
PiercingEye: Identifying Both Faint and Distinct Clues
for Explainable Fake News Detection with Progressive

Dynamic Graph Mining

Yasan Dinga, Bin Guoa;*, Yan Liub, Hao Wanga, Haocheng Shena and Zhiwen Yua

aNorthwestern Polytechnical University
bPeking University

Abstract. Explainability is crucial for the successful use of AI
for fake news detection (FND). Researchers aim to improve the ex-
plainability of FND by highlighting important descriptions in crowd-
contributed comments as clues. From the perspective of law and so-
ciology, there are distinct clues that are easy to discover and under-
stand, and faint clues that require careful observation and analysis.
For example, in fake news related to COVID-Omicron showing in-
creased pathogenicity and transmissibility, distinct clues might in-
volve virologists’ opinions regarding the inverse correlation between
pathogenicity and transmissibility. Meanwhile, faint clues might be
reflected in an infected person’s claim that the symptoms are milder
than a cold (indirectly indicating reduced pathogenicity). Occasion-
ally, the statements of some ordinary eyewitnesses can decisively re-
veal the truth of the news, leading to the judgment of fake news.
Existing methods generally use static networks to model the entire
news life-cycle, which makes it fail to capture the subtle dynamic
interactions between individual clues and news. Thereby faint clues,
whose relations to the truth of news are challenging to be character-
ized and extracted directly, are more likely to be overshadowed by
distinct clues. To address this issue, we propose an explainable FND
method, dubbed as PiercingEye, which leverages dynamic interac-
tion information to progressively mine valuable clues. PiercingEye
models the news propagation topology as a dynamic graph, with in-
teractive comments serving as nodes, and employs the time-semantic
encoding mechanism to refine the modeling of temporal interaction
information between comments and news to preserve faint clues.
Subsequently, it utilizes the self-attention mechanism to aggregate
distinct and faint clues for FND. Experimental results demonstrate
that PiercingEye outperforms state-of-the-art methods and is capable
of identifying both faint and distinct clues for humans to debunk fake
news.

1 Introduction

The proliferation of fake news on social networks causes confu-
sion and undermines social stability, especially during epidemics
and wars. To promote AI social governance, researchers have pro-
posed various deep learning-based methods to automatically detect
fake news [23]. Nevertheless, the fake news detection (FND) differs
from typical classification tasks in that, in addition to verifying the
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authenticity of news, it also needs human-understandable decision-
making support to persuade users and prevent further dissemination,
i.e., explainable FND [9]. Early explorations rely on specific linguis-
tic patterns [36] or propagation topology [11] to explain why a news
record is fake, but this remains incomprehensible to humans.

The interactions that occur during the news dissemination facili-
tate the explainable FND. Identifying important comments in crowd-
contributed content [9] not only guides the model’s learning of news
features, but also provides material for human to make judgements.
We refer to these important comments, which directly or indirectly
support decision-making in FND, as “clues”. Clues encompass sev-
eral semantic types, as shown in Table 1. For instance, during the
spread of fake news, eyewitnesses tend to provide first-hand accounts
of the scene in their comments, while authoritative experts may use
their relevant knowledge to debunk inaccurate information.

Table 1. The Different Semantic Types of Clues for Explainable FND

Type Description

Narratives from
eyewitnesses Objective description of news events

Expert opinion Conclusions from experts, e.g., journalists

Statistical data Survey results or reports

Universal principle Widely accepted facts and principles

Knowledge of
similar events Relevant facts from previous similar events

Multimedia material Videos/images directly related to the news

From the perspective of law and sociology, the aforementioned
clues are categorized as distinct clues and faint clues [1, 3]. Dis-
tinct clues are easily discernible and directly prove news to be fake,
whereas faint clues require more delicate analysis and may indi-
rectly prove news to be fake. Concretely, in the fake news claiming
that COVID-Omicron showing increased pathogenicity and trans-
missibility, as shown in Fig. 1, distinct clues include medical ex-
perts’ statements on the inverse correlation between pathogenicity
and transmissibility, as well as analysis of indicators such as infec-
tion coefficient and mortality rate. Faint clues, on the other hand, may
involve the claims of an infected person that the symptoms are milder
than a cold, which indirectly suggests a decrease in the pathogenic-
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Figure 1. A preliminary analysis of a piece of fake news circulating on Twitter. The accompanying figure depicts the word clouds and representative clues
(types) based on tweets related to the source tweet from March 2022 to January 2023 (all tweets translated from Chinese to English). The left panel is drawn
based on the complete life-cycle data, while the right is displayed in a timeline format, detailing the evolution of news dissemination in a more intricate way.

ity of COVID-Omicron. During the early stages of news propaga-
tion, when the majority of users express support for the source tweet,
this faint clue reflecting the actual situation based on their personal
experience is especially valuable. As the source tweet spreads, this
faint clue begins to attract rich interactions and resonate with multi-
ple users, and results in an increasing number of critical voices ap-
pearing in comments, which is as indispensable as distinct clues to
the entire FND process. Moreover, the content and semantic types of
both faint and distinct clues undergo a continuous evolution through
the dissemination of news, as Fig. 1 showing. By adaptively fusing
such clues, the performance of FND can be improved in three ways:
(1) providing a comprehensive content that merges the surface-level
depiction of news events with the underlying logic, (2) offering an
objective analytical perspective that can rectify misinformative con-
tent, and (3) developing an efficient judgement that can distinguish
decisive clues from unimportant ones.

Existing methods tend to prioritize the identification of distinct
clues whilst disregarding faint clues, which commonly utilize atten-
tion mechanisms [4, 8, 20] to select clues related to news content. For
instance, Chen et al. [4] introduce self-attention into recurrent neural
networks (RNN) for selective inference of distinct words or phrases
with respect to inaccurate information. Similarly, Wu et al. [28]
develop co-attention self-attention networks to achieve precise evi-
dence selection. However, they primarily rely on identifying distinct
clues based on the semantic similarity of keywords, e.g., pathogenic-
ity, transmissibility, and Omicron, as depicted in Fig. 1. Conversely,
faint clues have a wide variety of semantic associations, and hence,
it is challenging to capture them based solely on relevance. More-
over, the increase in the number of candidate clues makes it difficult
for them to address long-range semantic dependencies, overlooking
clues that are stated earlier in sequential comments.

To further capture faint clues, some studies have proposed graph-
based approaches [2, 32] to discover the intricate interactions be-
tween clues and news, which represent candidate clues as nodes
and their connections as edges. For instance, Xu et al. [32] partition
comments into news-related snippets and construct a semantic graph
based on the co-occurrence relationships of these snippets. They then
utilize the semantic relationships learned from the graph to mine faint
clues fragments. However, most methods primarily model the prop-
agation of news using static networks [24], which fail to capture the
subtle dynamic interactions between faint clues and news. According
to the temporal analysis results in Fig. 1, whenever a new virus vari-
ant appears, discussions about its pathogenicity and transmissibility
reignite on Twitter. However, in the static global analysis results, the
keywords associated with each virus variant are ignored due to their
lower frequency, leading to an incomplete understanding of the dy-
namic evolution of the news. To prevent faint clues from being over-
shadowed by distinct clues, it is essential to effectively model the
dynamic interaction features between clues and news for explainable
FND [18].

In this paper, we aim to improve explainable FND by a fine-
grained characterization and integration of faint and distinct clues
throughout the news dissemination process. Drawing inspiration
from dynamic graph neural networks (DGNNs) [29, 35], we in-
tend to model the impact of clues on news dissemination based
on continuous-time dynamic graphs. Despite the current ability of
DGNN-based approaches to model the dynamic propagation of
news, such as the Dynamic GCN [6] and the TGNF [24], they fail to
consider the impact of semantic changes in comments on FND per-
formance. To achieve our goals, we face two primary challenges: (1)
How to characterize and distinguish between faint and distinct clues
during news dissemination, given that clues have multiple semantic
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types? (2) How to continuously aggregate decisive clues for the final
explainable FND, given that different clues have varying impacts on
the evolution of news propagation and their importance changes as
new interactive comments emerge?

To address the aforementioned challenges, we propose an explain-
able FND method that utilizes continuous-time dynamic graphs to
progressively extract decisive clues from user comments, dubbed as
PiercingEye, mainly consisting of the hybrid clues leaner, the dy-
namic clues tracker, and the fake news detector. PiercingEye con-
structs a dynamic news propagation graph that includes source news
and user comments as nodes and captures their interactions as edges
that continue to expand as news propagates. By identifying key
nodes, PiercingEye uncovers faint and distinct clues essential for
FND. For challenge one, we leverage multi-granularity sentiment
and semantic features to describe both faint and distinct clues, and
incorporate temporal interactions through our time-semantics encod-
ing mechanism. This ensures that PiercingEye effectively captures
and learns two types of clues. For challenge two, we introduce a
multi-head self-attention mechanism to emphasize the importance of
various clues, and filter out irrelevant clues at each time interval to
adapt to dynamic changes in news dissemination. Our contributions
are as follows:

• We have pioneered the exploration of providing human-
understandable decision-making clues from both distinct and faint
clues for explainable FND. We propose a continuous-time dy-
namic graph-based detection method, dubbed as PiercingEye,
which progressively extracts human-understandable clues from
user comments to debunk fake news.

• We propose the time-semantics encoding mechanism to jointly
learn the temporal interaction information of each clue and adapta-
tively aggregate clues using the self-attention mechanism, achiev-
ing a more accurate characterization of different clues during news
dissemination.

• We demonstrate through experiments on two publicly available
datasets that PiercingEye outperforms state-of-the-art methods in
selecting both faint and distinct clues to debunk fake news.

2 Related Work

2.1 Explainable Fake News Detection

Explainable FND research concentrates primarily on two aspects: (1)
creating detection techniques using interpretable machine learning
models (e.g., decision trees, probabilistic graph models), and (2) clar-
ifying the decision-making process or detection results. For example,
Yang et al. [34] employ Bayesian networks to model the generation
of news truth and user comments, incorporating the authority of news
outlets and interacting users to infer the veracity of news. DTCA [28]
builds an evidence extraction model for FND based on the decision
tree, followed by a co-attention mechanism to learn the unverified
news and evidence. Chien et al. [5] propose an explainable AI (XAI)-
based FND method, namely XFlag, which enhances the transparency
of the model by a situation awareness-based agent framework. In
addition, the analysis of decision-making processes is accomplished
by visualizing content or propagation characteristics that focused by
models, or by presenting relevant evidence extracted from user com-
ments. For instance, dEFEND [21] employs RNNs to model news
content and user comments, and the co-attention mechanism to fuse
information. Lu et al. [13] construct news propagation graphs using
interacting users, and propose the Graph-aware Co-Attention Net-
works to detect fake news by analyzing user profiles. Bian et al. [2]

utilize the bidirectional graph convolutional network to model the
propagation structure and dispersal patterns of fake news. Xu et al.
[32] propose a method that utilizes a semantic graph to represent
snippets in source claims and evidence, capturing long-distance se-
mantic dependencies through the attention mechanism. The XFake
[33] comprehensively analyzes linguistic and semantic features in
visual form, revealing the reasoning process through integrated anal-
ysis trees.

Current methods rely on retrospective data analysis to explain why
a news record has been identified as fake, while this paper is screen-
ing for progressively identifiable clues for human checkers during
FND process.

2.2 Dynamic Graph Neural Networks

Dynamic graph neural networks (DGNN) are categorized into
discrete-time and continuous-time DGNNs. Discrete-time DGNNs
input the graph snapshots under a certain timestamp into sequential
models, e.g., WD-GCN [16] and EvolveGCN [19], to capture the
temporal information in the graph. Continuous-time DGNNs, on the
other hand, utilize RNN to update node embeddings in real-time, e.g.,
Streaming GNN [15], or use functions to encode continuous time,
e.g., Temporal Point Process and Bochner’s Theorem [25]. For exam-
ple, TGAT [31] aggregates target node information with time points
and neighborhood information using self-attention mechanisms to in-
fer embeddings for new nodes as the graph evolves. Furthermore, the
Dynamic GCN [6] represents the dissemination of news as a series
of continuous snapshots of the graph and uses both sequential and
temporal snapshots to model the evolution of news for FND. How-
ever, they model news dissemination in a discrete-time way, and in-
teraction information can be easily ignored when the time interval
between comments is too long. Song et al. [24] regard the propa-
gation of news as a continuous-time dynamic graph and design a
temporally evolving graph neural network for FND. Nevertheless, it
still overlooks the semantic features contained in posts during news
dissemination.

3 Method

3.1 Problem Formulation

Let pt0 denote the news article posted on a social media platform
at time t0, from which we extract clues for the purpose of explain-
able FND. Each user comment is temporarily considered as a clue
denoted as ci. For the news article pt0 at detecting time t, C̃ (t) =
{c1, c2, · · · , cN} represents the set of N candidate clues, ordered
based on their posting time ti. The news dissemination graph at time
t, with the node set V (t) =

{
pt00 , ct11 , ct22 , · · · , ctNN

}
and the edge

set E (t) =
{
etxij

}tx≤t

i,j∈[1,N ]
, is denoted by G (t) = 〈V (t) , E (t)〉.

Specifically, each edge eij in E (t) indicates that ci has responded to
cj at time tx. The adjacency matrix of G (t) is A (t) = aij (t)N×N ,
where aij (t) can be either 0 or 1 based on the existence of the edge
eij in E (t). We simplify the detection problem by classifying the
textual content of news articles as either true or fake, where each
news article has a label of 0 (fake) or 1 (true). The research problem
is thereby formulated as: Given a dynamic news dissemination graph
G (t) = 〈V (t) , E (t)〉 at time t, explainable FND is to learn a clas-
sifier: F : G (t) �→ ŷ that predicts whether the authenticity of the
news and outputs the final set of clues, C (t), that indicate the facts.
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3.2 The PiercingEye Framework

The framework of PiercingEye is shown in Fig. 2, which includes the
hybrid clues learner, dynamic clues tracker, and fake news detector
three components (the following contents are introduced based on
the source news pt0 as the target node):

• Hybrid clues learner: Building the target news and its candidate
clues into a dynamic graph, learning semantic and sentiment fea-
tures of each clue, and computing a high-dimensional embedding
vector for each clue during the news dissemination;

• Dynamic clues tracker: Utilizing the time-semantics encoding
mechanism to learn the latent feature vector of each clue at any
time point, aggregating the feature information of all interactive
clues at the current time based on the decisive clues aggregating
mechanism, and feeding the intermediate representations of the
news to the subsequent component;

• Fake news detector: Using a multi-layer fully connected network
with a softmax function to determine whether the target news is
fake or not based on the dynamic graph representation.

3.2.1 Hybrid Clues Learner

After each candidate clue ci preprocessed, we utilize the Word2Vec
[17] to compute the d0-dimension embedding for each word in ci.
Assuming that the maximum number of words in existing clues is
k, the ci is represented with the k × d0 dimensional original rep-
resentation x̂i ∈ R

k×d0 . To improve computational efficiency, the
Text-CNN [10] is utilized to extract the initial textual semantic fea-
tures from x̂i, denoted as x_ti ∈ R

dsf . Note that we utilize nf filters
of varying sizes in the convolution operations (where the width is
fixed at 1 and the height varies as h), followed by the max-pooling
to compress these feature maps.

In addition to semantic features, it is necessary to explicitly char-
acterize clues using additional features to enable PiercingEye to
focus on changes in clues as news spreads. According to Fig. 1,
there are substantial differences in sentimental expression between
faint and distinct clues. Distinct clues, e.g., expert opinions, are rel-
atively objective and lacking in strong personal sentiments, tend-
ing towards non-negativity. On the other hand, faint clues often in-
volve narratives from eyewitnesses or knowledge of similar events,
resulting in diverse and occasionally exaggerated expressions with
strong emotional tones. Moreover, the sentiment distribution of clues
varies dynamically as news develops. Consequently, we utilize multi-
granularity sentiment features to support mining clues, including
coarse-grained sentiment scores and fine-grained statistical features
of sentiment words.

The sentiment score of ci, as a positive or negative value, is calcu-
lated by TextBlob [12], which considers the effect of negation words,
adverbs of degree, punctuation marks, and emoticons. Users often
convey their emotions through simple characters, such as “?” indi-
cating doubt and “(T_T)” signifying sadness, which could be more
effective than only using sentiment words [7]. The formula for com-
puting sentiment score Senti ∈ R

dse is:{
Senti =

∑M
i=0(−1/2)n·Spunc·Semo·Si_adv

M

Si_adv = max (−1,min (Si · Sadv, 1))
(1)

where M and n respectively represent the number of sentiment and
negation words that modify sentiment words in ci; Spunc, Semo,
Sadv , and Si represent the sentiment value of punctuation marks,

emoticons, adverbs of degree, and the current sentiment word, re-
spectively. The term Si_adv represents the sentiment value of the
current sentiment word weighted by the adverb of degree. As shown
in Fig. 2, the PF , NF , DF , and RF represent the frequency of
positive/negative sentiment words, adverbs of degree, and negation
words in ci, respectively. Suppose the dimension of the statistical
features of sentiment words is dss, then Stati ∈ R

dss . The senti-
ment embedding of ci is represented as x_si = Senti

⊕
Stati ∈

R
dse+dss , where

⊕
denotes concatenation. Finally, the hybrid clues

learner concatenates the semantic features x_ti and the sentiment
features x_si of ci, i.e., xi = x_ti

⊕
x_si, where xi ∈ R

dS and
dS = dsf + dse + dss.

3.2.2 Dynamic Clues Tracker

The dynamic clues tracker is consisting of the time-semantics encod-
ing mechanism and the decisive clues aggregating mechanism.

Time-Semantics Encoding is the mapping of time to a specific
dimension vector to obtain temporal semantic information. There are
a set of time points when both faint and distinct clues trigger inter-
actions from onlookers, which can motivate the dynamic expansion
of the news dissemination graph. This provides sufficient temporal
information for PiercingEye to learn the entire news dissemination
process. To harmoniously integrate the temporal and semantic infor-
mation of clues, we need a continuous function T (·) to map the time
to a dT -dimensional vector space (this function is expressed in vec-
tor form), instead of a simple time index. Inspired by related works
[30, 31], we define T (·) by utilizing a sinusoidal function as follows:{

T (t) = [sin (t/ω1) , cos (t/ω2) , · · · , sin (t/ωdT ) , cos (t/ωdT )]

ωi = 2(i/d)·log
tmax
2

(2)
where ωi is the frequency parameter of the i-th dimensional vec-
tor, and tmax denotes the length of the news life-cycle. The sin (·)
and cos (·) functions help our model learn the periodic patterns in
time series, thereby improving its generalizability. For each clue,
we integrate its time embeddings T (ti) and semantic embeddings
xi to form an intermediate representation hi (ti) ∈ R

dS+dT . Con-
cretely, let X

(
pt00 ; t

)
= {x1 (t1) , x2 (t2) , · · · , xN (tN )} repre-

sent the set of semantic embeddings for all current candidate clues,
and their respective time embeddings compose the set T

(
pt00 ; t

)
=

{T (t1) ,T (t2) , · · · ,T (tN )}. The time-semantics encoding mech-
anism takes inputs from X

(
pt00 ; t

)
and T

(
pt00 ; t

)
, and outputs the

intermediate clues’ representations set H
(
pt00 ; t

)
:

H
(
pt00 ; t

)
= {hi (ti)}Ni=1 = { x1 (t1)

⊕
T (t1) ,

x2 (t2)
⊕

T (t2) , · · · , xN (tN )
⊕

T (tN ) }
(3)

It is more informative to consider the time intervals between posted
times of clues and that of the news than absolute timestamps, which
reflect the popularity of news and interaction patterns. Following Xu
et al. [31], we apply the translation-invariant property of T (·) to
rewrite Eq. 3:

H
(
pt00 ; t

)
= { x1 (t1)

⊕
T (t− t1) , x2 (t2)

⊕
T (t− t2) , · · · , xN (tN )

⊕
T (t− tN ) }

(4)

For simplicity, the hi (ti) notation is still utilized in the subsequent
text to refer to xi (ti)

⊕
T (t− ti).

Y. Ding et al. / PiercingEye: Identifying Both Faint and Distinct Clues for Explainable Fake News Detection552



Figure 2. The architecture of PiercingEye.

Decisive Clues Aggregating is responsible for computing the
time-aware feature representation of p0 at time t. The node represen-
tation of p0 without aggregating clues is denoted as x0 (t)

⊕
T (0).

Concretely, the multi-head self-attention mechanism [26] is used to
learn the importance of different clues and selectively aggregate their
features in G(t), and we define the three types of vectors required
to compute the importance scores, i.e., query q (t), key k (t), and
value value v (t). Specifically, q (t) represents the feature of the tar-
get news article that needs to aggregate clues, k (t) represents the
features of all interacting clues with p0, and v (t) is used to preserve
the features of all clues. To perform decisive clues aggregating, we
set n heads as follows:⎧⎪⎨

⎪⎩
qj (t) = h0 (t)Wj

q

kj (t) = [h1 (t1) , h2 (t2) , · · · , hN (tN )]W
j
k

vj (t) = [h1 (t1) , h2 (t2) , · · · , hN (tN )]Wj
v

(5)

where Wj
q , W

j
k, W

j
k (j ∈ [1, n]) are all parameter matrices. After

aggregating features from all the candidate clues, the news feature
representation can be represented as:

h
j (t) = softmax

⎛
⎝qj (t)

[
kj (t)�

]
√
dT + dS

⎞
⎠ v

j (t) (6)

Finally, these n weighted feature representations are concatenated
with the representation of the source news h0 (t) and mapped into
the final form using the matrix Wo and bias bo:

h (t) =
[
h
1 (t) ‖ h

2 (t) ‖ · · · ‖ h
n (t) ‖ h0 (t)

]
Wo + bo (7)

3.2.3 Fake News Detector

After the hybrid clues learner and dynamic clues tracker stages, the
fake news detector performs mean-pooling on h (t) to obtain the final
representation of G (t). Thereafter, this representation is fed into two
fully-connected layers with a softmax function to predict the label ŷ
(i.e., true or fake) of the source news. PiercingEye is trained using
the supervised binary cross-entropy loss, as shown in Eq. 8:

L = E [ylogŷ + (1− y) log (1− ŷ)] (8)

Concerning the final selection of faint clues and distinct clues set
C (t) by PiercingEye, we rank them based on the weights of can-
didate clues calculated by the multi-head self-attention mechanism
after model convergence. Afterward, a specific number of clues with
higher weight values are grouped together to facilitate human experts
in debunking fake news.

4 Experiments

4.1 Datasets

For fairly comparing the performance of PiercingEye and existing
methods on explainable FND, we use two authoritative datasets to
complete experiments, see details in Table 2.

• The Rumdect-Weibo [14] dataset comprises news content, com-
ments, user profiles, and interaction timestamps. It consists of
2131 fake news records and 2207 non-fake news records.

• The Fakenewsnet [22] is one of the benchmarks for FND, and we
select its PolitiFact 1 part as our dataset, denoted as Fakenewsnet-

1 https://www.politifact.com/
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PolitiFact. We exclude the news records with too short text length,
and thus the polished dataset contains 432 fake news records and
317 true news records.

Table 2. Statistics of Datasets

Dataset

# of

fake

news

# of

real

news

# of

users

Avg.

time

length

Avg. #

of

tweets

Rumdect
-Weibo 2131 2207 1309645 1577 h 378

Fakenewsnet
-PolitiFact 432 317 45109 1951 h 42

4.2 Implementation Details

4.2.1 Baselines

We have compared our proposed model with the following represen-
tative methods: (1) The Text-CNN [10] directly extracts fine-grained
features of news content through multiple convolutional filters of dif-
ferent sizes to carry out FND. (2) The GRU-2 employs a two-layer
gated recurrent units to extract semantic features of the entire user
comments to distinguish between true and fake news. (3) dEFEND
[21] is an explainable FND pioneer consisting of a word encoder,
sentence encoder, sentence-comment co-attention, and fake news de-
tector. (4) DTCA [28] constructs an evidence extraction model based
on the decision tree, selecting highly reliable user comments as ev-
idence for explainable FND. (5) The GAT [27] introduces the self-
attention mechanism on graph convolutional networks (GCN) to ef-
fectively aggregate local graph features to identify more accurate
fake news characteristics. (6) The BiGCN [2] utilizes top-down and
bottom-up GCNs to respectively extract propagation and dispersion
features during news dissemination for training fake news classi-
fiers. (7) The Dynamic GCN [6] represents news and user comments
as a discrete-time dynamic graph, and utilizes the attention-based
GCN to detect fake news. (8) The TGNF models the news propaga-
tion as a continuous-time dynamic graph, and aggregates temporal-
topological features for FND.

4.2.2 Experimental settings

We construct news dissemination graphs using the source news
records, user comments/replies as nodes, and their interactions as
edges for each data item in both datasets. The dimension of the orig-
inal word embeddings, d0, is 300, and the number of convolutional
filters, nf , is set to 20, with the height, h, ranging from 1 to 4 as
integers. We determine the maximum sentence length, k, based on
90% of the data records, which is 70 in Rumdect-Weibo and 100 in
Fakenewsnet-PolitiFact. Also, the embedding dimension of the senti-
ment score, Sent, is 1, and that of the statistical features of sentiment
words, Stat, is set to 4. Furthermore, we search for the optimal num-
ber of heads, n, in the multi-head attention mechanism from a can-
didate set {1, 2, 3, 4, 5} based on the performance on both datasets,
and finally set it to 4. The hidden sizes of the two fully connected
layers in the fake news detector are 128 and 64, respectively. More-
over, we implement all the models based on PyTorch (version 1.6.0)
and optimize them using the Adam optimizer with a learning rate of
1e− 4.

4.3 Fake News Detection Results

Table 3. Fake News Detection Performance on the Rumdect-Weibo

Method Acc.
Fake News True News

P R F1 P R F1

Text-CNN 0.788 0.786 0.789 0.787 0.789 0.786 0.788
GRU-2 0.811 0.808 0.796 0.791 0.828 0.820 0.809
DTCA 0.828 0.827 0.796 0.801 0.818 0.857 0.829
BiGCN 0.858 0.867 0.847 0.857 0.848 0.868 0.858

GAT 0.865 0.865 0.863 0.864 0.864 0.866 0.865
dEFEND 0.873 0.872 0.874 0.873 0.874 0.873 0.873
Dynamic

GCN
0.885 0.886 0.883 0.884 0.884 0.887 0.885

TGNF 0.889 0.890 0.888 0.889 0.888 0.891 0.890
PiercingEye 0.896 0.904 0.883 0.893 0.889 0.909 0.899

Table 4. Fake News Detection Performance on the
FakeNewsNet-PolitiFact

Method Acc.
Fake News True News

P R F1 P R F1

Text-CNN 0.707 0.715 0.698 0.706 0.700 0.717 0.709
GRU-2 0.732 0.740 0.724 0.731 0.725 0.741 0.733
DTCA 0.805 0.818 0.788 0.803 0.793 0.822 0.807
BiGCN 0.841 0.847 0.836 0.841 0.836 0.847 0.841

GAT 0.858 0.860 0.855 0.858 0.857 0.861 0.859
dEFEND 0.859 0.825 0.891 0.850 0.871 0.818 0.836
Dynamic

GCN
0.864 0.867 0.862 0.865 0.861 0.866 0.863

TGNF 0.865 0.879 0.849 0.864 0.852 0.882 0.866
PiercingEye 0.870 0.869 0.866 0.867 0.871 0.874 0.872

4.3.1 Overall performance

In this section, we analyze the performance of models on datasets
in terms of fake news detection accuracy (Acc.), precision (P), re-
call (R), and F1-score (F1). The results presented in Table 3 and 4
demonstrate that our proposed PiercingEye generally achieves opti-
mal fake news detection performance on both datasets. Specifically,
PiercingEye shows higher detection accuracy on Rumdect-Weibo
dataset compared to BiGCN, DTCA, and GRU-2, respectively. In
essence, the GRU-2 treats candidate clues as time-series data and
extracts semantic information in small fragments, which makes it
hard for deal with complex and long-distance semantic dependen-
cies among clues. Although DTCA explicitly models the propagation
topology of news, it fails to consider the interaction between dif-
ferent evidence branches under the source news. Users are affected
by other parallel tweets while publishing comments, not only by the
current tweet. The BiGCN learns features of the entire graph, and
it often aggregates redundant or interfering information in candidate
clues, which leads to the neglect of faint clues for FND during spe-
cific time periods. Furthermore, Table 3 shows that PiercingEye has a
higher accuracy than Dynamic GCN, and it also improves precision
in identifying fake and true news. This improvement can be cred-
ited to the Dynamic GCN model’s way of learning the dynamics
of news at fixed time intervals, i.e., discrete-time dynamic graphs.
A more extended time interval between candidate clues might lead
to the neglect of temporal interaction information between them. In
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Figure 3. The comparison of clues extraction results (sorted by comment interaction time). The parts marked in different colors are visualizations of the key
semantic segments of the selected clues, manually curated rather than automatically implemented by models.

both datasets, news has a relatively long lifespan and the distribution
of candidate clues is not balanced across different time periods. Dif-
ferently, our PiercingEye jointly encodes continuous temporal and
semantic information to accurately capture decisive clues for FND.
Additionally, PiercingEye outperforms TGNF in accuracy and shows
an improvement in precision in identifying fake news, as presented
in Table 4, which illustrates the effectiveness of our multi-granularity
sentiment features in capturing important clues during FND.

4.3.2 Case study for explainable FND

We have conducted a comparative analysis of PiercingEye with dE-
FEND and DTCA in the context of explainable FND, wherein dE-
FEND provides explainability through the ranking of user comments
and DTCA explains through the identification of evidence to expose
inaccurate news fragments in user comments. On the other hand,
PiercingEye considers important user comments as clues to uncover
fake news. To facilitate ease of comparison and explanation, we re-
fer to dEFEND’s explainable comments and DTCA’s evidences as
the clues. In this context, Fig. 3 illustrates the clues selection out-
comes of the three explainable FND methods using real Twitter data,
which is the same dataset utilized in the preliminary analysis pre-
sented in Fig. 1. The results show that DTCA and dEFEND tend to
extract clues that are semantically similar to the source news, while
disregarding faint clues that our PiercingEye can capture. For exam-
ple, the highly-focused clues of PiercingEye not only consist of dis-
tinct clues that contain semantic information highly similar to news
content, but also the knowledge gained from the Ebola virus, which
proves that the pathogenicity and transmissibility of viruses are in-
versely proportional. However, this decisive faint clue has been ig-

nored by both the DTCA and dEFEND. Furthermore, the DTCA and
dEFEND model the news dissemination data statically, which leads
to a certain lag in the clues extracted in terms of interaction time
compared to PiercingEye. As shown in Fig. 3, the clues extracted by
PiercingEye are mainly concentrated in March, which is the early
stage of the fake news dissemination. Hence, progressively mining
decisive clues based on dynamic graph mining can also provide in-
spiration for early fake news detection.

5 Conclusion and Future Work

This article primarily focuses on the issue of explainable fake news
detection (FND), and we aim at extracting human-understandable
clues from user comments to debunk fake news. Since the semantic
information of user comments constantly changes as news spreads,
we propose a continuous-time dynamic graph neural network-based
FND method, dubbed as PiercingEye, which consists of the hybrid
clues learner, dynamic clues tracker, and fake news detector. Experi-
mental results on two public datasets demonstrate that our Piercing-
Eye outperforms state-of-the-art methods and has the ability to cap-
ture both the faint and distinct clues from user comments for explain-
able FND.

For the future work, we will attempt to introduce causal inference
techniques to further enhance the explainability of FND. The cur-
rent version of PiercingEye lacks a credibility evaluation of candidate
clues, which may be susceptible to deceptive comments. In addition,
it is necessary to more fundamentally characterize and distinguish
faint clues and distinct clues in the future to fully utilize their role in
explainable FND.
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