained on, a dataset on which the
classifier has better performance, or may be generated in a specific
way as in [23, 24]. However, we assume that every possible class
in Cl is considered in the sample, i.e., it is assigned to at least one
instance in T : ∀c ∈ Cl, ∃x ∈ T such that κ(x) = c.

In what follows, we adapt the definitions of the different expla-
nations discussed in the previous sections, and add a suffix ‘d-’ to
indicate the new versions.

6.1 Abductive explanations based on samples

Recall that an AXp E of a decision κ(x) = c is a minimal subset of x
which guarantees the class c. If κ is a black-box function, then testing
this definition for a given E requires testing the exponential number
of assignments to the features not assigned by the partial assignment
E. The following definition only requires us to test those instances
in the sample T .

Definition 12 (d-wAXp, d-AXp). Let x ∈ F. A weak dataset-based
AXp (d-wAXp) of κ(x) wrt to T is a partial assignment E ∈ E such
that E(x) and ∀y ∈ T , if E(y) then κ(y) = κ(x). A dataset-based
AXp (d-AXp) of κ(x) is a subset-minimal d-wAXP of κ(x).

In other words, a d-AXp is mathematically equivalent to an AXp
under the artificial constraint that the only allowed feature vectors
are those in the dataset.

Example 6. Assume a theory made of four binary features, a binary
classifier κ defined as follows: κ(x) = (f1 ∧ f2) ∨ (f3 ∧ f4). Let T
be a sample whose instances and their predictions are summarized
in the table below.

T f1 f2 f3 f4 κ

x1 0 1 0 0 0
x2 0 1 0 1 0
x3 0 1 1 0 0
x4 0 0 1 1 1
x5 1 1 1 1 1
x6 1 1 0 1 1

• E1 = {(f1, 1), (f2, 1)}
• E2 = {(f3, 1), (f4, 1)}
• E3 = {(f1, 1)}

The decision κ(x5) = 1 has two AXp’s (over the whole feature
space F): E1 and E2. It has two d-AXp’s: E2 and E3. The fact that
E3 is a d-AXp is a consequence of the fact that the pair (f1, 1),
(f2, 0) never occurs in instances of T . Note that E3 is a d-wAXP
while it is not a weak AXp.

We have seen in Property 1 that the problems of testing and
finding abductive explanations are not tractable. We show next that
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their sample-based versions are tractable. Indeed, there is an obvi-
ous algorithm (by applying directly the definition) with complexity
O(mn) for testing whether a set of literals E is a weak dataset-based
AXp (d-wAXp), where n and m stand for the number of features and
instances in the dataset T respectively. We can also test whether a
weak d-AXp E is subset-minimal in O(mn2) time by testing if E
remains a weak d-AXp after deletion of each literal. Indeed, as for
AXp’s [8], a d-AXp can be found by starting with E = x, the in-
stance to be explained, and in turn for each of the n elements of E,
delete it if E remains a weak d-AXp after its deletion. It follows that
a d-AXp can be found in O(mn2) time.

Theorem 4. Let n = |F|, m = |T | and E ∈ E.

• Testing whether E is a d-wAXp can be achieved in O(mn) time.
• Finding a d-AXp can be achieved in O(mn2) time.

6.2 Coverage-based explanations based on samples

We now study the sample-based versions of the three types of expla-
nations that take into account the coverage of explanations. Coverage
is now among instances in the dataset T ⊆ F[C].

Definition 13 (d-CPI-Xp, d-mCPI-Xp, d-pCPI-Xp). Let x ∈ F[C].
A dataset-based CPI-explanation (d-CPI-Xp) of κ(x) is a partial as-
signment E ∈ E such that:

• E(x),
• ∀y ∈ T .(E(y) → (κ(y) = κ(x))),
• �E′ ∈ E such that E′ satisfies the above conditions and strictly

subsumes E in T .

A dataset-based minimal CPI-explanation (d-mCPI-Xp) of κ(x) is a
subset minimal d-CPI-Xp of κ(x). A dataset-based preferred CPI-
explanation (d-pCPI-Xp) of κ(x) is a representative of the set of d-
mCPI-Xp’s of κ(x) in T .

Proposition 5. The following inclusions hold:

• Ld−CPI−Xp(x) ⊆ Ld−wAXpc(x)
• Ld−mCPI−Xp(x) ⊆ Ld−AXpc(x)
• Ld−pCPI−Xp(x)⊆Ld−mCPI−Xp(x)⊆Ld−CPI−Xp(x)

Even when the set of constraints C is empty, dataset-based AXp’s
do not coincide with dataset-based CPI-Xp’s or mCPI-Xp’s. This is
mainly due to the notion of subsumption which privileges explana-
tions with greater coverage.

Example 2 (Cont) Consider again the theory below and recall that
for x ∈ F, κ2(x) = ¬f1. Suppose C = ∅ and let us focus on the
sample T = {x1, x2, x3} (x4 being discarded).

f1 f2 κ2(xi)

x1 0 0 1
x2 0 1 1
x3 1 0 0
x4 1 1 0

• E1 = {(f1, 0)}
• E2 = {(f2, 1)}
• E3 = {(f1, 0), (f2, 1)}

The decision κ2(x2) has three d-wAXps (E1, E2, E3) and two d-
AXp’s (E1, E2). However, it has a single d-CPI-Xp/d-mCPI-Xp: E1.
Indeed, its coverage in T is {x1, x2}, which is a super-set of the
coverage {x2} of E2, E3.

We show that considering coverage in the definition of prime im-
plicant does not greatly increase the complexity of finding explana-
tions based on the dataset. There is a polynomial-time algorithm for
testing whether a partial assignment E is a d-CPI-Xp and indeed for
finding a d-CPI-Xp. Furthermore, finding a subset-minimal d-CPI-
Xp is asymptotically no more costly than finding a d-CPI-Xp.

Theorem 5. Let E ∈ E.

• Testing whether E is a d-CPI-Xp can be achieved in O(m2n)
time.

• Finding a d-CPI-Xp, a minimal d-CPI-Xp and a preferred d-CPI-
Xp can be achieved in O(m2n2) time.

Table 1 summarizes all the complexity results concerning the dif-
ferent types of AXps’ reviewed so far.

Complexity Complexity
Explanation of testing of finding one

d-wAXp P polytime
d-AXp P polytime

d-CPI-Xp P polytime
d-mCPI-Xp P polytime
d-pCPI-Xp P polytime

wAXp co-NP-complete polytime
AXp PNP FPNP

CPI-Xp ΠP
2 -complete FPΣP

2

mCPI-Xp ΠP
2 -complete FPΣP

2

pCPI-Xp ΠP
2 -complete FPΣP

2

Table 1. Complexities of testing/finding different explanations. FPL is the
class of function problems that can be solved by a polynomial number of calls
to an oracle for the language L. We assume a white box, i.e. κ is an arbitrary
but known function, except for the case of sample-based explanations (where
κ may be a black-box function).

To sum up, the previous definitions and results show that the
sample-based approach presents three advantages: i) testing the va-
lidity of an explanation is linear in the size of the sample whatever
the function κ and the constraints, ii) it can be applied even when
the classifier is a black-box, iii) sample-based abductive explanations
may be smaller and hence easier to interpret for a human user.

7 Properties of explanation functions

We have seen that for each type of explanation studied in this pa-
per, there is a corresponding explanation function L mapping every
instance (in F or F[C]) into a subset of E. In this section, we pro-
vide seven desirable properties for an explanation function. The first
four properties have counterparts in [2], where explanation functions
explain the global behaviour of a classifier in a non-constrained set-
ting, and so answer the question: “why does a classifier recommend
a given class in general?” We adapt the properties for explaining in-
dividual decisions and introduce three novel ones that concern how a
function should deal with constraints.

Definition 14. Let L be an explanation function.

(Success) ∀x ∈ F[C], L(x) 
= ∅.
(Non-Triviality) ∀x ∈ F[C], ∀E ∈ L(x), E 
= ∅.
(Irreducibility) ∀x ∈ F[C], ∀E ∈ L(x), ∀l ∈ E, ∃x′ ∈ F[C] such

that κ(x′) 
= κ(x) and (E \ {l})(x′).
(Coherence) ∀x, x′ ∈ F[C] such that κ(x) 
= κ(x′), ∀E ∈ L(x),
∀E′ ∈ L(x′), �x′′ ∈ F[C] s.t. (E ∪ E′)(x′′).
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wAXp AXp AXpc CPI-Xp mCPI-Xp pCPI-Xp dCPI-Xp dmCPI-Xp dpCPI-Xp d-wAXp d-AXp
Success � � � � � � � � � � �
Non-Triv. � � � � � � � � � � �
Irreduc. × � � × � � × � � × �
Coherence � � � � � � × × × × ×
Consist. � � � � � � � � � � �
Indep. × × × � � � × × � × ×
Non-Equiv. � � × × × � × × � × ×

Table 2. The symbol � (resp. ×) stands for satisfied (resp. violated).

(Consistency) ∀x ∈ F[C], ∀E ∈ L(x), C(E) holds.
(Independence) ∀x ∈ F[C], �E,E′ ∈ L(x) such that E → E′ ∈
C∗ and E′ → E /∈ C∗.

(Non-Equivalence) ∀x ∈ F[C], ∀E, E′ ∈ L(x), E 
≈ E′.

Success ensures existence of explanations. Non-Triviality discards
empty explanations as they are non-informative. Irreducibility states
that an explanation should not contain unnecessary information. Co-
herence ensures a global compatibility of the explanations provided
for all the instances. It avoids erroneous explanations. Consider a
function κ which classifies animals as mammals or not, where ani-
mals are described by n features such as milks its young, lays eggs,
etc. Let x be a mouse and x′ an eagle. If the explanation E for
κ(x) = 1 is that mice milk their young and the explanation E′ for
κ(x′) = 0 is that eagles lay eggs, then coherence is not satisfied be-
cause there are animals x′′ (such as the platypus) which milk their
young and lay eggs. Consistency ensures that explanations satisfy all
constraints in C. Independence ensures that dependency constraints
are considered and the explanations of a decision should be pairwise
independent. Non-equivalence avoids equivalent explanations. This
property is important for reducing the number of explanations.

We show that the seven properties are compatible, i.e., they can be
satisfied all together by an explanation function.

Theorem 6. The properties are compatible.

Table 2 summarizes the properties satisfied by each type of ex-
planation discussed in the paper. It thus provides a comprehensive
formal comparison of their explainers, and sheds light on the key
properties that distinguish any pair of explainers.

Theorem 7. The properties of Table 2 hold.

The results confirm that existing definitions of abductive expla-
nations ignore dependency constraints (they violate independence).
However, they satisfy in a vacuous way consistency since the latter
deals only with feasible instances (elements of F[C]). The three novel
types that are generated from the feature space handle properly in-
tegrity constraints (satisfaction of consistency) and dependency con-
straints (satisfaction of independence).

The results show also that among the new types, only the two ver-
sions of preferred CPI-Xp satisfy non-equivalence. Hence, they use
the most discriminatory selection criterion. Non-equivalence is sur-
prisingly satisfied by wAXp and AXp because they consider the en-
tire feature space, and in this particular case, two different partial as-
signments can never have the same coverage. Note that the property
is violated by their sample-based versions.

Another result which is due to the use of the whole feature space
concerns the satisfaction of coherence. The property is lost when ex-
planations are based on a dataset, thus erroneous explanations may
be provided for decisions. The main reason behind this issue is that

we generate explanations under incomplete information, and thus
some explanations may not hold when tested on the whole feature
space. Another consequence of incompleteness of information is that
the sample-based versions of CPI-Xp and mCPI-Xp violate indepen-
dence due to missing instances in the sample.

To sump up, the explainer that generates preferred CPI-Xp is the
only one that satisfies all the properties.

8 Related work

As explained in the introduction, abductive explanations have largely
been studied in the XAI literature. However, to the best of our knowl-
edge only a few works ([8, 13]) have considered the constrained set-
ting. We have shown that those works deal only partially with con-
straints as they ignore dependency constraints.

Many papers [7, 12, 17, 18] are concerned with explaining the
inconsistency of constraints, which is quite far from the problem we
are studying (explaining the output of a classifier κ in a constrained
feature-space). [16] add new constraints in a SAT solver in order to
quickly find explanations of a classifier, again a different problem.

9 Conclusion

Our work is the first to wholly take into account constraints for
producing abductive explanations. A general conclusion that can be
drawn from our study is that constraints may lead to less-redundant
explanations, but at the cost of a potential increase in complexity. An-
other conclusion is that sample-based versions of explanations pro-
vide a tractable alternative, especially in the case of black-box clas-
sifiers. The downside of the approach is, unfortunately, explanations
are only valid for the instances in the dataset and not for the whole
feature space. Therefore, there is a trade-off between computational
complexity and coherence of explanations.

This work can be extended in different ways. We plan to character-
ize the whole family of explainers that satisfy all (or a subset of) the
properties. We also plan to define sample-based explainers that con-
sider constraints and satisfy the coherence property. Another avenue
of future research is to learn constraints from the dataset: we would
limit ourselves to small-arity constraints to make this feasible.

Recall that the set of all pCPI-Xp’s contains a single representative
from each equivalence class, where two explanations are equivalent
if they cover the same set of instances. A challenging open problem
is the enumeration of pCPI-Xp’s, which corresponds to enumerating
abductive explanations whose coverages are all pairwise incompara-
ble for subset inclusion.
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