
Compilation of Tight ASP Programs
Carmine Dodaro , Giuseppe Mazzotta and Francesco Ricca

University of Calabria
ORCiD ID: Carmine Dodaro https://orcid.org/0000-0002-5617-5286, Giuseppe Mazzotta

https://orcid.org/0000-0003-0125-0477, Francesco Ricca https://orcid.org/0000-0001-8218-3178

Abstract. Answer Set Programming (ASP) is a well-known AI for-
malism. Traditional ASP systems, that follow the “ground&solve”
approach, are intrinsically limited by the so-called grounding bot-
tleneck. Basically, the grounding step (i.e., variable-elimination) can
be computationally expensive, and even unfeasible in several cases
of practical interest. Recent work demonstrated that the grounding
bottleneck can be partially overcome by compiling in external prop-
agators subprograms acting as constraints. In this paper a novel com-
pilation technique is presented that can be applied to tight normal
programs; thus, the class of ASP programs that can be compiled is
extended beyond constraints. The approach is implemented in the
new system PROASP. PROASP skips entirely the grounding phase
and performs solving by injecting custom propagators in GLUCOSE.
An experiment, conducted on grounding-intensive ASP benchmarks,
shows that PROASP is capable of solving instances that are out of
reach for state-of-the-art ASP systems.

1 Introduction

Answer Set Programming (ASP) [9, 30] is a well-known AI for-
malism. Indeed, ASP has found extensive applications in AI [22]
throughout the years that belong to various sub-fields, such as game
theory [4], natural language processing and understanding [17, 39,
42], robotics [24], planning [43], and scheduling [19], among oth-
ers [22]. The applicability of ASP is due to the combination of two
features: a comparatively expressive language that can model hard
problems [18] and efficient implementations [28]. Notably, the en-
hancement of ASP systems is a compelling research area as sys-
tem performance plays a crucial role in the advancement of appli-
cations [28].

State-of-the-art ASP implementations follow the ground&solve
approach [33], where the input program is first “grounded” to
compute a variable-free equivalent propositional program, that is
then “solved” by employing a CDCL-like algorithm [37] that com-
putes the solutions (i.e., the answer sets of the input program).
ground&solve ASP systems, such as CLINGO [26] and DLV [1],
are intrinsically subject to the grounding bottleneck. Basically, the
grounding step can be computationally expensive and even unfeasi-
ble in several cases of practical interest [10, 40].

Numerous efforts have been made to address the grounding bot-
tleneck issue [28]. These include hybrid formalisms [7, 26, 40, 44],
and lazy grounding architectures [8, 34, 36, 41, 45]. Rather than ad-
dressing the problem of ASP systems, hybrid approaches circum-
vent it by both expanding the language with novel constructs and
connecting ASP systems with external sources of computation. On

the other hand, lazy grounding techniques perform grounding during
search, with the aim to prevent computing unnecessary instantiations.
Despite showing promising initial results and continuously improv-
ing efficiency, the performance of lazy grounding techniques is still
not on par with state-of-the-art systems [46]. Recent work demon-
strated that the grounding bottleneck can be overcome by compil-
ing subprograms in external propagators, that simulate the presence
of their ground counterpart during the solving phase [15]. How-
ever, these approaches can only compile subprograms acting as con-
straints [16, 38]. Whether it is possible to devise a compiler for rules
“generating” answer sets was left as an open question.

In this paper, a novel compilation technique and a grounding-less
ASP solving architecture are proposed that target tight normal pro-
grams [23]. The resulting approach extends the class of ASP pro-
grams that can be compiled in a propagator beyond constraints; thus,
the first positive answer to the above question is provided.

Tight programs have been considered a relevant class of programs
since 1994, when Francois Fages [25] proved that stable models (i.e.,
the answer sets) of programs without positive loops (i.e., tight pro-
grams) can be characterized as the models of a propositional SAT for-
mula, called “completion” [13]. As a matter of fact, tight programs
have been playing a central role in the development of modern ASP
systems [2, 31, 35, 32]; and, the techniques for evaluating tight pro-
grams are the core of all modern ASP solvers [28].

The compilation of tight programs can be obtained as follows. In
a nutshell, the non-ground (i.e., with variables) input program is first
pre-processed by applying a rewriting. The aim of this pre-processing
is twofold, on the one hand, it adds rules that mimic the program
completion [13]; and, on the other hand, it simplifies the implemen-
tation, since it produces rules of three kinds. (Details in Section 4).
Then, the compiler processes the rewritten program to generate spe-
cific code for two tasks: (i) generation of (the useful part of) the
Herbrand base, that is used to determine a set of propositional atoms
that is sufficient to search for the answer sets of the program in input;
(ii) synthesis of the solver component, where, basically, the code of
a CDCL solver is enriched with custom procedures simulating the
presence of ground rules. The resulting code is assembled by follow-
ing an architecture where, first, the facts, modeling an input instance,
are used to generate the Herbrand base (roughly, the propositional
variables are computed); and, then, the CDCL solver search for an-
swer sets by calling the propagators instead of performing the tradi-
tional inference on ground rules.

The novel approach is implemented in a new ASP system called
PROASP. In PROASP ASP solving is implemented by injecting
propagators in the GLUCOSE SAT solver [5]. Notably, the PROASP

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230316

557

compiler produces a solver specific for the non-ground program in
input that needs no grounder.

The performance of PROASP is evaluated by conducting a thor-
ough analysis and comparison with state-of-the-art alternatives on
ASP benchmarks that are known to be grounding-intensive. The pri-
mary objective is to evaluate the effectiveness of PROASP by high-
lighting its strengths and weaknesses. Furthermore, the study aims
to measure the capability of PROASP to address the challenges
posed by non-groundable ASP programs. In summary, the experi-
ment demonstrates that PROASP is capable of solving efficiently in-
stances that are out-or-reach for both traditional ASP systems and
compilation approaches that are limited to constraints.

2 Answer Set Programming

ASP Syntax. Terms are either variables (i.e. strings starting with
an uppercase letter) or constants (i.e. integer numbers or strings start-
ing with a lowercase letter). An atom is an expression of the form
p(t1, . . . , tn) where p is a predicate of arity n and t1, . . . , tn are
terms. Given an atom a = p(t1, . . . , tn), terms(a) denotes the list
of terms t1, . . . , tn, and n is the arity of a. A literal is either an atom,
a, or its negation not a, where not represents negation as failure. A
literal is ground if it does not contain variables. A literal is positive
(resp. negative) if it is of the form a (resp. not a). Given a literal l,
the complement of l, denoted by l, is not a if l = a, or a if l = not a.
Given a set of literals S, S+, and S− denote the sets of positive and
negative literals in S, respectively. The complement of S, denoted by
¬S, is the set of literals {l : l ∈ S}. A rule is an expression of the
form a ← l1, . . . , ln, where a is an atom called head, and l1, . . . , ln
is a conjunction of literals called body. Given a rule r, Hr denotes
either a or the set {a}, Br denotes the set of literals l1, . . . , ln. If
Hr is empty, r is called constraint; if Br is empty, r is called fact;
otherwise, r is normal. A program is a finite set of rules.

Given a program P , the Herbrand Universe UP of P , is the set
of constants (occurring) in P ; and, the Herbrand Base BP is the
set of ground atoms obtained from predicates of P and constants in
UP . Let r be a rule, its ground instantiation is obtained by substitut-
ing all variables in r with constants in UP . The ground instantiation
ground(P) (or grounding) of the program P , is the union of the
ground instantiations of rules in P . Given an ASP expression ε (i.e.
term, atom, rule, etc.), vars(ε) denotes the list of variables occurring
in ε, and pred(ε) denotes the set of predicates occurring in ε.

The dependency graph of program P is the graph GP = 〈V ′, E′〉,
where V ′ is the set of predicates appearing in P and E′ contains an
edge (p1, p2) if there exists a rule r ∈ P such that p2 occurs in Hr

and p1 occurs in B+
r . The strongly connected components (SCC)s

of GP induce a partition of predicates of P , say C1, . . . , Cn, one
for each SCC of GP . The ground dependency graph, is the directed
graph 〈V,E〉, where V is the set of atoms appearing in ground(P)
and E contains an edge (p1, p2) if there exists a rule r ∈ ground(P)
such that p2 appears in Hr and p1 appears in B+

r . The program P is
tight if its ground dependency graph is acyclic.

ASP Semantics. Given a program P , an interpretation I is a set
of literals with atoms in BP . A literal l is true w.r.t I if l ∈ I , l
is false w.r.t. I if l ∈ I , otherwise it is undefined. A conjunction
of literals is true w.r.t I if the literals are true w.r.t. I , and false if
at least one literal is false w.r.t. I . An interpretation I is total if for
each atom a ∈ BP , a ∈ I or not a ∈ I , otherwise I is partial. An
interpretation I is consistent if for each literal l ∈ I , l �∈ I , otherwise
it is inconsistent. A total and consistent interpretation I is a model for

Algorithm 1: CDCL for ASP solving
Input : An ASP Program Π

1 begin
2 M := ∅
3 Loop
4 EagerPropagation(Π, M);
5 if M is inconsistent then
6 Π := Π∪ Learning(Π, M);
7 M := RestoreConsistency(Π, M);
8 if M is inconstent then return ⊥ ;

9 if M is total then
10 C := LazyPropagation(Π, M);
11 if C �= ∅ then Π := Π ∪ C;
12 else return M ;

13 else M := PickBranchingLiteral(Π) ;

P if for each rule r ∈ ground(P), the head of r is true whenever
the body of r is true. Given a program P and an interpretation I , the
(Gelfond-Lifschitz) reduct [30] of P , denoted by P I , is defined as
the set of rules obtained from P by deleting those rules whose body
is false w.r.t I and removing all negative literals that are true w.r.t. I
from the body of remaining rules. Let I be a model for P , I is also
an answer set (or stable model) for P if there is no I ′ ⊂ I such that
I ′ is a model for P I . The program P is coherent if it admits at least
one answer set, incoherent otherwise.

3 Compilation-based ASP solving

In this section, we recall the fundamental principles utilized by
compilation-based approaches [15, 16, 38]. These approaches trans-
form rules into a collection of specialized procedures called prop-
agators. These propagators, once injected into a CDCL algorithm,
are capable of mimicking rule inferences during the solving process.
Compilation-based techniques in the literature [15, 16, 38] take a pro-
gram P as input and split it into three subprograms: P ′, Peager , and
Plazy . P ′ is processed in the traditional way, i.e., P ′ is first grounded
in Π = ground(P ′) and, then, fed in input to the CDCL algorithm
shown in Algorithm 1. Meanwhile, Peager and Plazy are compiled
into specialized propagators that are integrated into the solver as ea-
ger (line 4) or lazy propagators (line 10), respectively. In particular,
the CDCL algorithm builds an answer set of Π by incrementally ex-
tending an empty interpretation M . The first step is eager propaga-
tion, corresponding to unit propagation in SAT solvers [37], which
amounts to deriving the deterministic consequences of M that are
implied by the program in input. Thus, the inferences due to both Π
and Peager are computed. Essentially, the standard approach is ap-
plied for ground rules in Π; whereas, the eager propagators added in
the compilation-based approach simulate the inferences due to Peager

without grounding it in advance. After eager propagation, M can be
either inconsistent or consistent. If it is inconsistent, the algorithm
analyzes the inconsistency, adds a derived constraint to Π, and re-
stores consistency by backtracking. If consistency cannot be restored,
the algorithm returns ⊥, indicating that Π has no answer sets. If M
is consistent, the algorithm extends M with an unassigned literal se-
lected using a heuristic and applies eager propagation again. If all
atoms in Π are assigned w.r.t. M , then M is an answer set candi-
date. Indeed, lazy propagators are then applied to verify whether M
is consistent w.r.t. Plazy , and if so, the algorithm returns M . If not,
lazy propagators return a set of violated rules that are added to Π,
and the main loop is repeated again.

The effectiveness of compilation-based techniques relies heavily
on how the program P is divided into subprograms, as noted in [14].

C. Dodaro et al. / Compilation of Tight ASP Programs558

Generator Compiler Propagator Compiler

Compiler

Generator Propagator

Compile PGen
Π Compile P Prop

Π

Sat Solver

Solver

DECISION
VARIABLES

ASSIGNED
LITERALS

/
DERIVATION

CLAUSE

UNIT
PROPAGATION

/
ANALYZE
LITERAL

ProASP

Figure 1: PROASP Architecture

Existing approaches [15, 16, 38] provide some syntactical require-
ments that have to be satisfied by the rules in both Peager , and Plazy .
Basically, only programs behaving as constraints could be compiled,
and also the atoms in the heads of rules in P eager or P lazy cannot
appear in the head of any rule in P ′. This might be restrictive.

4 The PROASP system

In this Section, we present a novel approach to the compilation of
ASP programs that overcomes one of the main limitation of previous
compilation-based approaches for ASP, namely the fact that they can
compile only programs behaving as constraints. The new approach
is applied to tight normal programs and has been implemented in the
PROASP system.

Tight programs can be transformed to SAT formulas in a well-
known way [23]; thus, they can be evaluated by resorting to an ex-
isting CDCL implementation for SAT [32, 35]. Actually, in almost
all modern ASP solvers, the ground rules of an input program are
converted in their representation in clauses that is processed together
with their completion [13]. The completion is a set of clauses model-
ing that each true atom is supported, i.e., there exists a rule (at least
one) having the body true in the model. For tight programs, this con-
dition is sufficient to obtain correspondence between the answer sets
of the program and the satisfying assignments of the so-built SAT
formula. Following this pattern, we devise a novel grounding-less
architecture for evaluating tight programs, illustrated in Figure 1.

PROASP has two main components, referred to as Compiler
and Solver. The Compiler takes as input a non-ground ASP
program P , and generates the code of an ASP solver, referred to as
Solver, that can evaluate P . Solver is made of a CDCL SAT
solver augmented with two additional modules: the Generator
and the Propagator. As usual in ASP, the instance of a prob-
lem is assumed to be provided w.l.o.g. as a set of facts [9]. Given
the instance in input, Generator generates (a subset of) the Her-
brand base BP , which is used to fill the CDCL solver data structures
with propositional atoms (corresponding to the variables in SAT);
whereas, the Propagator module contains the propagators that,
very roughly, simulate the grounding of P (as it would have been
properly transformed into a SAT formula). Compiler and Solver
are detailed in the following subsections.

Comparing PROASP with existing compilation-based ASP
solvers (see Section 3), we stress that the program in input does not
have to be split into sub-programs, and no grounder is needed.

4.1 PROASP Compiler

Let Π denote the ASP program in input. We now introduce a rewrit-
ing of Π that ensures that (i) rules are treated uniformly, and (ii)
the propagations ensuring atoms are supported are modeled by con-
straints. Without loss of generality, we assume there are no two dif-
ferent atoms sharing the same predicate name having different arity.

For a predicate p, let Πp = {r1, . . . , rn} be the set of rules of Π
s.t. the predicate of their head atom is p, then if n > 1, unique(Πp)
is the program:

supr(terms(Hr)) ← Br ∀r ∈ Πp

← supr(terms(Hr)), not Hr ∀r ∈ Πp

← p(�x), not supr1(�x), . . . , not suprn(�x)

where �x a list of m variables, and m is the arity of p; otherwise (i.e.,
n = 1) unique(Πp) = Πp. Then, PΠ is defined as the union of
unique(Πp) for all p occurring in Π. Note that each predicate name
occurs in at most one rule head in PΠ.

Example 1. Let Πex be the following (sub)program:

a(1, Z) ← b(Y), c(Y, Z)
a(X,Z) ← d(X,Y), c(Y, Z), not e(Z)

In order to simplify the presentation, predicates b, c, d, and e do not
appear in the head of any rule, so let us focus on predicate a. In this
case Πa = {r1, r2} is rewritten as follows:

supr1(1, Z) ← b(Y), c(Y, Z)
supr2(X,Z) ← d(X,Y), c(Y, Z), not e(Z)
← supr1(1, Z), not a(1, Z)
← supr2(X,Z), not a(X,Z)
← a(X1, X2), not supr1(X1, X2), not supr2(X1, X2)

We define PProp
Π as the program obtained from PΠ by rewriting

each normal rule r ∈ PΠ, as follows:

Hr ← auxr(vars(B
+
r))

← auxr(vars(B
+
r)), l ∀l ∈ Br

← l1, . . . , ln, not auxr(vars(B
+
r))

where Br = l1, . . . , ln. Basically, PProp
Π models a form of comple-

tion [13] by means of additional constraints.

Example 2. Let us consider the rule supr1(1, Z) ← b(Y), c(Y, Z)
from Example 1. It is rewritten as follows:

supr1(1, Z) ← auxr(Y, Z)
← auxr(Y, Z), not b(Y)
← auxr(Y, Z), not c(Y, Z)
← b(Y), c(Y, Z), not auxr(Y, Z)

Program PProp
Π is used to build the Propagator module. We now

define program PGen
Π that is used to build the Generator module.

Given a rule r ∈ Π, let p = pred(Hr), then supRule(r) is the
rule supr(terms(Hr)) ← Br if |Πp| > 1, otherwise supRule(r)
is r. Moreover, for each rule r′ ∈ PΠ that is not a constraint,
auxRule(r′) is the rule Hr′ ← auxr′(vars(B

+
r′)). The program

PGen
Π is obtained by rewriting each rule r ∈ Π as follows:

Br′′ ← Br′

Hr′′ ← Br′′

Hr ← Hr′ if r �= r′

where r′ = supRule(r) and r′′ = auxRule(r′)

C. Dodaro et al. / Compilation of Tight ASP Programs 559

Algorithm 2: Sub-procedure generated for the rule
auxr2(X,Y, Z) ← d(X,Y), c(Y, Z), not e(Z)

Input : A set of atoms B, a set of atoms F ⊆ B
Output: A set of ground atoms matching auxr2 (X,Y, Z)

1 begin
2 atoms := ∅;
3 forall l1 ∈ {a ∈ B : match(a, d(_, _))} do
4 x := l1[0]; y := l1[1];
5 forall l2 ∈ {a ∈ B : match(a, c(y, _)} do
6 z := l2[1]; l3 := not e(z);
7 if l3 /∈ F then atoms := atoms ∪ {auxr2 (x, y, z)} ;

8 B := B ∪ atoms;

Example 3. Let us consider the program Πex from Example 1, then
PProp
ex is the following:

← supr1(1, Z), not a(1, Z)
← supr2(X,Z), not a(X,Z)
← a(X1, X2), not supr1(X1, X2), not supr2(X1, X2)
supr1(1, Z) ← auxr1(Y, Z)

← auxr1(Y, Z), not b(Y)
← auxr1(Y, Z), not c(Y, Z)
← b(Y), c(Y, Z), not auxr1(Y, Z)
supr2(Y, Z) ← auxr2(X,Y, Z)
← auxr2(X,Y, Z), not d(X,Y)
← auxr2(X,Y, Z), not c(Y, Z)
← auxr2(X,Y, Z), e(Z)
← d(X,Y), c(Y, Z), not e(Z), not auxr2(X,Y, Z)

and PGen
ex is the following:

auxr1(Y, Z) ← b(Y), c(Y, Z)
auxr2(X,Y, Z) ← d(X,Y), c(Y, Z), not e(Z)
supr1(1, Z) ← auxr1(Y, Z)
supr2(Y, Z) ← auxr2(X,Y, Z)
a(X1, X2) ← supr1(X1, X2)
a(X1, X2) ← supr2(X1, X2)

Once programs PProp
Π and PGen

Π are computed, they undergo a
compilation process. On the one hand, PProp

Π is compiled by fol-
lowing the same algorithms described in [38], and this results in
the Propagator module of our architecture. On the other hand,
PGen
Π is also compiled but in a different way. The behavior is similar

to a deductive database system that computes all variable substitu-
tions starting from input facts. To this end, the Compiler computes

Algorithm 3: Propag. for ← auxr2(X,Y, Z), not d(X,Y)

Input : A literal l, an interpretation M
Output: A set of literals Ml

1 begin
2 Ml := ∅;
3 if pred(l) = “auxr2” and l ∈ M+ then
4 x := l[0]; y := l[1]; z := l[2]; l2 := not d(x, y);
5 if l2 /∈ M+ then Ml := Ml ∪ {l2} ;

6 else

7 if pred(l) = “d ” and l ∈ M− then
8 x := l[0]; y := l[1];
9 T := {a ∈ B : match(a, auxr2 (x, y, ·)}

10 forall l1 ∈ T do Ml := Ml ∪ {l1};

11 return Ml

Algorithm 4: Propag. for supr2(X,Z) ← auxr2(X,Y, Z)

Input : A literal l, an interpretation M
Output: A set of literals Ml

1 begin
2 Ml := ∅;
3 if pred(l) = “supr2” then
4 x := l[0]; z := l[1];
5 T := {a ∈ B : match(a, auxr2 (x, ·, z)};
6 if l ∈ M+ then
7 if T ∩M = ∅ and |T | = 1 then Ml := Ml ∪ T ;

8 else if l ∈ M− then Ml := Ml ∪ ¬T ;

9 else if pred(l) = “auxr2” then
10 x := [0]; y := l[1]; z := l[2];
11 if l ∈ M+ then Ml := Ml ∪ {supr2 (x, z)} ;
12 else if l ∈ M− then
13 T := {a ∈ B : match(a, auxr2 (x, ·, z)};
14 if ¬T ⊆ M− then Ml := Ml ∪ {not supr2 (x, z)} ;

15 return Ml

the strongly connected components (SCCs) of PGen
Π , and process

subprograms in the topological order induced by the SCCs. In par-
ticular, for each component Ci, the subprogram λi = {r ∈PGen

Π

: pred(Hr) ∈ Ci} is compiled as a procedure proc_λi(·) that gen-
erates all ground atoms of the form p(·) such that p occurs in Ci, and
p(·) appears in at least one rule head.

To clarify the idea of the procedures generated by the compiler,
we present in the following an example of compilation. In partic-
ular, the sub-procedure generated for the rule auxr2(X,Y, Z) ←
d(X,Y), c(Y, Z), not e(Z), referred to as r in the following, is re-
ported in pseudo-code as Algorithm 2. Specifically, Algorithm 2 first
creates an empty set of ground atoms that will be used to collect all
ground atoms of the form aux r2(·, ·, ·). Then, Algorithm 2 has a dif-
ferent nested block for each literal li (i = 1..|Br|) occurring in Br ,
where the block is a for loop for each positive literal and an if state-
ment for each negative literal. Indeed, Algorithm 2 contains three
nested blocks, i.e. two for loops and one if statement, generated for
d(X,Y), c(Y, Z), and not e(Z), respectively. Then, when the scope
of the if statement is reached, the set of literals l1, l2, and l3 rep-
resents a possible instantiation of r. Thus, auxr2(x, y, z) is added
to the minimal subset of atoms needed for stable model computa-
tion. For instance, suppose that B = {d(1, 2), c(2, 4), e(3)}, then
we might have l1 = d(1, 2), l2 = c(2, 4), l3 = not e(4). Therefore,
in this case, we can derive auxr2(1, 2, 4).

Hence, the Generator module is assembled as a sequence of
sub-procedures as the ones described before, according to the SCCs
of the program PGen

Π . The set of all atoms computed by this mod-
ule becomes the set of variables given as input to the SAT solver.
After the production of the Generator module, the Compiler
creates the Propagator module. Specifically, each rule r ∈ PProp

Π

is compiled into a propagator sub-procedure, called Propr which
evaluates possible propagations of r. In particular, two different
propagation strategies have been implemented, respectively for con-
straints and normal rules. We refer the reader to [38] for the details
about the generation of the sub-procedures. Here we show an ex-
ample of the generated sub-procedures, reported as Algorithms 3
and 4. In particular, Algorithm 3 is a propagator for the constraint
c : ← auxr2(X,Y, Z), not d(X,Y), whereas Algorithm 4 is a
propagator for the rule r : supr2(X,Z) ← auxr2(X,Y, Z). Al-
gorithm 3 evaluates propagations of ground instantiations of c con-
taining a literal l that has been added to the candidate stable model
M . Thus, if the predicate of l is auxr2 and l is a positive literal

C. Dodaro et al. / Compilation of Tight ASP Programs560

Table 1: Comparison of the different solvers on grounding-intensive benchmarks.

Benchmark # PROASP WASPPROP WASP CLINGO ALPHA

SO TO MO SO TO MO SO TO MO SO TO MO SO TO MO
(NPRC) 110 110 0 0 110 0 0 110 0 0 110 0 0 110 0 0
(P) 50 23 27 0 12 38 0 0 50 0 0 48 2 0 45 5
(QG) 100 20 0 80 15 0 85 12 3 85 5 0 95 5 40 55
(SM) 314 230 84 0 225 89 0 197 117 0 213 4 97 28 286 0
(WAT) 62 36 14 12 50 0 12 50 0 12 50 0 12 0 62 0

then auxr2(X,Y, Z) is substituted by l, and d(X,Y) is propa-
gated. Otherwise, if the predicate of l is d and l is a negative lit-
eral then not d(X,Y) is replaced by l, and all literals of the form
not auxr2(X,Y, ·) are propagated. Analogously, Algorithm 4 eval-
uates propagations of ground instantiations of r containing l either
in Hr or Br . Thus, if the predicate of l is supr2 then supr2(X,Z)
is matched to l by applying a proper variable substitution. If l is a
positive literal, then it means that there exists an instantiation of r,
r′, such that Hr′ is true w.r.t. M . Thus, the propagator ensures that
if only one literal is left such that l′ = auxr2(X, ·, Z) this is prop-
agated to true. Instead, if l is a negative literal, then there exists an
instantiation of r, r′, such that Hr′ is false w.r.t. M . Thus, the propa-
gator propagates all literals of the form auxr2(X, ·, Z) as false (i.e.,
not auxr2(X, ·, Z) is added to M). On the other hand, if the predi-
cate of l is auxr2 then auxr2(X,Y, Z) is matched to l by applying
a proper variable substitution. Thus, if l is a positive literal then there
exists an instantiation of r, r′, where Br′ is true w.r.t. M . Thus,
Hr′ is propagated as true. Otherwise, if l is a negative literal and
supr2(X,Z) is true w.r.t. M , the propagator ensures that if there is
only one literal l′ = auxr2(X, ·, Z), then it is propagated to true.

4.2 PROASP Solver

The Solver for an input program Π is obtained by compiling (e.g.,
using g++), the SAT solver, the Generator, and the Propagator to-
gether in the same executable. The Solver reads as input an in-
stance (set of facts) F , and, as the first step, it calls the Generator.
The resulting set of ground atoms, say B, is used to initialize the SAT
solver data structures. A variable is added for each atom in B, and a
unit clause is added for each fact in F . Then, to limit iterations during
propagation, variables are mapped to the propagators they can affect,
similarly to watched literals in standard SAT solvers. For example,
the watched literals for the propagator reported in Algorithm 3 are
the literals of the form auxr2(·, ·, ·) and not d(·, ·). Then, the SAT
solver is started, and the CDCL takes place as usual, alternating prop-
agation and decision (cfr. Algorithm: 1). For example, consider the
constraint ← auxr2(X,Y, Z), not d(X,Y) and its propagator re-
ported in Algorithm 3, and suppose that auxr2(1, 2, 3) is added to
M , then d(1, 2) is derived (and later added to M). In case M be-
comes inconsistent, the Learning procedure is invoked. During this
process the propagator might be asked to reconstruct the clause that
implied M , to be used as usual for learning a conflict clause [37]. In
the previous example, suppose that not d(1, 2) and d(1, 2) are both
in M , the set of literals causing their propagation, i.e., auxr2(1, 2, 3)
for d(1, 2) is returned by the propagator. (For a detailed description
of propagators we refer the reader to [38].)

5 Experiments

In this section, we present the experiments evaluating the perfor-
mance of the PROASP system on grounding-intensive benchmarks.

Specifically, PROASP has been compared with (i) WASPPROP v.
cb67c17 [38] where propagators are nested into the solver WASP [3]
and GRINGO [27] is used as grounder. Here, due to the syntactical
requirements, the compilation can only be applied on constraints;
(ii) plain version of WASP v. d87f3f0 using GRINGO as grounder;
(iii) CLINGO [26] v. 5.6.2; (iv) ALPHA [45] v. 0.7.0.

As for the benchmarks, we considered different grounding-
intensive benchmarks from the literature, namely: Packing problem
(P), Quasi Group (QG), Stable Marriage (SM), Non-Partition Re-
moval Coloring (NPRC), and Weight Assignment Tree (WAT). The
problem instances for benchmarks (P), (SM), (NPRC), and (WAT)
were taken from previous studies, such as [11, 15, 29]. Moreover,
for benchmark (SM), we extended the number of instances by gen-
erating novel ones with higher numbers of individuals and varying
the percentage of expressed preferences as described in [15]. The
(QG) problem consists of placing the numbers from 1 to n into an
n×n matrix, M , in such a way that each row and each column does
not contain the same number twice. We generated different instances
with different values of n (i.e., from 50 to 1000), and for each value
of n, we generated five instances by randomly initializing the matrix
M with a random sample of the set {1, . . . , n}.

All experiments were executed on an Intel(R) Xeon(R) CPU E5-
4610 v2 @ 2.30GHz running Debian Linux (3.16.0-4-amd64), with
memory and CPU time (i.e. user+system) limited of 12GB and 1200
seconds, respectively, and each system was limited to run in a single
core. We report that, in all the considered benchmarks, the compila-
tion time was negligible for both PROASP and WASPPROP. Bench-
marks and executables are available at [20].

Results. The results of the experimental evaluation are presented
in Table 1 and Figures (2b)–(2j). Table 1 shows the total number of
instances for each benchmark (#), and the number of instances solved
(SO), the number of instances where the solver exceeded the given
time (TO) or memory (MO) limits, for each benchmark and solver.
Figure 2 includes cactus plots that depict the time and memory con-
sumption for each benchmark and solver. In a cactus plot, instances
are sorted by memory (or time) usage, and a point (i, j) indicates
that a solver is capable of solving the i-th instance with a memory
(or time) limit of j gigabytes or seconds, respectively.

In general, the results show that PROASP delivered the best per-
formance by solving the highest number of instances and reduc-
ing memory consumption overall. The effectiveness of compilation-
based approaches is evident in the performance of benchmarks (P),
(QG), (SM), and (NPRC), where both PROASP and WASPPROP out-
performed CLINGO and WASP in both solving time (Figures 2a–2e)
and memory usage (Figures 2f–2j). Additionally, the ability to com-
pile the entire program resulted in a significant improvement for
PROASP. Specifically, PROASP solved 21 more instances than
WASPPROP while using less memory in the aforementioned bench-
marks. In contrast, the (WAT) domain revealed some limitations of
the compilation techniques. Specifically, CLINGO proved to be the

C. Dodaro et al. / Compilation of Tight ASP Programs 561

0 10 35 60 85 110
0

20

40

60

80

100

120

Number of solved instances

E
xe

cu
tio

n
tim

e
(s

)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(a) (NPRC) – Solving time.

0 10 20 30
0

200

400

600

800

1,000

1,200

Number of solved instances

E
xe

cu
tio

n
tim

e
(s

)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(b) (P) – Solving time.

0 10 20
0

200

400

600

800

1,000

Number of solved instances

E
xe

cu
tio

n
tim

e
(s

)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(c) (QG) – Solving time.

0 50 100 150 200 250
0

200

400

600

800

1,000

1,200

Number of solved instances

E
xe

cu
tio

n
tim

e
(s

)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(d) (SM) – Solving time.

0 17 34 50
0

200

400

600

800

1,000

1,200

Number of solved instances

E
xe

cu
tio

n
tim

e
(s

)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(e) (WAT) – Solving time.

0 10 35 60 85 110
0

0.5

1

1.5

2

2.5

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(f) (NPRC) – Memory usage.

0 10 20 30
0

2

4

6

8

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(g) (P) – Memory usage.

0 10 20
0

2

4

6

8

10

12

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(h) (QG) – Memory usage.

0 50 100 150 200 250
0

2

4

6

8

10

12

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(i) (SM) – Memory usage.

0 17 34 50
0

2

4

6

8

10

12

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

WASP

WASPPROP

PROASP
ALPHA

(j) (WAT) – Memory usage.

0 2 4 6 8 10
0

4

8

12

16

20

24

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

PROASP

(k) Synthetic (1) – Memory usage.

0 2 4 6 8 10
0

4

8

12

16

20

24

Number of solved instances

M
em

or
y

us
ag

e
(G

B
)

CLINGO

PROASP

(l) Synthetic (2) – Memory usage.

Figure 2: Comparison of the performance of the different solvers.

optimal choice for addressing this problem. Our experiments showed
that the usage of propagators introduced overhead, which is evident
when comparing the performances of WASP with WASPPROP. While
the memory consumption is comparable, the execution time starts to
increase more rapidly after the 40th instance (as shown in Figure 2e).
This overhead is even more pronounced in PROASP since the entire
program is simulated by propagators. This drawback is partly due
to a less informed heuristic that guides the CDCL solver and also
to a high number of auxiliary atoms introduced by our rewriting to

simulate the program’s completion. We also mention that PROASP
outperformed the lazy-solver ALPHA by solving more than 276 in-
stances overall and significantly reducing memory consumption on
solved instances. However, due to its design strategy, ALPHA used
less memory on unsolved instances.

Synthetic benchmarks. To provide a more detailed investigation
into the performance of our approach, we conducted an additional ex-

C. Dodaro et al. / Compilation of Tight ASP Programs562

periment on two synthetic benchmarks. This allowed us to highlight
both the strengths and weaknesses of PROASP w.r.t. CLINGO. The
first benchmark, referred to as Synthetic (1), is designed to show-
case scenarios where PROASP is expected to have an advantage.
It involves encoding a join among six binary relations, denoted as
a1, a2, ..., a6, and is formulated as follows:

a1(X,Y) ← d(X), d(Y), not na1(X,Y)
na1(X,Y) ← d(X), d(Y), not a1(X,Y)
. . .
a6(X,Y) ← d(X), d(Y), not na6(X,Y)
na6(X,Y) ← d(X), d(Y), not a6(X,Y)
b(X1, . . . , X7) ← a1(X1, X2), a1(X2, X3), . . . , a6(X6, X7)
c(X1, . . . , X7) ← a1(X1, X2), a1(X2, X3), . . . , a6(X6, X7)

← b(_, _, _, _, X, Y, Z), c(Z, Y,X, _, _, _, _)

The second benchmark, referred to as Synthetic (2), aims to high-
light a limitation of PROASP that was already observed in the (WAT)
benchmark. Indeed, it encodes a join between two relations of arity
four and includes a projection over three terms:

a1(X,Y, Z,W) ← d(X), d(Y), d(Z), d(W),
not na1(X,Y, Z,W)

na1(X,Y, Z,W) ← d(X), d(Y), d(Z), d(W),
not a1(X,Y, Z,W)

a2(X,Y, Z,W) ← d(X), d(Y), d(Z), d(W),
not na2(X,Y, Z,W)

na2(X,Y, Z,W) ← d(X), d(Y), d(Z), d(W),
not a2(X,Y, Z,W)

b(X,Y, Z) ← a1(X, _, _, Y), a2(Y, _, _, Z)
c(X,Y, Z) ← a1(X, _, _, Y), a2(Y, _, _, Z)

← b(X1, Y, Z), c(Z, Y,X2)

For both benchmarks we generated 10 instances of increasing size
by varying the number of atoms over the predicate d, from 3 to 12.
Moreover, we increased the memory limit to 24GB, since the ground-
ing phase is highly memory demanding, and we report only the mem-
ory consumption since the solving time after grounding is negligible.

As expected, obtained results highlighted a significant improve-
ment introduced by PROASP in benchmark Synthetic (1) (Fig-
ure 2k), where the rate at which memory usage increases in PROASP
is significantly slower than that in CLINGO, since, in this encoding,
there are no projections. Instead, concerning benchmark Synthetic
(2) (Figure 2l), we observe that PROASP has a larger usage of mem-
ory, since storing the auxiliary atoms (i.e., tuples of terms), together
with indices used for computing joins, resulted to be heavier than
storing ground program (where aux atoms cost as one integer) for
large domains of the predicate d.

6 Related work

The grounding bottleneck is a known limitation of state-of-the-art
ASP systems [8, 16], like CLINGO [26] and DLV [1]. Several ap-
proaches to overcome the grounding bottleneck have been proposed,
which can be divided in three main classes: hybrid approaches, lazy-
grounding, and compilation-based.

Hybrid approaches are based on the extension of the base lan-
guage with additional constructs for connecting ASP solvers with ex-
ternal solvers. These include Constraints Answer Set Programming
(CASP) [6, 7, 12, 40, 44], ASP Modulo Theories [26], and HEX pro-
grams [21]. While effective, these systems do not address the ground-
ing bottleneck in ASP systems. Instead, they circumvent the issue by

shifting the complexity from the logic program to external sources of
computation such as constraint solvers and SMT solvers.

Lazy grounding systems perform the grounding of rules during
the search for an answer set [8, 34, 36, 41, 45, 46]. In these ap-
proaches, a rule is instantiated only when its body is satisfied, thus
grounding is done only for rules that are used during the search. The
state-of-the-art lazy-grounding system ALPHA [45, 46] combines
lazy instantiation techniques with learning, conflict-based heuristics,
restarts, phase saving, etc. A key difference between ALPHA and
PROASP is that the first discovers the space of propositional atoms
during search, whereas PROASP computes it at the beginning. This
choice might give advantages to ALPHA when the size of (the use-
ful part of) the Herbrand base is already prohibitively large; on the
other hand, it gives advantages to PROASP both in terms of vis-
ibility of the search space, and complete compatibility with stan-
dard SAT-solving technology. PROASP includes GLUCOSE as it is
(with its highly-optimized SAT-solving algorithms and data struc-
tures), whereas in ALPHA all these techniques were re-implemented
to be blended with lazy grounding. In the same category as ALPHA

is the DualGrounder [36], which performs lazy instantiation resort-
ing to the multi-shot API of CLINGO. ALPHA and DualGrounder can
outperform traditional ASP systems on grounding-intensive bench-
marks and are comparable in performance (as shown in [36]). More-
over, both ALPHA and DualGrounder support a richer input language
than PROASP.

PROASP belongs to the compilation-based approaches together
with the extensions of the WASP [3] solver with compiled external
propagators [15, 16, 38], called WASPPROP. PROASP and WASP-
PROP share the idea of replacing rules with propagators. On the one
hand, WASPPROP can handle aggregates, that are not currently sup-
ported by PROASP; on the other hand, PROASP is not limited to
subprograms acting as constraints and needs no grounder.

7 Conclusion

ASP systems based on the ground&solve architecture are limited
by the grounding bottleneck. Compilation-based approaches have
shown promise in addressing this problem, but they were limited to
subprograms that behave as constraints.

This paper presents a novel compilation technique that can be used
to evaluate tight ASP programs. Thus, the class of ASP programs
that can be evaluated by compilation-based techniques is extended
beyond constraints. The approach is implemented in the new sys-
tem PROASP, that follows a grounding-less compilation-based ar-
chitecture. The PROASP compiler generates a custom ASP solver
for a given non-ground program, that extends the GLUCOSE SAT
solver with propagators. An experiment conducted on grounding-
intensive ASP benchmarks shows that PROASP is capable of solving
grounding-intensive instances that are out of reach for state-of-the-
art ASP systems. Since the evaluation of tight ASP programs is at
the core of modern ASP solvers, this work lays the groundwork for a
new generation of grounding-less ASP solvers based on compilation.

As future work, there are plans to eventually support the entire
ASP-Core 2 standard in the long term. However, it should be noted
that the compilation of each advanced ASP construct presents its own
unique set of non-trivial challenges. Additional directions for future
work follow from the analysis reported in Section 5. Indeed, both
the compilation of support propagation and the lazy generation of
derived symbols are techniques that might improve PROASP perfor-
mance on known corner cases.

C. Dodaro et al. / Compilation of Tight ASP Programs 563

Acknowledgements

This work was supported by Italian Ministry of Research (MUR)
under PRIN project PINPOINT, CUP H23C22000280006, PNRR
projects FAIR “Future AI Research” - Spoke 9 - WP9.1 -
CUP H23C22000860006, and Tech4You “Technologies for cli-
mate change adaptation and quality of life improvement”, CUP
H23C22000370006.

References

[1] Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fuscà,
Nicola Leone, Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and
Jessica Zangari, ‘The ASP system DLV2’, in LPNMR, volume 10377
of Lecture Notes in Computer Science, pp. 215–221. Springer, (2017).

[2] Mario Alviano and Carmine Dodaro, ‘Completion of disjunctive logic
programs’, in IJCAI, pp. 886–892. IJCAI/AAAI Press, (2016).

[3] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca,
‘Advances in WASP’, in LPNMR, volume 9345 of Lecture Notes in
Computer Science, pp. 40–54. Springer, (2015).

[4] Giovanni Amendola, Gianluigi Greco, Nicola Leone, and Pierfrancesco
Veltri, ‘Modeling and reasoning about NTU games via answer set pro-
gramming’, in IJCAI, pp. 38–45. IJCAI/AAAI Press, (2016).

[5] Gilles Audemard and Laurent Simon, ‘On the glucose SAT solver’, Int.
J. Artif. Intell. Tools, 27(1), 1840001:1–1840001:25, (2018).

[6] Rehan Abdul Aziz, Geoffrey Chu, and Peter J. Stuckey, ‘Stable model
semantics for founded bounds’, Theory Pract. Log. Program., 13(4-5),
517–532, (2013).

[7] Marcello Balduccini and Yuliya Lierler, ‘Constraint answer set solver
EZCSP and why integration schemas matter’, Theory Pract. Log. Pro-
gram., 17(4), 462–515, (2017).

[8] Jori Bomanson, Tomi Janhunen, and Antonius Weinzierl, ‘Enhancing
lazy grounding with lazy normalization in answer-set programming’,
in AAAI, pp. 2694–2702. AAAI Press, (2019).

[9] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski, ‘Answer
set programming at a glance’, Commun. ACM, 54(12), 92–103, (2011).

[10] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco
Ricca, ‘Design and results of the fifth answer set programming com-
petition’, Artif. Intell., 231, 151–181, (2016).

[11] Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca, ‘The
third open answer set programming competition’, Theory Pract. Log.
Program., 14(1), 117–135, (2014).

[12] Broes De Cat, Marc Denecker, Maurice Bruynooghe, and Peter J.
Stuckey, ‘Lazy model expansion: Interleaving grounding with search’,
J. Artif. Intell. Res., 52, 235–286, (2015).

[13] Keith L. Clark, ‘Negation as failure’, in Logic and Data Bases, Ad-
vances in Data Base Theory, pp. 293–322, New York, (1977). Plemum
Press.

[14] Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller,
‘Constraints, lazy constraints, or propagators in ASP solving: An
empirical analysis’, Theory Pract. Log. Program., 17(5-6), 780–799,
(2017).

[15] Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller,
‘Partial compilation of ASP programs’, Theory Pract. Log. Program.,
19(5-6), 857–873, (2019).

[16] Bernardo Cuteri, Carmine Dodaro, Francesco Ricca, and Peter Schüller,
‘Overcoming the grounding bottleneck due to constraints in ASP solv-
ing: Constraints become propagators’, in IJCAI, pp. 1688–1694. ij-
cai.org, (2020).

[17] Bernardo Cuteri, Kristian Reale, and Francesco Ricca, ‘A logic-based
question answering system for cultural heritage’, in JELIA, volume
11468 of LNCS, pp. 526–541. Springer, (2019).

[18] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov,
‘Complexity and expressive power of logic programming’, ACM Com-
put. Surv., 33(3), 374–425, (2001).

[19] Carmine Dodaro and Marco Maratea, ‘Nurse scheduling via answer set
programming’, in LPNMR, volume 10377 of Lecture Notes in Com-
puter Science, pp. 301–307. Springer, (2017).

[20] Carmine Dodaro, Giuseppe Mazzotta, and Francesco Ricca. Bench-
marks. https://doi.org/10.5281/zenodo.8179111, 2023.

[21] Thomas Eiter, Christoph Redl, and Peter Schüller, ‘Problem solving
using the HEX family’, in Computational Models of Rationality, pp.
150–174. College Publications, (2016).

[22] Esra Erdem, Michael Gelfond, and Nicola Leone, ‘Applications of an-
swer set programming’, AI Mag., 37(3), 53–68, (2016).

[23] Esra Erdem and Vladimir Lifschitz, ‘Tight logic programs’, Theory
Pract. Log. Program., 3(4-5), 499–518, (2003).

[24] Esra Erdem and Volkan Patoglu, ‘Applications of ASP in robotics’,
Künstliche Intell., 32(2-3), 143–149, (2018).

[25] François Fages, ‘Consistency of clark’s completion and existence of
stable models’, Methods Log. Comput. Sci., 1(1), 51–60, (1994).

[26] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Os-
trowski, Torsten Schaub, and Philipp Wanko, ‘Theory solving made
easy with clingo 5’, in ICLP (Technical Communications), volume 52
of OASICS, pp. 2:1–2:15. Schloss Dagstuhl, (2016).

[27] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub,
‘Advances in gringo series 3’, in LPNMR, volume 6645 of Lecture
Notes in Computer Science, pp. 345–351. Springer, (2011).

[28] Martin Gebser, Nicola Leone, Marco Maratea, Simona Perri, Francesco
Ricca, and Torsten Schaub, ‘Evaluation techniques and systems for an-
swer set programming: a survey’, in IJCAI, pp. 5450–5456. ijcai.org,
(2018).

[29] Martin Gebser, Marco Maratea, and Francesco Ricca, ‘The sixth answer
set programming competition’, J. Artif. Intell. Res., 60, 41–95, (2017).

[30] Michael Gelfond and Vladimir Lifschitz, ‘Classical negation in logic
programs and disjunctive databases’, New Gener. Comput., 9(3/4),
365–386, (1991).

[31] Tomi Janhunen, ‘Representing normal programs with clauses’, in
ECAI, pp. 358–362. IOS Press, (2004).

[32] Tomi Janhunen, ‘Implementing stable-unstable semantics with ASP-
TOOLS and clingo’, in PADL, volume 13165 of Lecture Notes in Com-
puter Science, pp. 135–153. Springer, (2022).

[33] Benjamin Kaufmann, Nicola Leone, Simona Perri, and Torsten Schaub,
‘Grounding and solving in answer set programming’, AI Mag., 37(3),
25–32, (2016).

[34] Claire Lefèvre and Pascal Nicolas, ‘The first version of a new ASP
solver : Asperix’, in LPNMR, volume 5753 of Lecture Notes in Com-
puter Science, pp. 522–527. Springer, (2009).

[35] Yuliya Lierler and Marco Maratea, ‘Cmodels-2: Sat-based answer set
solver enhanced to non-tight programs’, in LPNMR, volume 2923 of
Lecture Notes in Computer Science, pp. 346–350. Springer, (2004).

[36] Yuliya Lierler and Justin Robbins, ‘Dualgrounder: Lazy instantiation
via clingo multi-shot framework’, in JELIA, volume 12678 of Lecture
Notes in Computer Science, pp. 435–441. Springer, (2021).

[37] João Marques-Silva, Inês Lynce, and Sharad Malik, ‘Conflict-driven
clause learning SAT solvers’, in Handbook of Satisfiability, volume 336
of Frontiers in Artificial Intelligence and Applications, 133–182, IOS
Press, (2021).

[38] Giuseppe Mazzotta, Francesco Ricca, and Carmine Dodaro, ‘Compi-
lation of aggregates in ASP systems’, in AAAI, pp. 5834–5841. AAAI
Press, (2022).

[39] Arindam Mitra, Peter Clark, Oyvind Tafjord, and Chitta Baral, ‘Declar-
ative question answering over knowledge bases containing natural lan-
guage text with answer set programming’, in AAAI, pp. 3003–3010.
AAAI Press, (2019).

[40] Max Ostrowski and Torsten Schaub, ‘ASP modulo CSP: the clingcon
system’, Theory Pract. Log. Program., 12(4-5), 485–503, (2012).

[41] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco
Rossi, ‘GASP: answer set programming with lazy grounding’, Fundam.
Informaticae, 96(3), 297–322, (2009).

[42] Peter Schüller, ‘Modeling variations of first-order horn abduction in
answer set programming’, Fundam. Informaticae, 149(1-2), 159–207,
(2016).

[43] Tran Cao Son, Enrico Pontelli, Marcello Balduccini, and Torsten
Schaub, ‘Answer set planning: A survey’, Theory Pract. Log. Program.,
23(1), 226–298, (2023).

[44] Benjamin Susman and Yuliya Lierler, ‘Smt-based constraint answer set
solver EZSMT (system description)’, in ICLP (Technical Communica-
tions), volume 52 of OASIcs, pp. 1:1–1:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, (2016).

[45] Antonius Weinzierl, ‘Blending lazy-grounding and CDNL search for
answer-set solving’, in LPNMR, volume 10377 of Lecture Notes in
Computer Science, pp. 191–204. Springer, (2017).

[46] Antonius Weinzierl, Richard Taupe, and Gerhard Friedrich, ‘Advancing
lazy-grounding ASP solving techniques - restarts, phase saving, heuris-
tics, and more’, Theory Pract. Log. Program., 20(5), 609–624, (2020).

C. Dodaro et al. / Compilation of Tight ASP Programs564

