ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.

565

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA230317

Antecedent Predictions Are More Important
Than You Think: An Effective Method
for Tree-Based Code Generation
Yihong Dong!, Ge Li':*, Xue Jiang' and Zhi Jin'

'Key Lab of High Confidence Software Technology, MoE (Peking University)
dongyh@stu.pku.edu.cn, lige @pku.edu.cn, jiangxue @stu.pku.edu.cn, and zhijin @pku.edu.cn

Abstract. Code generation focuses on automatically converting
natural language (NL) utterances into code snippets. Sequence-to-
tree (Seq2Tree) approaches are proposed for code generation with
the aim of ensuring grammatical correctness of the generated code.
These approaches generate subsequent Abstract Syntax Tree (AST)
nodes based on the preceding predictions of AST nodes. However,
existing Seq2Tree approaches tend to treat both antecedent predic-
tions and subsequent predictions equally, which poses a challenge for
models to produce accurate subsequent predictions if the antecedent
predictions are incorrect under the constraints of the AST. Given this
challenge, it is necessary to pay more attention to antecedent pre-
dictions compared to subsequent predictions. To this end, this paper
proposes a novel and effective method, named Antecedent Prioritized
(AP) Loss, which prioritizes antecedent predictions by leveraging the
position information of the generated AST nodes. We design an AST-
to-Vector (AST2Vec) method that maps AST node positions to two-
dimensional vectors, thereby modeling the position information of
AST nodes. To evaluate the effectiveness of our proposed loss, we
implement and train an Antecedent Prioritized Tree-based code gen-
eration model called APT. Experiments on four benchmark datasets
demonstrate that with better antecedent predictions and accompany-
ing subsequent predictions, APT achieves significant improvements,
indicating the superiority and generality of our proposed method.

1 Introduction

Code generation is an essential generation task in the field of natural
language processing (NLP) and software engineering [20, 24, 7, 8,
18, 35, 36, 16], which deals with automatically generating a piece
of executable code from NL utterances. In recent years, a series of
Seq2Tree models have made remarkable achievements for code gen-
eration [2, 38, 1, 39, 27, 29, 28, 33, 11, 14, 43, 21]. Specifically,
given an NL utterance input, instead of outputting a sequence of code
tokens directly, the Seq2Tree model outputs a sequence of AST ac-
tions. These AST actions correspond to AST nodes in a traversal
method based on the abstract syntax description language (ASDL)
grammar, and can eventually be converted into code via a certain de-
terministic function . Depending on AST structure and ASDL gram-
mar, Seq2Tree models ensure the grammatical correctness of gener-

* Corresponding Author.

! According to the compiler theory, AST nodes can be transformed into code
by extracting all leaf nodes and some key nodes of AST, which is the deter-
ministic function.

Input NL Utterance Python Code Snippet

result = {}
k, v in kwargs.items():
v is not None:
result[k] = v

Get rid of none values in
dictionary kwargs

—>

Figure 1: An illustration of code generation: Given a NL utterance as
input, the task is to convert it into corresponding code snippet.

ated code. Furthermore, AST structure and ASDL grammar also help
Seq2Tree models shrink the search space, i.e., antecedent predictions
will constrain subsequent predictions, to generate well-formed codes.

Despite the success of the above models, they still neglect that
antecedent predictions play an essential role in Tree-based code gen-
eration. The AST corresponding to code is a structure of progres-
sive derivation from the root node to leaf nodes, and child nodes are
derivations of parent nodes. Under the constraints of AST structure
and ASDL grammar, parent nodes can easily determine the type, or-
der, and even number of child nodes. When the output node sequence
of Seq2Tree models is based on the pre-order traversal of AST?, the
parent node is always ahead of its child nodes. Consequently, when
the antecedent parent node is wrongly generated, Seq2Tree models
can barely predict subsequent child nodes correctly, which dramati-
cally impacts the effectiveness of Seq2Tree models.

In this paper, we propose a novel loss function, namely AP Loss,
that helps models prioritize antecedent predictions during training,
so that generating more accurate antecedent predictions and accom-
panying subsequent predictions during inference. Intrinsically, AP
Loss is a dynamically scaled cross entropy loss containing scaling
and magnitude factors. The scaling factor is related to the position
of the traversal order of AST nodes, and the magnitude factor con-
trols the magnitude of the total loss function. Intuitively, AP Loss
automatically reduces the contribution of susceptible subsequent pre-
dictions and focuses on more critical antecedent predictions during
training. Therefore, we propose an AST2Vec method that models
AST nodes with vectors to distinguish between antecedent nodes and
subsequent nodes in AST. We implement and train an Antecedent
Prioritized Tree-based code generation model called APT, utilizing

2 Note that breadth-first traversal has the same conclusion, and we use pre-
order traversal as examples in this paper.

566 Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation

_._ASDL Grammar

: mod -> Module(stmt* body)
| stmt -> Expr(expr value) |
. expr -> Call(expr func, expr* args, keyword* keywords)
. | Attribute(expr value, identifier attr)] ‘
| Name(identifier id) :
Input NL Utterance

Split string 'line’ into a list by whitespace

Python Code Snippet

AST_to_Code(

s =

ApplyRule 0 Module
GenToken /\
Reduce
1 Expr 9 Reduce
I i
2call
3 Attribute 7 Reduce -------- » 8 Reduce
/\ A
4 Name 6 split :
) = line.split()
i i
* AST Edge
[T S ST

+ Action Flow

Node Parent Node Action

0 - ApplyRule[mod -> Module(stmt* body)]

1 0 ApplyRule[stmt -> Expr(expr value)]

2 1 ApplyRule[expr -> Call(expr func, expr* args, keyword* keywords)]
3 2 ApplyRule[expr -> Attribute(expr value, identifier attr)]
4 3 ApplyRule[expr -> Name(identifier id)]

5 4 GenToken(line]

6 3 GenToken[split]

7 2 Reduce

8 2 Reduce

9 0 Reduce

Figure 2: The procedure of code generation by Seq2Tree models. The order of nodes is based on the pre-order traversal of AST.

the AP Loss. To demonstrate the efficacy of our proposed method,
we conduct extensive experiments on several benchmark datasets.
Experimental results show that APT outperforms the state-of-the-art
(SOTA) Seq2Tree methods, including ML-TRANX [33], TRANX-
RL [12], and ASED [11], on four benchmark datasets. Furthermore,
we note that AP Loss is suitable for not only different traversal meth-
ods but also different forms of weights, and maintains an advantage
over Seq2Tree models, which indicates its generality.

The main contribution of this paper can be summarized as follows:

e We propose that antecedent predictions are more critical than sub-
sequent predictions in the tree-based code generation framework.

e We propose AP Loss, an effective method for Seq2Tree models,
which prioritizes antecedent predictions by leveraging the position
information of generated AST nodes. Additionally, we introduce
the AST2Vec method, which represents the position information
of AST nodes through two-dimensional vectors and has the capa-
bility to reconstruct the corresponding AST.

e We instantiate an Antecedent Prioritized Tree-based code gen-
eration model, referred to as APT. APT outperforms the SOTA
Seq2Tree methods on four benchmark datasets. Extensive experi-
mental results demonstrate the effectiveness and generality of our
proposed method.

2 Motivation

Source code is specialized text with strict syntactic rules and specific
structural patterns. Certain key statements significantly impact the
structure of code. Some famous examples such as for, while, and if,
are shown in an example of code generation in Fig. 1. When the code
is converted to AST with ASDL grammar, these key statements are
presented as dominant antecedent nodes > in the AST. An AST and
its corresponding ASDL grammar are depicted in Fig. 2. In this illus-
tration, the yellow nodes represent antecedent nodes that determine
the tree’s structure. From this observation, we further summarize sev-
eral properties that AST nodes exhibit under the constraints of ASDL
grammar:

1. The parent node can determine the left side of the production rule
of the child node, e.g., since the right side of the production rule
of node 0 is Module(stmt* body), the left side of the production
rule of node 1 should be stmt.

2. The parent node is able to control the number and order of the

child node. For instance, the right side of the production rule of

3 An antecedent node of a node is either the parent of this node or the parent
of some ancestors of this node.

Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation 567

. 0 Module
¢ NL:

- i Load the file f using package pickle ‘/\
i | Code: i
¢ pickle.load(file = f) 1 Expr 13 Reduce

2 Call

e N

3 Attribute 8 Attribute

e NN

4 Name 6 load 9 file

' '

5 pickle "nf

AST

7 Reduce 12 Reduce

10 Name

° (0,0

I

1 (1,0 13 (1,6)

J

2 (2,0
T
3 (3,0 7 (3,2) 8 (3,3) 12 (3,5)
™~ ™~
4 (40) s (41) 9 (43) 10 (4,4)
|

! (5,0) 1 (54)

AST2Vec

Figure 3: An Example of AST2Vec.

node 3 is Attribute(expr value, identifier attr), therefore node 3
has two child nodes, the first is expr and the second is identifier.

3. The parent node allows for a decision of the type of the child node.
For example, because the right side of the production rule of node
4 is Name(identifier id), the type of node 5 has to be the id of the
identifier. Similarly, the type of node 6 has to be the attribute of
the identifier.

The properties of an AST underscore the critical role played by the
antecedent nodes in code generation. Should the antecedent node’s
prediction prove inaccurate, subsequent node predictions will be ad-
versely impacted, resulting in incorrect predictions. Fig. 2 shows the
procedure of converting an input NL utterance into the correspond-
ing python code snippet by Seq2Tree models by generating actions
to construct an intermediate representation AST. During training,
the Seq2Tree model generates the subsequent action predicated on
the previous ground-truth action at each training step. Conversely,
during testing, the model lacks knowledge of the ground truth ac-
tion and proceeds to generate the next action based on the previ-
ously generated action. This discrepancy results in a non-negligible
inconsistency between the training and inference phases. It is incred-
ibly challenging to generate an accurate subsequent prediction based
on incorrect antecedent predictions under AST structure and ASDL
grammar constraints. Thus, the cost of producing wrong antecedent
predictions is quite expensive during inference. To this end, in this
paper, we propose an effective method that pays more attention to
pre-generation during training and alleviates the negative effect of
training inconsistency for Tree-based code generation methods.

3 APT

In this section, we first propose a method of representing AST node
positions as vectors, called AST2Vec. Then, we describe the prin-
ciple and architecture of our base model. Finally, we introduce AP
Loss in detail.

3.1 AST2Vec

The sequence with pre-order traversal cannot represent the posi-
tion information of AST nodes in AST well. Therefore, we consider
adopting two-dimensional vectors to represent the position informa-
tion of AST nodes. These vectors need to have the ability to recon-
struct AST, which has to comply with the following rules:

e The vector corresponding to each AST node should be unique;
e The capability to determine a unique parent node for any child
node based on vectors.

Therefore, we design an AST2Vec method that conforms to these
two rules. Specifically, we perform a pre-order traversal for an AST
starting from the root node, and the vertical coordinate of the child
node is that of its parent node + 1. If the parent node of the current
node is traversed for the first time, and its horizontal coordinate is
the horizontal coordinate of its parent node. If the parent node of the
current node is traversed for the second and more times, its horizontal
coordinate is the maximum of horizontal coordinates of all traversed
nodes + 1. We provide the pseudocode for our AST2Vec method in
Algorithm 1 and an example of AST2Vec is shown in Fig. 3.

Representing ASTs with vectors based on AST2Vec offers two
significant advantages:

1. We can reconstruct the AST according to the corresponding vec-
tors. According to the algorithm used to generate the following-
sibling nodes, each node is assigned a unique vector that does not
overlap with any other nodes. This is achieved by setting the hori-
zontal coordinate of a node to the maximum horizontal coordinate
of all preceding nodes plus one, while ensuring that child nodes
of following-sibling nodes have greater vertical coordinates. Fur-
thermore, to determine the parent node of a given node, we look
for the node whose vertical coordinate is one less than that of the
current node, and whose horizontal coordinate is the first one less
than or equal to the current node’s horizontal coordinate. For ex-
ample, in Fig. 3, the parent node of nodes 9 and 10 must be node
8, rather than node 7 or node 3.

568 Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation

Algorithm 1 AST2Vec

Require: The AST 7T or the pre-order traversal action sequence of
AST a.
Ensure: The vectors v.
1: Initial the vectors v, the record set R = (), and the maximum
maxn = 0.

2: if a is not exist then

3: a < the pre-order traversal of 7T .
4: end if

5: for a; in a do

6: if a; is root node then

7: Ve = (O, 0)

8: continue.

9: endif
10: ap < the parent node of a;.
11: ifa, ¢ R then
12: vt = (vp.di + 1, vp.d2).
13: add a,, to R.
14: else
15: maxn = maxn + 1.
16: ve = (vp.di + 1, mazn).
17: end if
18: end for

19: return v

2. The subtraction of vectors satisfies the Triangle Law *, which can
reflect the relationship between AST nodes. Concretely, the vector
connecting two nodes can be represented by calculating the differ-
ence between their respective vector representations. For instance,
in Fig. 3, the vector representation for node 8 is (3, 3), while that
for node 9 is (4, 3). Therefore, the vector from node 8 to node 9 is
computed as follows: (4,3) — (3,3) = (1,0).

In conclusion, the unique vector representation assigned to each
node ensures that the AST can be accurately reconstructed from the
corresponding vectors, while also allowing for easy determination of
parent-child relationships between nodes. Further, the use of vector
subtraction to calculate the difference between vectors satisfies the
Triangle Law, allowing for an accurate reflection of the relationships
between AST nodes. These benefits demonstrate the effectiveness
of the AST2Vec approach in capturing the structural information of
ASTs in a concise and useful way.

3.2 Base Model

Our proposed AP Loss is suitable for all Seq2Tree model. Here we
adopt TRANX [39] as our base model, given its widespread usage
and demonstrated competitive performance in code generation. Nu-
merous Seq2Tree methods are based on and improve upon TRANX,
including ML-TRANX [33], TRANX-RL [12], ASED [11], etc.

In Fig. 2, TRANX first outputs a sequence of actions to construct
AST in pre-order traversal based on ASDL grammar and the input
NL utterance. Then a given function AST_to_Code(*) is called to
map the generated intermediate AST into code. Concretely, three
types of ASDL grammar-based actions are available:

APPLYRULE[c] actions apply a constructor ¢ to the composite
field of a node with the same type as ¢, generating the child node
using the fields in c.

4 To find the difference of two vectors by — b that are coinitial, just draw a
vector from the tail of by to the tail of by

REDUCE actions complete the generation of the child node for a
field that has optional(?) or multiple(*) cardinalities.

GENTOKEN([v] actions expand the field of a node to generate a
token v.

TRANX uses an attentional encoder-decoder framework with aug-
mented recurrent connections to interpret the topology of AST. The
encoder of TRANX is a Bidirectional Long Short-term Memory
(BILSTM) network, and the decoder of TRANX is an LSTM net-
work. Given an input NL utterance x of n tokens, i.e., {x;},_,, the
BiLSTM encoder learns vectorial representations {z};—;. Then, at
each step ¢, the LSTM decoder generates hidden state s; as:

st = fustm([et—1 : Se—1 : Pi), Se—1), ()

where frstwm is the LSTM decoder transition function, [:] denotes
the concatenation of vectors, e;—1 and p: denote the embedding of
previous action and parent action, respectively. We define the atten-
tional vector S; as:

ét = tanh(Wc [Ct : St]), (2)

where tanh is the hyperbolic tangent function, W, is a parameter
matrix, c; denotes the context vector weighted by encoding repre-
sentations {z};—, using attention.

Finally, the probability of an APPLYRULE[c] action with embed-
ding e. at each step ¢ is:

p(a: = APPLYRULE[c] | a<¢,x) = softmax(e] W5;), (3)

where softmax is the softmax function, el denotes the transpose of
embedding e., and W is another parameter matrix. Note that RE-
DUCE is considered as a special APPLYRULE action. For the GEN-
TOKEN action, its probability is defined as:
p(a: = GENTOKEN[v] | a<t,Xx)
= p(gen | at, X)p('U | gen, at, X)
+ p(copy | ar,x)p(v | copy, ar, x),
where
p(gen | ar, x) = softmax(Ws;),
p(copy | ar,x) =1 — p(gen | at,x),
p(v | gen, ar, x) = softmax(e, W§;),
p(zi | copy, at,x) = softmax(z; W5;).
Similar to other Seq2Tree models, given a corpus (x, a), TRANX
is trained to minimize the cross entropy loss:

T
‘C’CQ(X7 aj; 0) = _Zlogp(at ‘ A<ty X 9) ’ (4)
t=1
where T is the total number of actions and € denotes parameters of
the model.

3.3 Antecedent Prioritized Loss

We extend the standard cross entropy loss (4) to AP Loss by ex-
ploiting the position information of AST traversal order. Specifically,
a scaling factor f(a,t)™" is added with respect to AST action se-
quence and the action index ¢, and the AP Loss is defined as:

T

Lop(x,2;0) = = f(a,t) "logp (a: | a<e,x;0), (5)
t=1

f(a,t) = Norm(AST2Vec(a):) (6)

Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation 569

1.0 4

— 0

0.8 4
0.6
0.4 4

e\

0.0 4

The scaling factor fla, t)"

T T T T T T
0 50 100 150 200 250
fla,t)

Figure 4: The effect of varying -y on the scaling factor f(a,t)™".

where the tunable hyperparameter v > 0, the function AST2Vec
uses Algorithm 1, and Norm(AST2Vec(a),) indicates the norm of
the vector AST2Vec(a),. The scaling factor f(a,t)”” decreases
as f(a,t) increases, which helps models down-weight actions with
large f(a,t) and thus focus training on actions with small f(a,t),
i.e., antecedent actions. The rationale for this is that, when the AST
is mapped to the corresponding vectors using AST2Vec, the vector
norm of the parent node is always smaller than that of the child node,
as shown in Fig. 3. This property enables us to prioritize training
on antecedent actions by reducing the contribution of descendant ac-
tions through the scaling factor. In summary, the hyperparameter
provides control over the weighting of different actions in our model,
and the scaling factor helps us prioritize antecedent actions by reduc-
ing the contribution of descendant actions during training.

Fig. 4 displays the scaling factor for several values of v € [0, 2].
When v = 0, the AP Loss (L.p) reduces to the standard cross en-
tropy loss (Lce). It is advisable to avoid selecting v > 1, as the re-
sulting scaling factor f(a,¢)”" can vary dramatically. For instance,
when v = 2, an action with index 10 would have a loss that is 100 x
lower than that of Lc.. This could lead models to disregard subse-
quent predictions completely, which is undesirable. To achieve a bal-
ance between the loss of antecedent and subsequent predictions, a
suitable scaling factor should be chosen. Thus, we recommend se-
lecting ~ from the range 0.1 to 0.5. It is worth noting that imple-
menting the AP Loss in code is relatively straightforward and we
provide the pseudocode of AP Loss in Fig. 5.

In practice, we insert an «-adjusted magnitude factor in AP Loss:

T
Lap(x,a;0) = faZfV logp (a¢ | a<e,x;0) . (7)

t=1

We adopt the above form in our experiments because it yields im-
provements over the non-a-adjusted form (5). Generally, o can be
chosen from positive constants.

def AP_Loss(actions_prob, actions, a, ¥):
weight = [af(actions,)7 for t in range(1, actions_prob.size()+1)]
return - weight * actions_prob.log()

Figure 5: Pseudocode for AP Loss.

4 Experiment Setup
4.1 Datasets

We conduct experiments on four public benchmark datasets as fol-
lows: GEO [41] consists of 880 US geographical NL utterances
and their corresponding code defined in lambda logical forms. ATIS
[10] is a collection of 5,410 paired flight data, which contains the
NL description of flight information and their corresponding lambda
calculus code like GEO. DJANGO [23] is a popular code genera-
tion dataset consisting of NL-annotated python2 code extracted from
Django Web framework. CONALA [37] contains 2,879 real-world
data of manually annotated NL questions and their Python3 solutions
on STACK OVERFLOW, which is more difficult because of its com-
plex and extensive code composition.
The detailed statistics of the above datasets are shown in Table 1.

Table 1: Statistics of benchmark datasets.

Dataset Examples Num Avg Length
Train Dev Test NL Code AST
GEO 600 (480) - (120) 280 7.4 19.1 19.3
ATIS 4,473 491 448 105 28.1 315
DJANGO 16000 1000 1805 141 10.6 14.4
CONALA 2,175 200 500 102 15.1 23.2

4.2 Baselines

To exhibit the effectiveness of our proposed method, we primarily
compare APT with several competitive Seq2Tree methods, which
can guarantee the syntactic correctness of generated code, as follows:

SEQ2TREE [2] uses a general attention-enhanced encoder-
decoder model to generate logical forms by conditioning output
trees.

ASN [25] outputs AST constructed by a decoder whose modular
structure is dynamically determined, parallel to the structure of out-
put trees.

COARSE2FINE [3] first generates a rough meaning sketch ab-
stracted from low-level information, and then fills in missing detail.

TREEGEN [29] uses Transformer instead of LSTM to alleviate
the long-dependency problem and adopts an AST reader to incorpo-
rate both grammar rules and AST structures.

TRANX [39] is our base model which has detailed descriptions in
Section 3.2. TRANX and TRANX" are the versions of the pre-order
and breadth-first traversals of TRANX, respectively.

ML-TRANX [33] adopts a mutual learning framework to train
models for different traversals based decodings jointly.

TRANX-RL [12] makes use of a context-based branch selector to
dynamically determine optimal branch expansion orders for multi-
branch nodes.

ASED [11] generates the current prediction with both the history
and future information using an AST structure enhanced decoder.

Following the previous work [29, 33, 12], we mainly compare our
proposed method to the SOTA Seq2Tree methods with similar pa-
rameter sizes to ensure the fairness of the comparison.

4.3 Metrics

To evaluate the effectiveness of different methods, we use two
widely-used evaluation metrics: the exact matching accuracy (EM)

570 Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation

Table 2: The performance of APT compared with various baselines.

Model GEO ATIS DJANGO CONALA
EM EM EM BLEU EM

SEQ2TREE 86.1 84.6 - - -

ASN 87.1 85.9 - - -

COARSE2FINE 88.2 87.7 74.1 - -
_TREEGEN 896 9.1 S S -

TRANX 88.8+1.0 87.6 £0.1 77.3+0.4 24.35+£0.4 2.5+ 0.7

ML-TRANX 89.2+0.6 89.3+0.3 79.6 0.3 24.4240.8 22104

TRANX-RL 89.5+1.2 89.1 £0.5 77.9+0.5 25.47 + 0.7 26+04

ASED 89.8 +1.1 88.94+0.7 79.2+0.5 25.56 £ 0.6 2.8+0.7

APT (ours) 90.4+0.8 89.84+0.7 79.6+0.5 28.02+0.7 2.9+0.7

for all datasets and the corpus-level BLEU-4 for CONALA as a com-
plement. The reason is that CONALA is a more challenging dataset
compared to other datasets, EM may be too strict and can hardly
reflect the performance of methods on it. As the AP Loss does not
impact the inference time, the execution time of each method is not
reported. It should be noted that none of the four publicly available
benchmark datasets include test cases, thus the evaluation metric of
"pass@k" is not applied.

4.4 Settings

We train our model for a maximum epoch of 80 with Adam [15]
optimizer on a single GPU of Tesla V100-SXM2-32G. To ensure
fair comparisons, we adopt the same experimental setup as TRANX
[39]. To be specific, we set the sizes of word embedding, action em-
bedding, and hidden states as 128, 128, and 256, respectively. The
beam size is set to 5 for GEO and ATIS, while 15 for DJANGO and
CONALA. According to the analysis in Sections 3.3 and 6.1, we pick
~ € [0.1,0.5] using validation set and set v = 2 for all datasets. To
mitigate the instability of the model training, we exhibit the average
performance of the model running five times.

S Experimental Results

In this section, comprehensive experiments are carried out to answer
the following research questions:

RQ1: How does the proposed APT perform compared to various
competitive and SOTA Seq2Tree methods without pre-training?

RQ2: What is the performance of different traversal methods of
the base model based on AP Loss?

RQ3: What is the performance of the base model based on AP
Loss with different forms?

RQ4: What is the performance of different Seq2Tree methods
based on AP Loss?

RQS5: How does schedule sampling compare to AP loss in dealing
with problems that help models focus on antecedent prediction?

RQ6: How does the critical hyperparameter -y in (5) affect APT?

RQ7: How does APT generate codes with the help of AP Loss?

RQI1, RQ5, and RQ7 exhibit the effectiveness of APT and AP
Loss, while RQ2, RQ3, RQ4, and RQ6 display the generality of
them.

5.1 APT vs. Various Baselines

Table 2 lists the comparison of APT and various baselines on four
benchmark datasets. With the help of AP Loss, our APT achieves
significant improvements compared with base modal TRANX [39]

across all datasets. In particular, APT relatively improves 15.1%
BLEU on CONALA dataset compared to TRANX, which demon-
strates the gain effect of AP loss. APT surpasses all TRANX variants
and other Seq2Tree models, demonstrating notable performance. It is
important to highlight that EM is a stringent evaluation metric, and
the improvements achieved by APT are more pronounce than previ-
ous works. As a result, these experimental results indicate that letting
the Seq2Tree model concentrate on the predictions of the antecedent
AST nodes during training helps code generation in inference.

i Ly
a9
50 %0
89 =0 [
: . . : y
: - .
TRANX APT

85 -
(a) GEO

TRANX APT TRANX APT TRANK APT'
: l
785
26
y -) . .

(B)ATIS
TRANX AT TRANX APT TRANX TRANX APT

(c) DJANGO (d) CONALA

Figure 6: The performance of AP Loss based on the pre-order and
breadth-first traversals of TRANX, i.e., APT and APT’. (BLEU for
CONALA and EM for other datasets)

5.2 Pre-order vs. Breadth-first Traversal

As shown in Fig. 6, the performance of APT’ (breadth-first traver-
sals of TRANX based on AP Loss) is inferior to that of APT on
all datasets, due to the difference in the respective traversal method
of the base model. A possible reason is that the breadth-first traver-
sal has some drawbacks. For example, back to Fig. 2, the attribute
of the variable is output before the variable in breadth-first traver-
sal, which increases the difficulty of prediction. Moreover, in Fig. 2,
the breadth-first traversal, compared to the pre-order traversal, pri-
oritizes the output of the Reduce actions and delays the production
of GenToken actions, which is actually evaluated by metrics such as
BLEU and EM. The code token belongs to the leaf node of AST and
is generated last in the breadth-first traversal, which dramatically af-
fects the effect. Therefore, we should trade off both antecedent and
leaf nodes in the generation. Nevertheless, both the pre-order and
breadth-first traversals of TRANX are significantly improved using

Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation 571

AP Loss. It implies that AP Loss can be applied to other reasonable
traversal orders.

adopt the hyperparameter v used for TRANX without adjusting; 2)
improved model performance is usually accompanied by better an-
tecedent predictions.

CONALA .
Table 4: EM of the different percent of AST node sequences and code
22 24 26 28 30 token sequences on CONALA.
AP Loss
DIANGO AP Loss (Simple) 5% 10% 20% 50%
Model
CELoss AST code AST code AST code AST code
ATIS TRANX 45.2 174 264 8.6 11.8 42 5.8 2.6
+ AP Loss 49.0 23.0 306 14.6 148 7.0 9.2 4.8
ML-TRANX 46.8 182 276 9.6 124 38 5.6 24
GEO + AP Loss 498 228 30.8 14.0 146 6.6 8.8 4.4
75 80 85 90 95 TRANX-RL 47.0 200 282 11.0 134 4.6 5.4 3.0

Figure 7: The performance of the base model based on AP Loss with
different forms, where AP Loss (Simple) indicates f(a,t) = tin Eq.
(5). (BLEU for CONALA and EM for other datasets)

5.3 AP Loss vs. AP Loss (Simple)

Note that f(a,t) in Eq. (5) can be any reasonable function reflect-
ing the effect of the antecedent prediction. For example, f(a,t) =t
3. We show the performance of the base model based on AP Loss
with different forms for training in Fig. 7. Remarkably, utilizing the
simplified function f(a,t) = ¢, which represents the AP Loss (Sim-
ple), still achieves a remarkable improvement compared to L. on all
datasets. This illustrates the importance of helping the model attach
importance to antecedent predictions. We also find that the effect of
using AP loss is significantly better than using AP Loss (Simple).
This is because the position of the node in the pre-order traversal
of AST only partially reflects its importance. The weight of sibling
nodes in AP Loss (Simple) can vary widely, while that of sibling
nodes in AP Loss is much smaller.

Table 3: Comparisons of Seq2Tree models and their use of AP Loss
on CONALA.

Model BLEU EM

TRANX 24.35+0.4 2.5+0.7
+ AP Loss 28.02 (1115.1%) £0.7 2.940.7
ML-TRANX [33] 24.424+0.8 22+04
+ AP Loss 27.96 £ 0.7 2.6+0.5
TRANX-RL [12] 25.47+£0.7 2.6+04
+ AP Loss 27.88+£0.6 2.7+£0.5
ASED [11] 25.56 £ 0.6 2.8+0.7
+ AP Loss 27.91£0.7 2.9+09

5.4 AP Loss with different Seq2Tree methods

We pick CONALA for the follow-up comparison of AP Loss with
two reasons: 1) Python used by CONALA has a richer syntactic
structure than Lambda code used by GEO and ATIS. 2) The aver-
age AST length of CONALA exceeds that of DJANGO by 60%.

In Table 3, we apply AP Loss to Seq2Tree models and compare
their performance on CONALA. The experimental results demon-
strate that all these Seq2Tree models achieve significant improve-
ments using AP Loss. Moreover, the effect of AP loss on four
Seq2Tree models is quite similar, probably because 1) we uniformly

5 In pre-order traversal of AST node, the parent node precedes the child node.

+ AP Loss 488 226 302 136 148 6.6 8.8 4.6

ASED 478 172 286 9.2 132 48 58 32
+ AP Loss 498 228 298 138 154 6.8 8.6 4.8

In Table 4, we test the EM of antecedent AST node and code
token sequence predictions on CONALA. The experimental results
demonstrate that Seq2Tree methods achieve higher EM on the first
5%, 10%, 20%, and 50% of AST node sequences and code token
sequences using AP Loss. It indicates that the Seq2Tree method can
obtain better antecedent predictions with the help of AP Loss.

Table 5: Comparison of schedule sampling and AP Loss on
CONALA, where p denotes the probability of using the label as input
(TRANX is equivalent to the case of p=1), ED denotes exponential
decay, e denotes the base of the exponent, and LD denotes linear
decay.

Model Test Set Training Set
BLEU EM BLEU EM
TRANX 2435 25 63.09 36.11
p=0 22.94 1.6 6144 3790

ED (e=0.9) 24.45 1.6 6522 364l
ED (e=0.99) 2559 22 7659 53.63
LD 2514 2.0 66.85 3795

+ AP Loss 28.02 29 68.52 44.35

+ schedule sampling

5.5 AP Loss vs. Schedule Sampling

Schedule sampling is a conventional method employed to address
the issue of inconsistency between the training and inference phases.
In Table 5, we compare AP Loss with schedule sampling, utilizing
TRANX as the base model. It becomes evident that schedule sam-
pling indeed results in improved performance on the training set dur-
ing the inference phase, in terms of both BLEU and EM scores. How-
ever, schedule sampling does not significantly enhance the model’s
focus on antecedent predictions, leading to a relatively minor impact
on the test set.

5.6 Effects of y

The coefficient 7y serves as a crucial hyperparameter for regulating
AP Loss. To examine the effect of v on AP Loss, we present an
analysis in Fig. 8. Optimal values for ~y are found to be 0.4 for GEO
and DJANGO datasets, and 0.1 for ATIS and CONALA datasets.
Interestingly, we observe an inverse correlation between the best v
values and the average AST length, as presented in Table 1. This can
be attributed to the fact that during the training phase, AP Loss must

572 Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation

Table 6: Case study examples on four benchmark datasets. The incorrect codes are marked in blue, while the first token of the counterparts is

marked in red.

Dataset Model NL Code
TRANX 0 X
What length is the r0?
APT (len:ir0) v/
GEO - o L ______.
TRANX What is the highest (‘argmax $0 (and (place:t $0) (loc:t $0¢c0))c0) X
o
APT clev of c0? (argmax $0 (and (place:t $0) (loc:t $0 c0)) (elevation:i $0)) ¢/
TRANX s there ground (lambda $0 e (exists $1 (ar41d (=(-arrival_time $1) $0) (‘approx_arrival_time $1 ti0) (
transport from the ap0 ground_transport $1) (to_city $1¢i0)))) X
APT into ci0 town? (1lambda $0 e (and (from_airport $0 ap0) (ground_transport $0) (to_city $0 ¢i0))) v
ATIS - —— - — - - ______ _ I T L L L I T T L .
TRANX Tell me about the type (lambda $0 e (exists $1 (and (flight $1) (= (aircraft_code $1) $0) (aircraft_code $1 ac0)))) X
APT of aircraft call an ac0. a0V
TRANX [jenoth of fist_ list_ =len(list_) + 0 X
i 9
APT equals integer 07 if len(list_) == 0: pass ¥
DIANGO - — — — — — — — o — o L __________.
TRANX close(zfile.stream()) X
Close zfile stream.
APT zfile.close() ¥/
TRANX 5 artribute str_0 print(var_0.rstrip(str_0)) X
APT from object var_0. getattr(var_0, str_0) v
CONALA - — — - o o C T L _______._
TRANX Running bash script exec() X
APT str_0. subprocess.call(str_0, shell=True) 4

0.5

\ !
VA A
\ 895 /

\
0.0 \
\ 89.0 4 /

/ \
/
/ \
/ \
\ \
\ » \
\ 3 \
1 \ S sas
kS
4 T~
- 88.0 ~~——
89.0{ —
8754

Accuracy

(a) GEO (b) ATIS
800 85
s 28,0 |
/
275 /
7.0 { /
= 270 F" \\
£ 7854 _ F /
4 il 2 es f
f
7.0 { o /
/ .
s _— x5l e
- /
4
0 250
(Y o1 02 03 o4 05 (Y o1 0z) 04 0s
v v
(¢) DJANGO (d) CONALA

Figure 8: Performance of varying - in (5) on four benchmark datasets.

appropriately increase the scaling factor f(a,t)™” by reducing ~ for
longer ASTs to prevent the neglect of later AST nodes.

5.7 Case Study

In Table 6, we present a comparison of the top-1 generated code from
TRANX and APT on various datasets. It is evident that the majority
of errors tend to occur at the beginning or in the leading part of the
code, subsequently leading to further faults. As illustrated in Table

6, TRANX is prone to producing incorrect antecedent predictions,
which poses a challenge for generating subsequent predictions while
adhering to the constraints of AST. In contrast, our proposed model,
APT, effectively mitigates the aforementioned issue by employing
the AP Loss, thereby generating more accurate code.

6 Discussion

In this section, we mainly discuss the « selection and the computa-
tional overhead of AP Loss.

6.1 The Selection of o

For continuous scaling factor f, we can keep the magnitude of L.,
equal to the magnitude of original L. using the integral, which re-
lates « to . For example, when f(a,t) = t:

T
T ify=1, ®
a=(1—-~T", otherwise.

With the help of (8), we only need to tune v, and the appropriate a
will be calculated automatically.

In Table 7, we vary « for AP Loss (Simple) with optimal . As
« increases, the general trend of the performance of APT (Simple),
i.e., the base model + AP Loss (Simple), rises and then falls on all
datasets. When « is set to ‘auto’, APT (Simple) achieves the best per-
formance in terms of EM for ATIS, DJANGO, and CONALA, and
impressive results regarding EM for GEO and BLEU for CONALA.
When we substitute the optimal + and the corresponding average

Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation 573

Table 7: Varying o for AP Loss (Simple) with optimal v, where ‘auto’
denotes « is calculated by (8).

o GEO ATIS DJANGO CONALA
EM EM EM BLEU EM
1 89.6 87.9 78.8 26.75 2.4
2 89.9 88.6 79.1 2756 29
4 88.8 87.7 78.5 25.64 2.6
8 88.9 87.3 78.3 24.93 23
‘auto” 89.7 89.5 79.3 27.12 3.4

AST length for each dataset into Eq. (8), « is 1.96 for GEO, 1.27
for ATIS, 1.75 for DJANGO, and 1.23 for CONALA, which are all
in the range of 1 to 2. Therefore, it is expected that the model works
well when « is equal to 1 and 2. These results demonstrate the ad-
vantage of using Eq. (8) to calculate o automatically when scaling
factor f is continuous. Note that Eq. (6) is not continuous, therefore
we intuitively choose the « equal to 2, which has shown excellent
performance in each dataset.

6.2 Computational Overhead

Regarding the computational overhead of AP Loss, theoretically, the
computation of AST2Vec is required with additional computational
overhead during the training stage. However, in the data preparation
stage, AST2Vec can be computed and stored while building the AST
of the training data. This allows direct utilization of AST2Vec dur-
ing the actual training stage, minimizing additional computational
load. Furthermore, in the inference stage, our method incurs no ad-
ditional computational overhead. Therefore, the additional computa-
tional overhead brought by the AP loss is very small.

7 Related Work

Recently, lots of code generation models have achieved excellent
success [9, 32, 34, 6, 31, 22,4, 13, 5, 42, 17]. The work [19] treated
code generation as conditional text generation and solved it with the
sequence-to-sequence model. In order to utilize the grammatical in-
formation of the code, the Seq2Tree models are resorted, transform-
ing NL utterances into a sequence of AST-based grammar actions.
Typically, Dong et al. [2] first explored a Seq2Tree model for code
generation. The work [25] studied a modular encoder-decoder archi-
tecture with structured AST output spaces. Yin et al. [39] proposed a
Seq2Tree model to generate AST as the intermediate representation
of codes. Moreover, the work [29] used the Transformer [30] archi-
tecture and attention mechanisms to address the long dependency
problem for code generation. The authors in [11] explored the use of
the future nodes information generated by AST for prediction. The
work [26] proposed Subtoken-TranX adopted by Alibaba’s BizCook
platform, which is the first domain code generation system adopted
in industrial development environments.

Some researchers have also noticed that the importance of each
AST node for code generation is different. Xie et al. [33] proposed
a mutual learning framework for Seq2Tree models to learn the in-
formation of AST nodes in different traversals simultaneously. The
work [12] selected the generation path of the node in AST using rein-
forcement learning. Significantly different from the above work, we
explore the impact of the position information of AST nodes during
the inference stage and propose an effective method to focus on the
more critical antecedent nodes during the training stage.

8 Threats to Validity

There are three major threats to the validity of our work.

1) Threats to external validity concern the quality of experi-
mental datasets and the generalizability of our results. First, the four
public datasets for code generation are mainstream benchmarks and
have been used in many related works [39, 40, 33, 12, 11]. Second,
AP Loss can be applied to any Seq2Tree model, and Seq2Seq mod-
els should further take into account the relationship between AST
and code to employ AP Loss. In addition, APT uses only language-
agnostic features and can be adapted to other programming lan-
guages.

2) Threats to internal validity involve the impact of hyperpa-
rameters. Deep learning models are known to be sensitive to hyper-
parameters. For the baselines, we work with the source code sup-
plied by their original papers and ensure that the performance of the
mode is comparable with their reported results. For our APT, we do
a small-range grid search on hyperparameter ~, leaving other hyper-
parameters the same as those in previous studies [39, 40]. Previous
work [39, 40] has explored effective settings of the hyperparameters
through extensive experiments. Therefore, there may be room to tune
more hyperparameters for additional improvements.

3) Threats to construct validity pertain to the reliability of our
evaluation metrics. To address this threat, we employ EM and BLEU
as evaluation metrics. EM evaluates the percentage of correctly pre-
dicted code snippets, and BLEU measures the text similarity be-
tween predictions and the ground truth. They are the mainstream
metrics for code generation and are used in most previous studies
[39, 40, 33, 12, 11]. Based on the above metrics, each experiment is
run five times, and its average result is reported.

9 Conclusion and Future Work

In this paper, we have identified the prediction of antecedent nodes
as a critical factor influencing the behavior of Seq2Tree models. To
address this issue, we have proposed an effective method, namely AP
Loss, that adjusts the standard cross entropy loss to prioritize learning
on antecedent nodes while down-weight the more susceptible subse-
quent nodes. Additionally, we have proposed an AST2Vec method
that models AST using vectors to differentiate between antecedent
and subsequent nodes. Leveraging AP Loss, APT outperforms exist-
ing Seq2Tree methods and achieves SOTA performance across four
benchmarks. Comprehensive experimental results and analyses sub-
stantiate the effectiveness and versatility of our proposed methods.

We demonstrate the efficacy of AP Loss by incorporating it into
some widely-used Seq2Tree methods. However, the performance of
APT is inherently constrained by the capabilities of the base model.
In future work, we envisage applying AP Loss to training a larger
Seq2Tree model following the method proposed by this paper, which
could potentially lead to substantially superior outcomes. Further-
more, we utilize AST2Vec to weigh AST nodes for AP Loss in this
paper, and we intend to investigate the application of AST2Vec as a
positional encoding in future research.

10 Acknowledgments

This research is supported by the National Natural Science Foun-
dation of China under Grant Nos. 62192730, 62192733, 62192731,
61751210, 62072007, and 61832009.

574

Y. Dong et al. / Antecedent Predictions Are More Important Than You Think: An Effective Method for Tree-Based Code Generation

References

(3]
(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

David Alvarez-Melis and Tommi S. Jaakkola, ‘Tree-structured decod-
ing with doubly-recurrent neural networks’, in ICLR, (2017).

Li Dong and Mirella Lapata, ‘Language to logical form with neural
attention’, in ACL, pp. 33-43, (2016).

Li Dong and Mirella Lapata, ‘Coarse-to-fine decoding for neural se-
mantic parsing’, in ACL, pp. 731-742, (2018).

Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li, Ge Li, and Zhi Jin,
‘Codescore: Evaluating code generation by learning code execution’,
CoRR, abs/2301.09043, (2023).

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li, ‘Self-collaboration code
generation via chatgpt’, CoRR, abs/2304.07590, (2023).

Yihong Dong, Ge Li, and Zhi Jin, ‘CODEP: grammatical seq2seq
model for general-purpose code generation’, in ISSTA, pp. 188-198.
ACM, (2023).

Shuzheng Gao, Xinjie Wen, Cuiyun Gao, Wenxuan Wang, and
Michael R. Lyu, ‘Constructing effective in-context demonstration for
code intelligence tasks: An empirical study’, ASE, (2023).

Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang,
Shaomeng Cao, Kechi Zhang, and Zhi Jin, ‘Interpretation-based code
summarization’, in /CPC, pp. 113-124. IEEE, (2023).

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng
Yin, Anthony Tomasic, and Graham Neubig, ‘Retrieval-based neural
code generation’, in EMNLP, (2018).

Charles T. Hemphill, John J. Godfrey, and George R. Doddington, ‘The
ATIS spoken language systems pilot corpus’, in NAACL, (1990).

Hui Jiang, Linfeng Song, Yubin Ge, Fandong Meng, Junfeng Yao, and
Jinsong Su, ‘An AST structure enhanced decoder for code generation’,
IEEE ACM Trans. Audio Speech Lang. Process., 30, 468476, (2022).
Hui Jiang, Chulun Zhou, Fandong Meng, Biao Zhang, Jie Zhou, Degen
Huang, Qingqiang Wu, and Jinsong Su, ‘Exploring dynamic selection
of branch expansion orders for code generation’, in ACL/IJCNLP, pp.
5076-5085, (2021).

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li,
‘Self-planning code generation with large language model’, CoRR,
abs/2303.06689, (2023).

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu, ‘Treebert:
A tree-based pre-trained model for programming language’, in UAI,
volume 161 of Proceedings of Machine Learning Research, pp. 54—63.
AUALI Press, (2021).

Diederik P. Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, in ICLR, (2015).

Jia Li, Ge Li, Yongmin Li, and Zhi Jin, ‘Enabling programming
thinking in large language models toward code generation’, CoRR,
abs/2305.06599, (2023).

Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu,
‘Codeeditor: Learning to edit source code with pre-trained models’,
ACM Trans. Softw. Eng. Methodol., (2023).

Jia Li, Yuyuan Zhao, Zhi Jin, Ge Li, Tao Shen, Zhengwei Tao, and
Chongyang Tao, ‘SK2: integrating implicit sentiment knowledge and
explicit syntax knowledge for aspect-based sentiment analysis’, in
CIKM, pp. 1114-1123. ACM, (2022).

Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann,
Tomés Kocisky, Fumin Wang, and Andrew W. Senior, ‘Latent predictor
networks for code generation’, in ACL, pp. 599-609, (2016).

Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin, ‘Multi-task learning based
pre-trained language model for code completion’, in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, pp. 473-485, (2020).

Fang Liu, Jia Li, and Li Zhang, ‘Syntax and domain aware model for
unsupervised program translation’, arXiv preprint arXiv:2302.03908,
(2023).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun
Deng, Shengyu Fu, and Shujie Liu, ‘Codexglue: A machine learning
benchmark dataset for code understanding and generation’, in NeurlPS
Datasets and Benchmarks, (2021).

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakri-
ani Sakti, Tomoki Toda, and Satoshi Nakamura, ‘Learning to gener-
ate pseudo-code from source code using statistical machine translation
(T)’, in ASE, pp. 574-584. IEEE Computer Society, (2015).

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun
Gao, and Michael R. Lyu, ‘Revisiting, benchmarking and exploring api
recommendation: How far are we?’, IEEE Transactions on Software
Engineering, (2021).

Maxim Rabinovich, Mitchell Stern, and Dan Klein, ‘Abstract syntax
networks for code generation and semantic parsing’, in ACL, pp. 1139—
1149, (2017).

Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, Yankun Zhen, and
Ge Li, ‘Incorporating domain knowledge through task augmentation
for front-end javascript code generation’, in ESEC/SIGSOFT FSE, pp.
1533-1543. ACM, (2022).

Eui Chul Richard Shin, Miltiadis Allamanis, Marc Brockschmidt, and
Alex Polozov, ‘Program synthesis and semantic parsing with learned
code idioms’, in NeurIPS, pp. 10824—-10834, (2019).

Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang,
‘A grammar-based structural CNN decoder for code generation’, in
AAAI pp. 7055-7062, (2019).

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and
Lu Zhang, ‘Treegen: A tree-based transformer architecture for code
generation’, in AAAI pp. 8984-8991, (2020).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, ‘Attention
is all you need’, in NeurIPS, pp. 5998-6008, (2017).

Yue Wang, Weishi Wang, Shafiq R. Joty, and teven C. H. Hoi, ‘Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation’, in EMNLP, pp. 8696-8708, (2021).
Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin, ‘Code generation as a
dual task of code summarization’, in NeurIPS, pp. 6559-6569, (2019).
Binbin Xie, Jinsong Su, Yubin Ge, Xiang Li, Jianwei Cui, Junfeng Yao,
and Bin Wang, ‘Improving tree-structured decoder training for code
generation via mutual learning’, in AAAI pp. 14121-14128, (2021).
Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu,
and Graham Neubig, ‘Incorporating external knowledge through pre-
training for natural language to code generation’, in ACL, pp. 6045—
6052, (2020).

Zhou Yang, Jieke Shi, Junda He, and David Lo, ‘Natural attack for pre-
trained models of code’, in ICSE, pp. 1482-1493. ACM, (2022).

Zhou Yang, Bowen Xu, Jie M. Zhang, Hong Jin Kang, Jieke Shi, Junda
He, and David Lo, ‘Stealthy backdoor attack for code models’, CoRR,
abs/2301.02496, (2023).

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Gra-
ham Neubig, ‘Learning to mine aligned code and natural language pairs
from stack overflow’, in MSR, pp. 476-486, (2018).

Pengcheng Yin and Graham Neubig, ‘A syntactic neural model for
general-purpose code generation’, in ACL, pp. 440450, (2017).
Pengcheng Yin and Graham Neubig, ‘TRANX: A transition-based neu-
ral abstract syntax parser for semantic parsing and code generation’, in
EMNLP, pp. 7-12, (2018).

Pengcheng Yin and Graham Neubig, ‘Reranking for neural semantic
parsing’, in ACL, pp. 4553-4559, (2019).

John M. Zelle and Raymond J. Mooney, ‘Learning to parse database
queries using inductive logic programming’, in AAAI, pp. 1050-1055,
(1996).

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin, ‘Self-edit: Fault-aware
code editor for code generation’, in ACL (1), pp. 769-787. Association
for Computational Linguistics, (2023).

Yunfei Zhao, Yihong Dong, and Ge Li, ‘Seq2seq or seq2tree: Gener-
ating code using both paradigms via mutual learning’, in Internetware.
ACM, (2023).

	Introduction
	Motivation
	APT
	AST2Vec
	Base Model
	Antecedent Prioritized Loss

	Experiment Setup
	Datasets
	Baselines
	Metrics
	Settings

	Experimental Results
	APT vs. Various Baselines
	Pre-order vs. Breadth-first Traversal
	AP Loss vs. AP Loss (Simple)
	AP Loss with different Seq2Tree methods
	AP Loss vs. Schedule Sampling
	Effects of
	Case Study

	Discussion
	The Selection of
	Computational Overhead

	Related Work
	Threats to Validity
	Conclusion and Future Work
	Acknowledgments

