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Abstract. Distinguishing epistemic from aleatoric uncertainty is
a central idea to out-of-distribution (OOD) detection. By interpret-
ing adversarial and OOD inputs from this perspective, we can col-
lect them into a single unclassifiable group. Rejecting such inputs
mid-inference will reduce resource usage. To achieve this, we ap-
ply k-nearest neighbour (KNN) classifiers to the embedding space of
branched neural networks. This introduces a novel means of addi-
tional power savings, through an early-exit reject.

Our technique works out-of-the-box on any branched neural net-
work and can be competitive on OOD benchmarks, achieving an area
under receiver operator characteristic (AUROC) of over 0.9 in most
datasets, and scores of 0.95+ when identifying perturbed inputs. A
mixed input test set is introduced, we show how OOD inputs can be
identified up to 50% of the time, and adversarial inputs up to 85% of
the time. In a balanced test environment, this equates to power sav-
ings of up to 18% in the OOD scenario and 40% in the adversarial
scenario. This allows a more stringent in-distribution (ID) classifi-
cation policy, leading to accuracy improvements of 15% and 20%
on the OOD and adversarial tests, respectively, when compared to
conventional exit policies operating under the same conditions.

1 Introduction

With the ever-increasing power of deep learning, it is becoming in-
creasingly feasible to apply its methods to a wider range of applica-
tion areas. Yet, these systems have a tendency to over-fit, cut corners
during optimisation, and make overconfident mistakes [15, 19]. This
lack of robustness becomes an issue when applied to safety critical
problems, for example, self-driving cars [17]. Because of this, the
field of robust deep learning has recently become more active [10].

Here, robustness can refer to a variety of things. We focus on deal-
ing with out-of-distribution (OOD) data and adversarial data, data
designed deliberately to fool a classification model. Assuming the
OOD input cannot be classified and the adversarial data successfully
fools the model, we can refer to these collectively as epistemically
uncertain inputs. These are inputs outside of the target distribution of
the classifier and thus induce epistemic uncertainty. In safety critical
scenarios, it could be dangerous for the classifier to process them, for
example, if a self-driving car misclassifies the moon as a traffic light
and stops the car suddenly. In such cases, rejecting the classification
may be more appropriate. Figure 1 demonstrates our concept.
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Figure 1. 1-dimensional projections of distributions in the embedding
space of neural networks. The expected embedding distributions are shown
in the left figure, and expected KNN distances in the right. The embedding
representation of OOD data is expected to be clustered away from the target
dataset. We label the uncertainty encountered in the KNN distance regions:

aleatoric is that which is close to the the training distribution, epistemic is
characterised with larger KNN distances.

In these environments, it would be better still if these inputs could
be rejected early in the inference process to save power. Branched
neural networks are a subset of neural networks with intermedi-
ate classification branches, which allow for resource saving through
early exiting at inference time [43]. The idea of robustness has sel-
dom been incorporated into the area of early exiting neural networks,
and when it has, the work has focused less on handling epistemic un-
certainty, and more on the classification performance on clean data
[24, 31]. This overlooks an important factor that OOD and adversar-
ial data introduces to the early exiting classifier: resource wastage.

In conventional models, the best case scenario is the input passes
through the model and absolute uncertainty is outputted, e.g. [37], or
a reject option is given to the classifier, e.g. [14]. In the early exiting
field, there is also an opportunity to reject these inputs early and thus
save resource usage. This is the core idea we address in this paper.

Achieving this, however, presents the challenge of distinguishing
aleatoric uncertainty, that is uncertainty due to the randomness of
the target distribution, and epistemic uncertainty, uncertainty arising
due to the data being outside of the target distribution. To address
this challenge, we use two uncertainty measures. Entropy is used to
quantify uncertainty in the aleatorically uncertain inputs, and we use
a KNN-based classifier to catch epistemically uncertain inputs, al-
lowing for distribution-aware early exiting.
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To our knowledge this is the first implementation of OOD adver-
sarial detection in early exit architectures. Furthermore, our method
works out-of-the-box, meaning no additional optimisation is re-
quired. Our contributions are as such:

e We present a study of robustness in branched neural networks,
addressing OOD robustness as well as adversarial robustness.

e We introduce an easy to implement KNN-based OOD detection
technique which can be applied out-of-the-box in branched neural
networks.

e A novel distribution-aware early exiting system is introduced,
which incorporates KNN-based OOD detection alongside con-
ventional early exit classification. Our new early exiting system
allows the classifier to save additional power through rejecting in-
puts it is not able to classify.

e A mixed input test set is introduced for distribution-aware early
exiting. Using our method, we can save up to 40% power usage or
improve accuracy by up to 20%, when compared to a conventional
early exiting policy operating under the same constraints.

2 Related Work

Producing models which give confidence aware output distributions
is one method of identifying both adversarial and OOD inputs, and
these models have been studied in great detail [12, 33, 3]. Some
methods incorporate additional data into their methodology [11, 44],
some use data augmentation/generation [30, 25, 20, 36, 41, 45],
while others use probabilistic models to adapt their loss functions
[37, 28, 6, 47]. However, all of these methods adapt the training pro-
cedure for the underlying network, whereas we aimed for a method
to work out-of-the-box, as to not incur additional optimisation costs.

There are a number of methods, like this work, which focus on the
inference process. KNN and distance metrics for anomaly detection
have been studied previously [18, 5, 26], and recently have seen use
in OOD and adversarial detection [35, 1, 39]. Furthermore, the no-
tion of rejecting classification has been studied in depth [14, 22, 4].
However, this line of work often presents a rejection at the end of
inference and so functionally is not dissimilar to methods which cal-
ibrate their outputs. One such paper uses branched neural networks to
classify data hierarchically to assist uncertainty quantification. How-
ever, the architecture chosen is not conducive to power savings due
to the exits being positioned at the end of the model [2].

Since their inception [40, 43], branched networks have remained
an integral part of the dynamic inference research community [46,
23]. More recently, like in this work, the focus has shifted to opti-
mised inference techniques for them [9, 38, 48].

Overconfidence in branched networks has recently been investi-
gated in [31]. However, the authors focus on ID data, and, while this
is important, it was outside of the scope of this work. We instead fo-
cus on a novel method for resource savings when encountering OOD
and adversarial data. Work in [24] most closely aligns with ours. The
authors train branched neural networks to be robust to adversarial at-
tacks, some of which are referred to as slow down attacks, which is
in essence what we describe in this work. However, the authors ap-
proach this problem in a different way, instead opting to classify the
data, meaning inference still requires the use of the whole network.

Branched networks offer a unique opportunity when encountering
OOD and adversarial inputs. Specifically, if they can be detected,
inference can be halted to prevent further time wastage. The existing
literature has yet to explore the idea of rejecting classification early
in the inference process, which we describe as an early exit reject.

To explore this idea, we first examine the effect of OOD and ad-
versarial inputs on pre-trained branched networks. We then explore a
detection method, which we incorporate into an existing early exiting
paradigm. Finally we analyse the results and present our conclusions.

3 Out of Distribution and Adversarial Inputs in
Branched Neural Networks

Branched neural networks are a subset of neural networks which
have intermediate classification branches. We can denote the back-
bone as a function f and each classification branch as f,(z), where
b€ {1,2,..., B}, and B is the total number of branches. Each branch
will give the softmax output vector: y,. We train these networks
through the joint optimisation of the branches, with a weighted loss
function and a target vector ¢ with K target classes:

Low(y,§) = Y wslo(ys, ) (1)
beB
K

Lo(yo,§) = D ybilog(i) )
i=1

Here in equation 1, y is the collection of branch outputs and wy
refers to a tunable weighting hyperparameter, satisfying: ZbBwbzl.
The branch loss in equation 2 is the cross entropy loss.

Using conventional methods, neural networks are often trained to
give confident classification outputs in the supervised setting. This
presents a challenge when OOD data is encountered. Whilst they
might not give results of high confidence, they do not return results
which are of low confidence. In branched neural networks, confi-
dence is often quantified for early exiting using entropy [42, 24].
To motivate the introduction of an additional classification method
for early exit rejection, we first analyse entropy probability densities
when presented with unclassifiable data, shown in figure 2.

In accordance with the benchmarks set in [50], we pass various
OOD datasets to our model: Describable Textures Dataset (DTD)
[8], CIFAR100 [27], Street View House Numbers (SVHN) [32], and
Tiny-ImageNet [29]. We use a branched ResNet18 [21], which has 3
branches spaced equidistantly, and a final exit which we call the 4th
branch. This is trained to convergence on CIFAR10 [27], achieving
an accuracy of ~ 95%. We believe our method is not specific to the
ResNet18 architecture, as existing work uses a number of architec-
tures with little variation in general behaviour [43, 24, 13].
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Figure 2. Histograms denoting the entropy probability densities for each
branch on in-distribution (ID) data and various OOD datasets.
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As indicated by the probability density graph, we find earlier
branches generally give outputs of lower confidence, except for
DTD, which gives a large quantity of high confidence outputs. As
inputs are processed further through the network, in-distribution (ID)
data is much more likely to prompt low entropy outputs than OOD
data. Importantly, however, it is difficult to distinguish these distribu-
tions in the higher entropy ranges. Therefore, entropy alone is insuf-
ficient for distinguishing ID inputs from OOD inputs. In an early ex-
iting scenario where entropy thresholds are varied at run-time, such
networks will be susceptible to confusing ID data with OOD data.

We also examine adversarial inputs, using the fast gradient sign
method (FGSM) to generate adversarial inputs [16]. This method ap-
plies a perturbation defined using the sign of the gradient, which is
multiplied by a small value € and added to the original input to create
an adversarial example. This perturbation, 7, can be defined as:

n=e¢- sign(Vzﬁ(qS,x, y))7 (3)

where L refers to the objective function of the model, ¢ the model
parameters, and x and y the input and target, respectively. Using this
for an adversarial attack generates our perturbed input Z, defined as:

T=z+mn,
In equation 3, we vary e between 0 and 0.3. At 0.3, we find the
performance of the model has degraded completely:
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Accuracy drops prohibitively when applying the perturbation to
the inputs, but the later branches handle this marginally better than
the earlier branches. To understand the effect of the attacks on en-
tropy, we analyse the entropy distributions in figure 4.
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Figure 4. Histograms denoting the entropy probability densities for each
branch on adversarial data.

Like with the OOD data, the first branch is less susceptible to giv-
ing overconfident outputs, but there is also a lot of overlap with the
adversarial inputs. Once again, this effect lessens later in the network.

Hence, we have shown in this section, in conventional early exit
policies, entropy alone is insufficient for distinguishing an ID input
from an unclassifiable one. We address the challenge of doing so in
the next section.

4 Distinguishing Aleatoric and Epistemic
Uncertainty in Branched Neural Networks

In many scenarios where machine learning is applied, the uncertainty
in the output is as important as the output itself, as it allows the user
to understand how to incorporate it into their system. Uncertainty
in machine learning can be broadly categorised into two domains:
Aleatoric and Epistemic.

Aleatoric uncertainty arises due to the natural randomness of data,
whereas epistemic uncertainty arises due to a distributional change in
the input data, meaning the input is no longer in the range in which
the model was trained. Validation and testing data should fall into
this category to some degree. However, in balanced datasets, like the
benchmarks seen in the field, this effect is not significant. For epis-
temic uncertainty we consider OOD datasets, those which are taken
from different sources and have different class labels. We also con-
sider adversarial inputs. As we show in this section, inputs which
have been sufficiently perturbed have their distribution shifted in the
latent space of the model.

When encountering OOD and adversarial inputs we have shown
conventional deep learning models are susceptible to outputting sim-
ilar predictions to those made on ID data. Hence, we wish to develop
a second method which detects these unclassifiable inputs and allows
us to classify them individually. First, we focus on OOD inputs.

4.1 Out of distribution detection

Following recent work in [39] we employ k-nearest neighbour
(KNN) classification in the penultimate layer embedding space. We
find this is a particularly appropriate method to use, since it can be
applied to any model without the need for additional optimisation.

Consider the distribution in the embedding space, training inputs
will be more tightly clustered than test inputs, but a well optimised
model should position these distributions roughly about the same
mean. OOD inputs, however, should be in a separate cluster. When
translating this to KNN distances, the training inputs will have the
lowest distances, followed closely by the test inputs, then the OOD
inputs should cluster separately from the target dataset.

To test this principle, we train a baseline 4 exit branched neural
network on a target dataset, recording the k™ nearest neighbour dis-
tances on the target data test set, and a collection of OOD datasets.
Results with the CIFAR10 target dataset are shown in figure 5.
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Figure 5. KNN embedding separation for in distribution (ID) data and

various out of distribution datasets.
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We find that there is clear separation between the datasets as the
inputs progress through the model. However, in the early branches,
this separation is minimal. Furthermore, in each branch, there is a
large amount of overlap. This separation increases further along the
inference process, and at the final exit the overlap is minimised. In
some datasets, there is sufficient separation to allow for classifica-
tion in the earlier branches. To examine this further, we analyse the
receiver operator characteristic (ROC) of OOD detection on these
branches using a KNN classifier. To generate this, we vary the posi-
tion of the classification boundary between the distributions, defining
this boundary according to percentiles of the validation distribution.

As shown in figure 5, the later branches are more effective in sep-
arating the OOD inputs from the target dataset. This is reflected in
the area under ROC (AUROC) for each branch, shown in table 1.
In the final branch, there are competitive results, considering there is
no additional optimisation taking place for OOD detection. However,
on some datasets, namely SVHN, there are competitive AUROC re-
sults on the earlier branches. For most of the datasets tested, we find
that identification performance increases further along the network.
However, we do find that for the SVHN dataset, performance is max-
imised in the second branch.

Table 1. Table showing the AUROC for each branch given different OOD
datasets. Recent benchmarks are shown, where T denotes the benchmark
which is implemented out-of-the-box, like ours. The mean and standard

deviation (mean = std) are taken over 5 runs.

AUROC
Dataset
Branch/Benchmark | ~jpapio0  sVHN DTD  Tiny-Imagenet
T 062E001  0.65£004 0.69£0.04  0.67£0.04
2 0744001  0.95+£0.01 081+£0.05  0.80-+£0.01
3 0.84+£0.01  093£0.01 0.88£0.03  0.88£0.03
4 0.85+0.01 0.88£0.02  0.90+0.02  0.89-0.01
UDG [49] 0.90 0.93 0.94 093
ARPLACS [7, 44] 0.89 091 0.91 0.89
RegMixup [34] 0.90 0.97 - 0.90
GROOD [44] 0.97 0.99 0.99 0.96
DNN [39]F . 0.95 0.95 -
DNN w/ CL[39] ; 0.99 0.99 -

These results suggest that branched neural networks, even when
trained using conventional supervised methods, are capable of dis-
tinguishing their target dataset from other OOD datasets. However,
when models are deployed into real-world situations, it is not only
OOD inputs they might encounter. In some scenarios they will en-
counter adversarial attacks, designed to deliberately confuse the
model. We consider this case in the next section.

4.2 Detecting adversarial attacks

Adversarial perturbations in the inputs present a different challenge,
since their effect on the output classification is non-binary. That is,
there is a continuous range between the unperturbed inputs and those
that are completely perturbed. Hence, some inputs, whilst being per-
turbed, are still able to be classified.

Therefore, rather than classifying the perturbed from the clean in-
puts, it is more pertinent to identify which inputs will be classified
by the model and which inputs are unclassifiable.

To analyse their distribution in the embedding space, we follow a
similar analysis to the previous section. We analyse the distributional
shift of the perturbation of the CIFAR10 dataset in figure 6.

‘We find that as the data becomes increasingly perturbed, its distri-
bution in the embedding space separates from the clean data. Much
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Figure 6. KNN embedding separation for various perturbation values of
the target dataset, ranging from e = 0 — 0.3. We represent increasing
perturbation visually by varying the distribution colours from green to red.

like the OOD data in section 4.1, the distributional shift is most evi-
dent in the later layers. However, there is a clear shift as perturbation
increases in all branches.

To further examine this, we use the same technique as in the previ-
ous section to determine the ROC curve of the model at each branch,
for each perturbation amount. We show these results in figure 7, and
we present AUROC values in the appendix.
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Figure 7. ROC curves for each branch on adversarial samples for various
perturbation values of the target dataset. In all cases, the = and y axes denote
the false positive rate (FPR), and true positive rate (TPR), respectively.

‘We find that the later branches are more successful in identifying
the lower perturbation values. However, as the perturbation increases,
the AUROC performance increases in the earlier branches, and at
the greatest value of €, we find that the first branch distinguishes the
adversarial samples most successfully.

As expected, we find that the KNN classifier does not work at low
values of €. However, at these values the performance of the model
is not prohibitively poor and the performance at greater values of €
is competitive. Hence, by treating significantly perturbed values like
OOD inputs, there is a potential to detect and reject the classification
of such inputs. We consider this scenario and the cost benefits it can
achieve in the next section.
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5 Rejecting Classification to Save Power

We have so far established that branched neural networks can detect
OOD inputs, as well as adversarial inputs. We now consider the ben-
eficial situation branched neural networks allow for: using epistemic
uncertainty to minimise resource usage. To accomplish this, we pro-
pose a multi-step modification to the conventional exit policy.

First, the aleatoric uncertainty is handled, ID domain inputs will be
processed normally, this will catch any opportunities to perform an
early exit classification. For this, we employ an entropic decision
policy on the softmax output of each classification branch. We im-
pose a classification threshold on the entropy of this output, defined
as A. If this condition is not met, we move to the epistemic uncer-
tainty quantification phase, designed to classify inputs outside of the
training distribution using the KNN distance. If this distance exceeds
a certain threshold, 4, then an early exit reject can take place. If
neither condition is met, inference moves to the next branch.

Much like work in [39], we define our KNN threshold using the
validation data distribution on the training set and use the 50" nearest
neighbour, as this empirically produces the best results. We model it
as a Gaussian distribution, and take thresholds on the KNN values
based on the percentiles of this distribution. That is, we define a clas-
sification boundary that contains ¢ of the validation distribution. We
vary this value between 1.0 and 0.9 at selected intervals.

To test OOD detection we introduce a mixed dataset, D, which
contains in equal parts ID inputs and OOD inputs. We produce these
for four OOD datasets, Describable Textures Dataset' (DTD), CI-
FARI100, Street View House Numbers (SVHN), and Tiny-ImageNet.
We then pass the dataset to our branched neural network, f. Our
distribution-aware early exiting process is detailed in algorithm 1.

Algorithm 1. Distibution-aware early exiting algorithm

for z in D:
early_exit — False
for b in B:
embedding — fp—1(z)
out — fp(x)

entropy — ent (out)

if entropy < A:
early_exit — True
pred[xz] — argmax (out)
break

knn — get_knn (embedding, train_emb)
if knn[k] > §:

early_exit — True

pred[z] — -1

break

if early_exit = False:
final_out — fg(z)
pred[z] — argmax(final_out)

Here train_emb refers to the collected train embeddings,
get_knn() a function returning the k nearest neighbours, and k the
value of k. Following work in [39], we find k=50 empirically returns
the best results. Hence, we introduce two conditions for an early exit,
increasing the opportunity for early exits to take place. To understand
the performance of models using such inference methods, we analyse
their operating ranges, much like the work in [13].

We vary the entropy threshold for classification, A, from O to the
maximum value, log(K). This is to understand the operating points
at which the model can work in the accuracy-power space, where
accuracy refers to that on the ID data and power the average MAC
operations at that particular threshold.

We also scale the KNN distance threshold, d, depending on the en-
tropy threshold. We do this between the KNN distance correspond-

1 Since DTD only has ~ 5000 input patterns, we use all of the inputs of this
dataset for OOD detection.

ing to the selected detection percentile and that corresponding to the
100™ percentile. This is so that as the classification threshold be-
comes more stringent and conservative, the KNN rejection threshold
does the same. In practice we normalise both A and §.

The operating range for OOD detection and adversarial detection
are shown in figures 8 and 9 respectively. We show the ID accuracy
against the average power usage, for a given entropy exit threshold.
A number of minimum values for § are shown. We show a conven-
tional exit policy in red, which without the early exit reject recourse
is forced to process all inputs.

By assuming the accuracy of the model represents a point of a
Gaussian, we can define the confidence interval as:

A =04/ Ad-4)

Where o represents the number of standard deviations from the
mean, n the number of samples, and A the mean accuracy. For the
following results, a o of 3 is used corresponding to a certainty of
99.7%. This value A is represented by the shaded areas surrounding
the data in figures 8 and 9.
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We find that modest gains can be achieved with OOD CIFAR100
inputs, where the exit policy can improve accuracy across the entire
power range of the model, and operate at lower power ranges when
the inference policy is at its lowest threshold. The algorithm performs
better on the other datasets. There is a clear distinction between each
inference policy threshold, across most of the MACs range. We find
that the most gains can be achieved on SVHN, with a ¢ of 0.99, there
is no drop in ID accuracy for large power savings.

On adversarial data, we find that the model has difficulty recog-
nising the adversarial inputs, at small values of €, and hence early
exiting gains are minimal. However, as € increases, the early exiting
gains become more prevalent. At e=0.3 the §=0.99 exit policy makes
significant power reduction gains across the entire accuracy range. In
both tests the 6 of 0.95 and 0.90 policies have greater power savings,
but with significant drops in accuracy.

These findings will allow the model to operate much more strin-
gent ID classification policies, when compared to the conventional
early exiting method which wastes resources on the OOD and adver-
sarial data. When the model is rejecting at most 1% of the ID sam-
ples (6 > 0.99), we do not see this reflected in the ID performance
readings. Hence, any power gain is effectively free compared to the
conventional exit policy. We analyse the performance gains of our
distribution-aware exiting process in more detail in the next section.

6 Results

Since the power savings inherently depend on the ratio of ID inputs
to unclassifiable inputs in D, it is more informative to first consider
the detection accuracy. This is shown for OOD inputs in table 2.

Table 2. OOD detection results for various OOD datasets. Relative ID
accuracy is shown, and we enter results for a number of different detection
percentile thresholds.

OOD Detection (%)

Relative ID Threshold Dataset

Performance (%) | percentile CIFAR100 SVHN DTD Tiny-Imagenet

Zero Loss 1.0 0.36+0.11 0.44+0.29 2.64+1.24 0.77£0.21

0.999 3.53+£0.72 6.12£3.12 13.29+3.19 6.59+1.06

0.995 10.09+0.53 | 19.55+4.81 | 27.06+3.19 17.12+0.92

99 0.99 13.38+1.17 | 26.66+5.58 | 32.79+3.19 22.05+1.18
0.95 12.70+0.62 | 25.59+5.43 | 29.99+£2.55 20.68+0.71

0.90 10.53£0.19 | 21.0243.92 | 21.9440.91 16.05+0.67

0.999 4.40£0.77 7.89£3.12 15.59+3.15 8.22+1.14

0.995 13.80+1.17 | 27.53+5.99 | 33.30+3.54 22.65+1.26

95 0.99 21.79+0.75 | 43.97+7.51 | 45.43+3.45 33.36+1.15
0.95 42.34+0.93 | 74.11+5.87 | 66.80+2.70 57.21+2.36

0.90 40.90+£1.22 | 72.584+5.89 | 65.49+3.24 55.75+£2.49

0.999 4.77£0.73 8.64+3.25 16.46+3.12 8.82+1.09

0.995 15.08+1.12 | 30.174+6.02 | 35.20+3.59 24.45+1.37

90 0.99 23.61+£0.90 | 47.43+7.92 | 46.87+3.54 35.70+1.06
0.95 54.43+0.93 | 85.37+3.36 | 76.8613.18 68.97+1.62

0.90 61.95+0.69 | 90.42+2.18 | 82.231+2.53 75.62+1.32

We find, as the figures in section 5 suggest, that the optimal thresh-
old depends on the allowable ID accuracy drop. However § = 0.99
operates well with little drop in performance. We define a zero loss
row, which denotes either a threshold of § = 1.0 or 100% relative ID
accuracy, detection performance is limited without a small compro-
mise in ID performance.

We find the most liberal exiting policies allow for up to 90% of the
OOD samples to be detected. Whilst a relative performance drop of
1% allows for 10-30% of the OOD inputs to be detected, depending
on the dataset. Table 3 shows similar results for adversarial data.

Since adversarial perturbation is not guaranteed to result in an in-
correct classification, like OOD data, rather than denoting the raw
detection accuracy, we detail the inference accuracy. That is, we al-
low the KNN classifier to predict the correctness of the output, as
opposed to the origin of the input.

Table 3. Adversarial detection results for selected thresholds. We show
results for a variety of relative ID accuracies.

Adversarial Detection Performance (%)

Relative ID Threshold €
Performance (%) | percentile 0.0 0.1 0.2 0.3

Zero Loss 1.0 93.264+0.29 | 30.41£1.90 | 19.814£3.32 | 23.40+8.90
0.999 93.36+0.30 | 33.374£2.19 | 32.57+8.19 | 43.48+16.57
0.995 93.5940.30 | 38.184+2.23 | 45.6448.66 | 60.631+14.24
99 0.99 93.741+0.29 | 40.5412.04 | 50.85+8.66 | 66.79+12.96
0.95 93.724+0.29 | 39.77£1.96 | 47.51+7.65 | 61.524+10.93
0.90 93.684+0.29 | 37.694+1.59 | 38.3444.97 | 47.47+7.83
0.999 93.394+0.30 | 34.144+2.39 | 35.06+8.88 | 46.68+16.78
0.995 93.754+0.29 | 40.794+2.20 | 51.374+8.67 | 67.23+13.16
95 0.99 94.124+0.29 | 45.83+1.88 | 60.47+£7.38 | 76.791+9.34
0.95 95.30+0.27 | 58.47+2.24 | 76.93+5.32 | 90.71+3.39
0.90 95.214£0.25 | 57.704£2.10 | 75.964+5.52 | 90.11+3.72
0.999 93.40+0.29 | 34.36+2.38 | 35.6848.95 | 47.34+16.79
0.995 93.81+0.29 | 41.524+2.21 | 52.75+8.69 | 68.79£12.71
90 0.99 94.2240.27 | 46.97+1.97 | 62.224+7.09 | 78.51+8.53
0.95 96.204£0.17 | 66.26+1.81 | 84.374+3.66 | 94.72+2.18
0.90 96.88+0.23 | 71.15+1.93 | 87.96+2.88 | 96.41+1.51

We again find a §=0.99 is the most effective. There is very little
drop in relative performance at an e of 0.0, which is likely due to
the base classifier achieving ~95% accuracy. However, this perfor-
mance drops as e increases, before rising again. At higher perturba-
tion levels, we find over 30% of these inputs can be classified, with
no performance drop in the classifier. Allowing a 1% drop increases
this detection accuracy to ~80%. Detection accuracy peaks at ~86%
when relative performance is at 90%.

To better understand the performance gains this gives rise to, we
analyse the power savings and accuracy benefits from the operating
range curves shown in figures 8 and 9. We can record accuracy in-
creases, and power increases, by taking the difference in these values
from the figures. This is demonstrated in figure 10.

Figure 10. Accuracy
change is denoted by
the distance between

the curves on the y axis,
and power improvement
by the difference on the

x axis. The shaded area

represents the
improvement made over
the conventional
algorithm.

Accuracy

APower Exiting Algorithm
Conventional
—— Distribution Aware

Power usage

We record the maximum increases in each of these metrics for our
exit policies. These values are shown for OOD data and adversarial
data in tables 4 and 5, respectively.

For OOD data we find the highest peak accuracy gains are made in
6=0.99 and §=0.95 thresholds, depending on the dataset. It should be
noted, however, that from figure 8 it is evident the 6=0.99 policy can
make similar accuracy gains without moving far from the maximum
accuracy of the base model. Peak performance gains are achieved by
the least stringent detection threshold: §=0.90. But, accuracy values
show this is at the expense of decreased ID performance.

In the adversarial test, we find that the top performing detection
threshold is dependent in some part on the test data. In this exper-
iment, the §=0.995 threshold is marginally better than the §=0.99
threshold. Once again, in figure 9, it is evident the 0.99 policy makes
similar accuracy gains without compromising maximum ID accu-
racy. Peak gains are again achieved by the least stringent detection
threshold: §=0.90, at the expense of decreased performance.

All recorded results throughout the paper were averaged over 5
runs of the experiment, each trained from random initialisations. Re-
sults using CIFAR100 as the ID dataset are shown in the appendix.
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Table 4. Peak improvements made by the early exiting algorithm on D, for
a number of different OOD datasets, when compared to conventional early
exiting algorithms. We compare a number of different detection thresholds,

peak accuracy and power improvements are shown. We highlight the best
performing values for each dataset.

Peak Improvement (%)
Dataset

Detection

Threshold | I™Provement | cipapigg SVHN DTD Tiny-Imagenet
0 Acc 0.18£0.01  0.23£0.19 _ 1.00£0.52 0.45£0.18
’ Power 0.08+0.03  0.114£0.07  0.80£0.39 0.20+0.06
0.999 Acc T97£051  403£250  483%138 3.92£0.66
Power 0754£0.12  1.62+1.04  2.41+0.57 1.49+40.25
0.995 Acc 569£0.55 10.96£3.04 8.97£0.76 9.35£0.96
i Power 2794025  6.1342.05  578+0.57  4.76:+0.57
0.9 Acc 8561060 13911227 10.7410.50  11.8710.94
: Power 48440.19 10244231  8.44+0.37 7.64:£0.67
0.95 Acc 9.04E1.60  7.20£1.68  9.06£1.59 824E2.04
: Power 14774040  24.43+147  185240.59  19.62+1.20
0.9 Acc 0751224 480236 089£203  -1.81£1.66
: Power 22.67+£0.66 31444191 2530+0.63  27.72:£1.26

7 Conclusions

This paper considers a key idea in the robustness space for neural
networks: distinguishing uncertainty of epistemic origin, from that
of aleatoric origin. We introduce KNN classifiers to branched neural
networks in order to detect OOD and adversarial inputs, that is, in-
puts they are not equipped to classify. This allows for an additional
avenue of resource savings in these systems: early exit reject.

We present extensive experimentation on pre-trained branched
neural networks and motivate the detection of such samples. Our pro-
posed approach functions on a number of benchmark OOD tests and
on FGSM adversarial attacks. AUROC results are competitive, given
the out-of-the-box nature of our method.

A novel early exiting algorithm is detailed, which allows for early
exit rejects. To show the entire operating range of the model, we vary
the classification and rejection thresholds in unison. This allows us
to understand the performance gains our exiting algorithm can make
over conventional methods, recording the peak gains.

We show up to ~90% of OOD data can be detected and rejected
using our methods. When compared to conventional early exiting
methods under the same resource constraints, we show this can lead
to a ~15% accuracy improvement, or a ~30% power improvement.

We also find that substantial performance gains can be achieved
through detecting adversarial inputs. We instead consider the final
model accuracy as our detection target and find we can detect up to
~95% of these inputs. Comparing to a conventional exiting method
under the same constraints, we find our exiting algorithm records ac-
curacy improvements of ~20% or power saving of ~40%, depend-
ing on the strength of the adversarial attack. We find our algorithm is
better at detecting the stronger adversarial attacks.

Future work will investigate applications to more advanced adver-
sarial attacks, more advanced detection techniques, and robustness-
aware optimisation of the network backbone.”
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Table 5. Peak improvements made by the early exiting algorithm on D, for
a number of different e values, when compared to conventional early exiting
algorithms. We compare a number of different detection thresholds, peak
accuracy and power improvements are shown.

Peak Improvement (%)

Detection Improvement €

Threshold 0.0 0.1 0.2 0.3
1.0 Acc 0.00£0.00 0.66+0.34 5.31+£3.04 9.24+5.39
: Power 0.00=£0.00 0.31+0.15 3.07+1.85 6.99+4.48
0.999 Acc 0.16£0.01 4.14£1.77 12.64+3.45 15.44+£4.10
Power 0.14+0.00 1.61+0.75 7.63+3.73 13.06+5.82
0.995 Acc 0.62+0.08 8.67+1.28 15.90+1.83  16.52+1.95
Power 0.70+0.01 4.44+1.10 14.23+4.05 21.784+5.13
0.99 Acc 1.52+0.14  10.88+1.12 1546+1.83 15.11£2.01
i Power 1.37+£0.01 6.87+1.18 18.2243.68  26.1143.95
0.95 Acc 3.34+0.36 8.61+1.98 5.90+2.64 4.16£1.74
Power 6.42+0.04 17.51+1.35  30.014+2.58  35.74+1.69
0.90 Acc 1.05£1.00  -1.51£223  -6.75+1.49  -6.75+1.49
: Power 12.20+0.11  25.46+1.51 36.39+1.75  40.33+0.84
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