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Abstract. Calibration is paramount in developing and validating
Machine Learning models, particularly in sensitive domains such
as medicine. Despite its significance, existing metrics to assess cal-
ibration have been found to have shortcomings in regard to their
interpretation and theoretical properties. This article introduces a
novel and comprehensive framework to assess the calibration of Ma-
chine and Deep Learning models that addresses the above limita-
tions. The proposed framework is based on a modification of the
Expected Calibration Error (ECE), called the Estimated Calibration
Index (ECI), which grounds on and extends prior research. ECI
was initially formulated for binary settings, and we adapted it to
fit multiclass settings. ECI offers a more nuanced, both locally and
globally, and informative measure of a model’s tendency towards
over/underconfidence. The paper first outlines the issues related to
the prevalent definitions of ECE, including potential biases that may
arise in the evaluation of their measures. Then, we present the results
of a series of experiments conducted to demonstrate the effective-
ness of the proposed framework in supporting a more accurate un-
derstanding of a model’s calibration level. Additionally, we discuss
how to address and potentially mitigate some biases in calibration
assessment.

1 Introduction

Calibration [22], which is a Machine Learning (ML) model’s ability
to provide confidence scores that accurately represent the true likeli-
hood of the outcomes (which, hence, can be interpreted as probabil-
ities), is a multifaceted concept that demands a thorough evaluation,
encompassing the assessment of average performance, identification
of miscalibrated regions within the probability space, and determina-
tion of the model’s over- or under-confidence. Such a comprehensive
evaluation is of paramount importance in practical applications, par-
ticularly in decision-making and critical settings [8, 4]: indeed, inac-
curate calibration can result in significant prediction errors and mis-
lead decision-makers who rely on the confidence scores associated
with these predictions to make decisions [17, 12]. Machine Learn-
ing and Deep Learning (DL) models greatly benefit from adequate
calibration for several reasons:

1. For the instance-level accurate estimation of the class precision
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or positive predictive value for each class (the probability that
each class would actually be the correct class if the model chose
it for its classification), especially when this information can af-
fect/prime human decision making [2];

2. For accurate prediction (classification and regression) itself, espe-
cially in settings of automatic decision making [2, 22] and when-
ever, in classification, low calibration regards the neighborhood of
the cutoff point and, in regression, confidence scores approximate
risk estimates in risk stratification and alternatives ranking;

3. For the correct reputation of the model or the assessment of its ac-
tual capacities in normative and regulatory settings to demonstrate
trustworthiness and transparency [26];

4. For an accurate recalibration process [12], aimed at improving the
model calibration level.

Despite the impact of this quality dimension on model perfor-
mance and actual reliability, still, relatively low attention has been
paid to its comprehensive assessment, which is usually accomplished
by means of a number of alternative metrics (chiefly among them,
the Brier score [6] and the Expected Calibration Error (ECE) [16]),
that, despite their popularity, present several shortcomings [19, 21].
These mainly concern their interpretability [11, 23] (in terms of non-
linear scales or measurand factors, as for the Brier score), consistency
[19, 21] (undermining comparisons and benchmarking) and compre-
hensiveness [3] (when they do not account for local calibration, that
is for levels of calibration in the surroundings of relevant portions of
the probability space or bins).

In this article, we present a set of complementary metrics, namely
estimated calibration indices, that address these shortcomings. These
are incorporated into a comprehensive framework and associated on-
line tool1. In what follows, we will describe this framework and the
encompassed metrics by presenting their formal derivation and then
illustrating their strengths (w.r.t. state-of-the-art metrics) in experi-
ments in binary and multiclass classification tasks. In particular, our
main contributions are as follows:

• We introduce a modification of the ECE, called Estimated Calibra-
tion Index (ECI), which provides a more informative and nuanced
measure of a model’s calibration performance for both the binary
and multiclass settings;

1 http://calibrationassessment.pythonanywhere.com
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• We compare the proposed ECI with the two main variants of ECE,
and we empirically show that our proposed measure provides a
better estimation of the true calibration error.

• Finally, we present a series of experiments that showcase the ben-
efits of our proposed framework in supporting a more accurate
understanding of a model’s calibration level.

Thus, by providing a more comprehensive view of a model’s cal-
ibration and ensuring a more accurate representation of the model’s
performance across all classes and regions of the probability space,
our proposed framework facilitates better-informed decision-making
based on the model’s predictions, especially in a multiclass setting
where a deeper understanding of the calibration behavior for each
class is crucial.

2 Measuring Calibration

In this section, we first formally define the notion of calibration in
ML; then, we introduce the main state-of-the-art metric for the as-
sessment of a model’s level of calibration, namely the Expected Cal-
ibration Error (ECE), and discuss its shortcomings.

2.1 Definition of Calibration

In the literature, two definitions of calibration can be distinguished
[7, 23, 21]: weak and strong calibration. Formally, let g : X →
Δ(Y) be a probabilistic model, where Δ(Y ) denotes the probability
simplex over the finite set of classes Y: we denote with gy(x) the
predicted probability of class y for a given input X given by the
model g. Then, we define:

• Weak Calibration: A model is considered weakly calibrated if it
satisfies the following equation:

P

[
Y = argmax

y
gy(X) | max

y
gy(X)

]
= max

y
gy(X) (1)

In Equation (1), the confidence scores are represented by
maxy gy(X).

• Strong Calibration: A model is considered strongly calibrated if it
fulfills the following equation:

P [Y = y | g(X)] = gy(X) (2)

Intuitively, a strongly calibrated probabilistic model ensures that
the predicted confidence scores gy(x) accurately represent the proba-
bilities of all classes y [7]. Unlike weak calibration, which only guar-
antees the reliability of the highest predicted confidence score, strong
calibration allows users to trust the confidence scores for all classes,
as they accurately reflect the corresponding outcome probabilities.

2.2 Expected Calibration Error

The Expected Calibration Error (ECE) is one of the most common
metrics used for quantifying a model’s level of calibration. This met-
ric was initially proposed in [16] and is based on the binning of pre-
dictions. Consider a dataset S partitioned into H bins, denoted as
SH = {Sh}Hh=1. In the binary setting, the ECE is defined as:

ECE =

H∑
h=1

P (h) · |oh − eh| (3)

In Equation 3, H represents the number of bins used for discretizing
the continuous [0, 1] range of probabilities, P (h) denotes the fre-
quency of h-th bin’s w.r.t. the total observations, oh is the frequency
of the positive class in the h-th bin, while eh = 1

|Sh|
∑

x∈Sh
g(x)

is the average predicted confidence score within the h-th bin. These
two values are used to compute the difference between the predicted
probabilities and the observed (true) probabilities for each bin. For-
mally, the ECE ranges in the domain [0, 1], where the value 0 denotes
perfect calibration. The ECE metric was extended to multiclass set-
tings by [12], through the following formula, that we term accuracy-
based ECE:

ECEacc =
H∑

h=1

P (h)|acc(Sh)− conf(Sh)| (4)

Here, Sh denotes the set of examples in the h-th bin, acc(Sh)
denotes the model accuracy on the instances in the h-th bin (i.e.,

acc(Sh) =
|{(x,y)∈Sh| argmaxy′∈Y g(y′)=y}|}

|Sh| ), and conf(Sh) rep-
resents the average maximum confidence score for examples in the
h-th bin (i.e., conf(Sh) = 1

|Sh|
∑

x∈Sh
maxy∈Y gy(x)). The main

drawback of ECEacc is that it refers to the definition of weak cal-
ibration due to its exclusive reliance on the predicted class’s prob-
ability and its disregard for the model’s accuracy for the remaining
K-1 class probabilities. To address this, [17] introduced an alterna-
tive formulation of the multiclass ECE that is more aligned with the
notion of strong calibration, called Static Calibration Error (SCE):

SCE =
1

K

K∑
k=1

H∑
h=1

P (h)|acc(h, k)− conf(h, k)| (5)

In Equation 5, acc(h, k) represents the accuracy of the model on
instances in bin h that belong to class k, while conf(h, k) indicates
the average confidence for the instances in the same bin and class. In
contrast with ECEacc, SCE reflects the notion of strong calibration
more accurately. As such, it ensures that a value of zero would be met
only by perfectly calibrated models w.r.t. all considered classes. As
the SCE is based (similarly to the binary ECE) on the actual classes’
frequencies, in the following, we will refer to this metric (as well as
to related ones) with the term frequency-based ECE, denoted with
ECEfreq .

2.2.1 Limitations of the ECE

The ECE is a widely used method for evaluating the calibration of a
classifier, but it has several limitations. As we will show later, as it
is currently constructed, one limitation of the ECE is that it does not
analyze the problem locally, nor does it differentiate between over-
confident or under-confident predictions. By locally, we refer to an
analysis that delves into specific regions of the predicted probabil-
ities: since the ECE, by definition, does not allow such an analy-
sis, it does not adequately assess calibration performance across dis-
tinct probability intervals, potentially overlooking disparities across
those intervals. As a consequence, the ECE is not informative enough
to identify localized mis-calibrations, which could prove critical in
some applications or domains. Most remarkably, however, we note
two other inherent limitations of the ECE. First, there is a conflict
(also noted in [21]) in the definitions of the original formulation of
the ECEfreq and the currently more widely adopted formulations
of theECEacc: indeed, these two formulations refer to two different
properties of models (namely, empirical frequency and accuracy), as
well as to two different notions of calibration (namely, strong and
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weak). Second, the estimation of ECE is known to be severely af-
fected by the selection of the binning scheme [19]. Let the bias of the
ECE be defined as Δ = E − �(ECE), where E is the true calibra-
tion error. Previous work [19] has shown thatΔ is generally different
from 0, meaning that ECE is a biased estimator of the true calibration
error. The error is strongly dependent on the choice of the number of
bins used to compute the ECE2.

3 A Comprehensive Framework for Calibration
Assessment

As we noted in the previous section, despite its popularity, the ECE
is affected by several limitations. As we will show in the following
by means of an extensive experimental assessment, these imply that
the ECE is only able to offer a partial understanding of a model’s
calibration, particularly in multiclass settings.

In this section, we introduce our main proposal, which consists of
an encompassing framework that, by incorporating five different in-
dices that reflect as many aspects of the calibration of an ML model,
aims at addressing the above limitations.

Our framework starts from an alternative formulation of the ECE
for binary settings, called Estimated Calibration (EC). This formula-
tion, which we recently proposed in [3], considers the normalized L2
distance (rather than the L1 employed in the ECE) between the true
positive rate and the mean confidence scores. The main advantage of
this choice is that the L2 distance assigns more weight to larger devi-
ations and less weight to smaller deviations [5]: this property can be
useful in certain applications where minimizing the impact of outliers
on the overall calibration error is important [13]. Here we discuss the
extension of this metric to the multiclass setting. We propose, in par-
ticular, five different indices (called, Estimated Calibration Indices
(ECI)) for the evaluation of a model’s calibration: a local index that
evaluates the model’s calibration w.r.t. a specific, relevant portion of
the probability space; an under-estimation index (and, complemen-
tarily, an over-estimation one), that measures the model’s general
tendency toward underconfidence (resp., overconfidence); an index
of the general trend toward overconfidence or underconfidence.; and,
finally, a global calibration index that allows assessing the overall
level of calibration of an ML model by piecing together the above
indices. By considering all these factors, our proposed framework
facilitates a deeper understanding of the model’s calibration and en-
ables targeted adjustments to improve its performance. We share our
code as open-source and make it available on GitHub 3.

3.1 Estimated Calibration Index

In this section, we define the proposed framework and the met-
rics it encompasses, namely: a local calibration index, ECIl, which
can be applied to analyze different regions of the probability space
separately; an over-confidence, ECIover , and under-confidence,
ECIunder calibration index, that measures the global tendency of
the model to over- or under-estimate the real probability distribu-
tion of labels; and two global calibration indices, ECIglobal and
ECIbalance, that measure the overall calibration of an ML model,
either in absolute terms or as an indicator of an overall tendency

2 On the other hand, and remarkably variance of the ECE has been observed
to be relatively insensitive to the formulation (i.e.,ECEfreq vs.ECEacc)
and the number of bins used, see, e.g., [19].

3 The code and the corresponding Appendix can be accessed at:
https://github.com/lorenzofamiglini/CalFram

towards over- or under-confidence. More in particular, first, we re-
call the formulation of the Estimated Calibration Index (ECI) for the
binary setting, as originally introduced in [3]; then we discuss the
extension of the ECI to the multiclass setting.

3.1.1 Local Estimated Calibration Index

Consider a dataset S, and a partition of S into H bins, denoted as
SH = {Sh}Hh=1. A classifier g is employed to determine a collection
of calibration points, i.e., the sequence {(eh, oh)}Hh=1, where eh and
oh are defined as in the previous sections. Intuitively, a calibration
point corresponds to a point on the reliability curve determined by
classifier g: the more calibrated g is, the closer the calibration points
will be to the main diagonal of the reliability diagram and the lower
the calibration error. The definition of the ECI as a global calibration
measure is based on the computation of the calibration level at the
level of individual bins, referred to as local ECI for bin h (denoted as
ECIhl ). Intuitively, ECIhl is defined as the normalized L2 distance
between the calibration point ph = (eh, oh) and the point p∗h on the
bisector line that is closest to ph: This distance is then normalized
by the maximum distance from the bisector and the corresponding
distance between the x-axis of the reliability diagram [9] and the bi-
sector passing through the predicted confidence score.

The bisector line is mathematically represented as a one-
dimensional vector space, denoted by b = 1√

2
(1, 1). The projection

of the point ph onto this bisector line, represented by p∗h, is computed
utilizing the equation:

p∗h = 〈b, ph〉b (6)

where 〈·, ·〉 denotes the inner product and | · |2 represents the Eu-
clidean norm. The distance between ph and p∗h is defined as:

dh = |ph − p∗h|2 (7)

To normalize the dh values, we define a point p̃h = (eh, õh) where

õh =

{
1 eh ≤ 0.5,

0 otherwise
(8)

Let p̃h be the point with its first component equal to eh and the max-
imum distance from the bisector line. We then define p̃∗h = 〈b, p̃h〉b,
and dmax

h as the maximum distance between p̃h and p̃∗h:

dmax
h = |p̃h − p̃∗h|2 (9)

The local ECIl on bin h can thus be formally defined as:

ECIhl = 1− dh
dmax
h

(10)

The local ECI quantifies calibration within a bin by computing the
distance of a calibration point from the bisector line.

3.1.2 Global Estimated Calibration Index

We can extend the local ECI to the whole H-binning SH to ob-
tain a global calibration measure. First, we partition SH into S−

H =
Sh : eh > oh and S+

H = Sh : eh ≤ oh. S−
H represents the set of

bins for which the corresponding calibration point lies below the bi-
sector line (corresponding to overconfidence). In contrast, S+

H rep-
resents the set of bins for which the corresponding calibration point
lies above the bisector line (corresponding to underconfidence). We
can then define two ECIs which refer, respectively, to under- and
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over-confidence, as well as a summative index of over- vs. under-
confidence, as:

ECIunder(SH) =

∑
Sh∈S+

H
P (h) ∗ ECIhl∑

Sh∈S+
H
P (h)

(11)

ECIover(SH) =

∑
Sh∈S−

H
P (h) ∗ ECIhl∑

Sh∈S−
H
P (h)

(12)

ECIbalance(SH) = ECIover(SH)− ECIunder(SH) (13)

Finally, based on the u and o indices, we can define an overall metric
of calibration that we call the Global ECI:

ECIglobal(SH) =

∑
Sh∈SH

P (h) ∗ ECIhl∑
Sh∈SH

P (h)
(14)

The ranges of ECIglobal and ECIbalance are, respectively, [0, 1]
and [−1, 1]. The globalECIglobal measures a classifier’s calibration
on a dataset relative to an H-binning, representing the average nor-
malized deviation from perfect calibration. In contrast, ECIbalance

indicates the model’s tendency to over- or under-estimate proba-
bilities. A positive ECIbalance suggests overestimation, a negative
value implies underestimation, and zero means balanced confidence.
We remark that the ECIglobal is related to the ECE, indeed it can
easily be shown that ECE =

∑
Sh∈SH

√
2 · dmax

h · P (h) · (1 −
ECIhl ). Thus, the ECIglobal acts as a normalized, alternative def-
inition of the ECE, offering enhanced interpretability through uni-
form scaling across bins. This consistency allows for easier interpre-
tation and potentially better understanding, unlike the ECE’s variable
range.

3.1.3 Multiclass Generalization

In this work, we extend theECI to the multiclass settings by follow-
ing the class-wise method [12, 17]: the local ECI (ECIl) is defined
for each separate class K. Formally, let k be a class:

ECIh,kl = 1− dk,h
dmax
k,h

, (15)

where dk,h and dmax
k,h are defined as in Eqs. (7) and (9), but relative to

class k, obtained by performing a one-vs-rest transformation of the
original dataset. This formulation allows us to identify which bins
and classes the model performs poorly and hence may help imple-
ment localized re-calibration strategies.
Based on the above formulation, the class-wise global
ECICW,global(SH) is defined as follows:

ECICW,global(SH) =
1

K

K∑
k=1

ECIkglobal, (16)

while the class-wise ECICW,bal(SH) is defined as:

ECICW,bal(SH) =
1

K

K∑
k=1

ECIkbalance, (17)

where ECIkglobal (resp., ECIkbalance) denotes the global (resp., bal-
anced) ECI for class k.

As we will show in the following section, the proposed frame-
work offers a more detailed analysis of model calibration, particu-
larly in multiclass settings, allowing for a more granular evaluation

of the model’s calibration: this allows to gain additional insight into
the model’s performance for each class, enabling the identification
of poorly calibrated regions for further investigation and improve-
ment. Thus, through the proposed approach, we aim to provide a
more robust and informative calibration framework for assessing the
performance of machine learning models in various applications.

4 Evaluation Experiments

In this section, we present the results of two experiments conducted
to evaluate our proposed measure (ECI) compared to the state-of-the-
art metrics (ECEacc and ECEfreq) and to illustrate the usefulness
of the proposed calibration framework. One set of experiments is
aimed at showcasing that ECI has a lower bias than ECE. The sec-
ond series is aimed at demonstrating that ECI allows the discovery of
relevant but opposite local miscalibrations, which cancel out and are
hidden in global scores but may undermine the model performance
or interpretability. Thus, in the first set of experiments, we exploited
a synthetic dataset to estimate the bias of both metrics, that is, their
deviation from the true calibration error. In the second set of experi-
ments, instead, we utilized two real datasets to investigate the impact
of global versus local evaluation of model calibration.

4.1 Bias Comparison: ECI vs. ECE

The following section outlines the experiments aimed at assessing
the bias present in the ECIglobal and ECE scores by calculating
them on synthetic data that had been generated by Algorithm 1. This
method has enabled us to determine the bias of either metrics under
different scenarios, such as class imbalance and noise.

We conducted two experiments: one for binary settings and one for
multiclass settings (with five classes). We generated 1,000 to 3,000
synthetic data points with 5 to 15 features: we considered, in par-
ticular, different levels of feature noise, class imbalance, and model
accuracy to simulate real-world scenarios and evaluate the proposed
metric performance under various conditions. We executed 1,000 ex-
periments for each setting and model, resulting in a total of 8,000
evaluations of the metrics against the true calibration error.

We trained multiple classifiers on the synthetic datasets, includ-
ing Logistic Regression (Logit), Support Vector Machines (SVM),
Random Forest (RF), Decision Tree (DT), Multi-Layer Perceptron
(MLP), X Gradient Boosting (XGBoost), Naive Bayes (NB), and K-
Nearest Neighbors (KNN), to analyze calibration measures’ perfor-
mance across different model architectures.

The use of synthetic data allows us to establish a theoretical prob-
ability relationship between the characteristics, X , and the objective
variable, Y , which in turn enables us to assess the bias of calibra-
tion measures accurately. We analyzed the metrics systematically by
grouping the evaluation based on task type (binary and multiclass)
and further classifying them according to each model.

As previously stated, both ECI and ECE rely on the discretiza-
tion of the confidence scores space (i.e., bins). To determine the ideal
number of bins for these experiments, we used the Monotonic Sweep
Method (with equal mass) [19] to minimize any potential bias and
obtain a more unbiased comparison of the metrics.

4.1.1 Evaluation Criteria

To evaluate the bias of the proposed metric, compared to ECE, we
present multiple assessment criteria to accurately quantify its behav-
ior across various scenarios. This approach allows us to comprehend
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better the extent to which the metric approximates the true empirical
calibration error.

• Estimated True Error (E): The estimated true error is the av-
erage absolute difference between the true class probabilities
Ptrue(Yi|Xi) and the predicted class probabilities Ppred(Yi|Xi):

E =
1

N

N∑
i=1

|Ptrue(Yi|Xi)− Ppred(Yi|Xi)| . (18)

• Expected Calibration Error (ECE): we consider two versions
of the ECE, calculated, respectively, based on ECEacc and
ECEfreq .

• Estimated Calibration Index (ECIglobal): To facilitate compar-
ison with the estimated error E , we employed 1 − ECIglobal as
the metric for assessing calibration performance.

Our primary goal was to determine which metric most accu-
rately approximates the true calibration error E under varying per-
formance conditions (in terms of balanced accuracy). To accom-
plish this, we implemented two distinct evaluation methodologies:
The first method involved quantifying the mean and 95% confidence
interval for the difference between E and each metric (i.e., bias de-
noted asΔ). The second evaluation method, instead, provides a qual-
itative assessment by projecting the empirical error onto a diagram
that plots the true error E on the y-axis against the empirical error on
the x-axis4.

4.1.2 Synthetic Data Generation & Evaluation

This section outlines the procedure for generating synthetic data
to assess the proposed metric’s performance under various condi-
tions. The steps involve creating datasets with different characteris-
tics, such as noise and class imbalance, as detailed below:

1. Generate a synthetic dataset X ∈ �nsamples×mfeatures by sam-
pling from a multivariate normal distribution:

X ∼ N (μ = 0,Σ), (19)

where Σ ∈ �mfeatures×mfeatures is a covariance matrix with
diagonal elements equal to 1 and off-diagonal elements equal to
correlation. The Cholesky decomposition is used to create cor-
related samples [18].

2. Calculate the conditional probabilities of the classes Y given the
features X:

• For the binary task:

P (Y = 1|X) =
1

1 + exp(−XW )
, (20)

where W ∈ �mfeatures is a random weight vector sampled
from a multivariate normal distribution, i.e., W ∼ N (μ,Σ).

• For the multiclass task:

P (Y = k|X) =
exp(XWk)∑kclasses

i=1 exp(XWi)
, k = 1, . . . , kclasses,

(21)
where W ∈ �mfeatures×kclasses is a random weight matrix
∼ N (μ,Σ).

4 The visualization was categorized by model type and task for a thorough
analysis of metric performance in approximating true calibration error. We
evaluated ECIglobal as 1− ECIglobal, representing the error.

3. Create the ground truth Y :

Yi = argmax
k

P (Y = k|Xi), i = 1, . . . , nsamples. (22)

4. Add noise to the features X to create a noisy dataset Xnoisy:

Xnoisy = X + noise×N (0, I), (23)

where I ∈ �mfeatures×mfeatures is the identity matrix.
5. Create an imbalanced dataset Xrebalance and Yrebalanced by sep-

arately sampling each class according to the specified imbalance
ratios r1, . . . , rkclasses .

Building upon the synthetic data generation process detailed ear-
lier, we now present the algorithm that integrates the various steps
and evaluates the performance of different models on the generated
data. We introduce the following notation: G(n,m, μ,Σ) generates
a n×m synthetic dataset X from a multivariate normal distribution
with mean μ and covariance matrix Σ. C(X, k) calculates the con-
ditional probabilities p of classes Y given features X . I(X,Y, p, r)
creates re-balanced dataset Xrebalanced and Yrebalanced based on
imbalance ratio r. S(X,Y, p) splits the dataset into training and test
setsXtr, Xts, Ytr, Yts, and corresponding class probabilities ptr and
pts. Having detailed the steps involved in synthetic data generation,
we now present an algorithm that encapsulates the entire process,
from data generation to model evaluation.

Algorithm 1 Synthetic Data Generation and Evaluation
1: procedure SYNTHETICDATA(n,m,Σ, ν, N )
2: for j = 1, . . . , N do
3: Xj ← G(n,m, μ,Σ)
4: Yj , pj ← C(Xj , k)
5: Xj ← Xj + νj · N (0, 1)
6: rj ∼ U(.05, .5) � Sample r from uniform distribution
7: Xj,i, Yj,i, pj,i ← I(Xj , Yj , pj , rj)

8: Xtr
j,i, X

ts
j,i, Y

tr
j,i , Y

ts
j,i, p

tr
j,i, p

ts
j,i ← S(Xj,i, Yj,i, pj,i)

9: for m ∈M do � M models
10: θj,m ← argmin

θj,m

L(Xtr
j,i, Y

tr
j,i) � Training

11: Ŷ ts
j,i, p̂

ts
j,i ← gθj,m (Xts

j,i) � Prediction

12: Ej,i,θj,m
← e(Y ts

j,i, Ŷ
ts
j,i, p̂

ts
j,i, p

ts
j,i) � Evaluation

13: store Ej,i,θj,m
� Store metrics for each model

14: end for
15: end for
16: return E � Return the computed metrics for all models
17: end procedure

4.2 Local and Global Miscalibration Assessment

In this section, we outline the second set of experiments that we
performed to investigate the usefulness of the proposed calibration
framework for understanding local vs. global calibration and iden-
tifying under vs. over-confidence. In particular, we carried out two
experiments utilizing benchmark datasets from the biomedical field.
These datasets are encompassed within the MedMNIST benchmark
suite of datasets, as documented in the following sources [24, 25]:
PathMNIST dataset contains 107,180 colon pathology images, clas-
sified into 9 classes: 89,996 training, 10,004 validation, and 7,180
test images. PneumoniaMNIST dataset has 5,856 chest X-ray im-
ages, categorized as normal or pneumonia, and is divided into 4,708
training, 524 validation, and 624 test images. We assessed SOTA
models, such as ResNet 152 [14] and Vision Transformer DeiT-base
[20] on multiclass and binary tasks. The models were pre-trained on
Imagenet [10] and then fine-tuned by freezing all the layers except
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the last one. The models were trained for 50 epochs with a learn-
ing rate of .001, with the Adam optimizer, and Reduce on plateau
[1] adjustment, using the validation set for model selection. We used
binary-cross entropy and cross-entropy as loss functions for model
optimization. The models were then evaluated on the set of test im-
ages: in particular, we computed the local calibration (ECIl) scores
for each model and dataset. For simplicity and clarity, we have set
the number of bins to 10, making it easier to comprehend the local
information and interpret the results.

5 Results and Discussion

As discussed in the previous section, in the present study we have
conducted two sets of experiments designed to serve different pur-
poses: the first set aimed at evaluating the bias of our ECI measure
(in comparison to the ECE). The second set was intended to illus-
trate the usefulness of our framework for a thorough assessment of
calibration, both at global and local level.

In the first set of experiments, we used synthetic data to evaluate
the performance of the ECI scores in estimating the true calibration
error: the results of this evaluation are represented (in terms of mean
deviation and corresponding 95% confidence intervals), for both bi-
nary and multiclass settings, in Figure 1, a and b, respectively.

Figure 1. Strip plots of the differences (Δ) between true error (E) and each
ECI and ECE estimates, with their 95% confidence intervals, shown for the
models of the binary settings (a) and for the models of multiclass settings (b).

As shown in Figure 1, the proposed ECI exhibits a lower bias, on
average, compared to both ECEacc and ECEfreq , as made clear
by the 95% confidence intervals. This finding confirms the limita-
tions of ECEacc and ECEfreq in accurately estimating the true
calibration error. It highlights the need for more robust calibration
error estimation methods, like the proposed ECI metric. Moreover,
our ECI metric is generally more conservative in its error estimates

(i.e., it overestimates the true error), as shown in Figure 2 (see also
the appendix for additional results), which illustrates the differences
between error curves for the ECI and the ECE (along with the cor-
responding 95% confidence bands, which were estimated through
bootstrapping to allow for significance assessment). Overestimation

Figure 2. Reliability diagram for multiclass MLP and XGBoost models:
true error (y-axis) and estimated error (x-axis) with 95% confidence intervals

from bootstrap methods and Spline function smoothing.

of the true calibration error (rather than an underestimation, as in
the case of ECE) is a desirable property of a calibration metric: in-
deed, as we mentioned in the introduction, a model’s reputation and
reliability cannot be overstated, especially in light of possible norma-
tive and regulatory requirements. Thus, adopting a more conservative
evaluation metric in model validation can make ensuring compliance
with these requirements easier since such a metric would provide a
worst-case assessment of the model’s performance. Thus, to summa-
rize the results of our first experiment, we proved that our proposed
ECI measure is not only closer on average to the true calibration er-
ror thanECEacc andECEfreq (i.e., it is less biased as a measure of
calibration) but, when it errs, it errs in the desirable direction, making
it a more conservative estimate of performance.

In regards to the second set of experiments, which were instead
based on real-world datasets and aimed at illustrating the usefulness
and informativeness of the proposed framework, the global calibra-
tion indices for the considered models and datasets are reported in
Table 1, while the local calibration scores and class-wise under-/over-
confidence scores (for model DeiT on datasets PneumoniaMNIST
and PathMNIST, respectively) are reported in Tables 2 and 3, respec-
tively (see also the appendix for complete results).

Our findings from the real-world dataset tests, as shown in Table
1, indicate that the models, on average, seem well-calibrated. For in-
stance, the ResNet152 in the binary settings has an ECEacc of .937,
ECEfreq of .935, and an ECIglobal of .913. However, the analy-
sis based on the over- and under-confidence ECI indices reveals that
the model’s calibration on the instances associated with an overcon-
fident prediction was less satisfactory compared to that for instances
associated with an underconfident prediction, as evidenced by the
ECIover metric in Table 1: thus, in general, the model was slightly
over-confident in its predictions. Similar conclusions can also be ob-
served for the DeiT model in the binary setting, while the oppo-

L. Famiglini et al. / Towards a Rigorous Calibration Assessment Framework: Advancements in Metrics, Methods, and Use650



Table 1. Model Comparison: Class-wise ECE and ECI for multiclass tasks, with ECEs as 1-ECE for easier comparison.

PneumoniaMNIST PathMNIST

Model ECEacc ECEfreq ECIglobal ECIover ECIunder ECEacc ECEfreq ECIglobal ECIover ECIunder

ResNet152 .937 .935 .913 .857 .997 .989 .988 .985 .962 .977
DeiT .887 .885 .850 .850 .999 .991 .990 .988 .973 .946

Table 2. ECIl scores for DeiT on PneumoniaMNIST test set: Bold values
show ECIl < ECIglobal. Column frequency is the positive class

proportion per bin.

0-.1 .1-.2 .2-.3 .3-.4 .4-.5 .5-.6 .6-.7 .7-.8 .8-.9 .9-1

ECIl .952 .897 .809 .579 .205 .401 .580 .595 .541 .931
Frequency (%) 13.0 5.0 3.0 2.1 2.2 2.9 2.6 3.2 4.8 61.1

Table 3. Values of ECIbalance, ECIover and ECIunder of the DeiT
model for individual classes for the PathMNIST test set.

0 1 2 3 4 5 6 7 8

ECIbalance -.111 .009 .014 -.096 -.039 -.051 -.093 .186 -.068
ECIover .707 .417 .885 1 .962 .931 .999 .786 .992
ECIunder .868 1 1 .797 .918 .954 .859 .958 .887

site conclusion can be observed for both models on the multiclass
dataset. Similarly, the DeiT model seems to be well-calibrated on the
binary dataset, with an ECEacc of .887, ECEfreq of .885, and an
ECIglobal of .85. Nevertheless, as shown in Table 2, the model un-
derperforms within certain confidence score regions: the ECIl met-
ric reveals that the model is not well-calibrated in the regions close
to the cutoff point, where over-confidence is clear in the confidence
scores ranging between .3 and .7. Indeed, the ECIl ranges between
.302 to .595, values that deviate significantly from the global cali-
bration measurement, i.e., ECIglobal = .850 as depicted in Table
2. Also, while overall performance appears satisfactory in the mul-
ticlass setting, we see that decomposing calibration locally and per
class provides valuable cues for a better interpretation of the model
performance (see also the appendix). For instance, our analysis re-
veals that the DeiT model is not well-calibrated for class 0 in the .3-
.5 region. From Table 3, in the multiclass settings, both models seem
to be calibrated globally (i.e., the DeiT model has ECEacc of .991,
ECEfreq of .99, and ECIglobal of .988). However, the model’s cal-
ibration performance is less satisfactory if we separately consider
the different classes or the overconfidence and underconfidence re-
gions of the probability space. Specifically, in regard to classes 0,
1, and 7, the model was more calibrated on the instances associ-
ated with underconfident predictions (i.e., ECIunder class 0 = .868,
ECIunder class 1 ≈ 1, and ECIunder class 7 = .958.), while on
the instances associated with an overconfident prediction the model
is not well-calibrated for those same classes (i.e., ECIover class 0 =
.707, ECIover class 1 = .417, and ECIover class 7 = .786). These
findings can be further analyzed by evaluating the ECIbalance val-
ues in Table 3, which allow us to provide more insight on the under-
confidence vs over-confidence behavior of the model. As an example,
for class 0, we can easily see that the ECIbalance was -.111, which
suggests a tendency towards underconfidence, while for class 7, an
ECIbalance of approximately .2 indicates a stronger (yet still weak)
tendency towards overconfidence. To summarize, our experimental
findings underscore the necessity of delving deeper into local and
class-wise calibration analysis rather than solely relying on global

metrics. Drawing on the results presented in this paper, we make the
point that global calibration estimates may inadvertently mask po-
tential miscalibrations on a local level (i.e., per confidence score bin
or per class). The framework proposed in our study allows us to ef-
fectively identify these pitfalls by providing calibration information
at different granularity levels. As we highlighted in the introduction,
having information about calibration at instance- or class-level can
be of paramount importance, particularly when the probabilistic in-
formation given by a model can influence, or bias, human decisions
[22], e.g. when confidence scores function as estimates for risk strat-
ification and alternative ranking, or in automated decision-making
settings, where calibration deficiencies may regard classification cut-
off points. Moreover, detecting regions in the probability space where
models exhibit suboptimal calibration enables the development of
more targeted recalibration strategies that employ local-level cali-
bration information to enhance the overall performance, see e.g. [3],
[15].

In conclusion, the observed results emphasize the need to rely on
metrics that minimize bias, that is, the confidence estimation error
(Δ), and to look beyond global calibration metrics, which can hide
miscalibrations, and rather assess instance-level and class-level cal-
ibration, as well as over- and under-confidence in models’ predic-
tions. In doing so, our proposed calibration framework allows us to
holistically evaluate a model’s performance and better understand its
limitations so as to allow for more informed decisions when using AI
in critical applications.

6 Conclusion

This study presents a novel calibration assessment framework for
ML models, designed to address the limitations of existing popular
metrics, particularly the ECE. Our framework enables a more fine-
grained evaluation of calibration by assessing model performance
locally, for different confidence regions or classes, providing a com-
prehensive understanding of the model’s behavior. We have demon-
strated that our proposed global index, ECIglobal, offers a less bi-
ased estimation of the true calibration error compared to even the
most recent versions of ECE. This is attained by delivering a more re-
liable calibration error estimation while also considering the impact
of binning-related biases. Our experiments also highlight the benefits
of decomposing calibration locally (i.e., per calibration bin) and per
class, allowing for quantification of the impact of class-specific char-
acteristics and sample representation on calibration. Although our
experimental approach has some limitations due to the number of
models and datasets employed, the results provide evidence that the
proposed metrics outperform existing reference metrics, especially in
delivering ’instance-level’ information. This, in turn, enhances model
transparency, user trust, and user satisfaction. Future research should
delve into our framework’s applications, evaluating calibration ef-
fects on accuracy, recalibration and, most importantly, users’ trust.
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