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Abstract. Diffusion auction is an emerging business model where
a seller aims to incentivise buyers in a social network to diffuse the
auction information thereby attracting potential buyers. We focus on
designing mechanisms for multi-unit diffusion auctions. Despite nu-
merous attempts at this problem, existing mechanisms either fail to
be incentive compatible (IC) or achieve only an unsatisfactory level
of social welfare (SW). Here, we propose a novel graph exploration
technique to realise multi-item diffusion auction. This technique en-
sures that potential competition among buyers stay “localised” so as
to facilitate truthful bidding. Using this technique, we design multi-
unit diffusion auction mechanisms MUDAN and MUDAN-m. Both
mechanisms satisfy, among other properties, IC and 1/m-weak ef-
ficiency. We also show that they achieve optimal social welfare for
the class of rewardless diffusion auctions. While MUDAN addresses
the bottleneck case when each buyer demands only a single item,
MUDAN-m handles the more general, multi-demand setting. We
further demonstrate that these mechanisms achieve near-optimal so-
cial welfare through experiments.

1 Introduction

Online social networks such as Tiktok, Twitter, and Temu not only
enhance our social connectivity, but also provide new business oppor-
tunities: A user is able to act as a seller on an online social network,
launching sales campaigns through the virtual space [15, 22]. Unlike
traditional campaigns, a seller in this virtual market could leverage
the social network to diffuse information. By implementing an ap-
propriate marketing strategy, sales information passed to only a few
initial individuals may trigger widespread dissemination, reaching a
large cohort of potential buyers. Efforts have thus focused on design-
ing mechanisms, termed diffusion auctions, that incentivise buyers to
reveal not only their hidden valuations, but also their social connec-
tions to that sales information diffuses in the network [2, 16].

Diffusion auction differs from traditional auction designs in many
aspects. First, classical tools such as Myerson’s lemma no longer ap-
ply to incentive compatibility (IC) when the buyers are allowed to
strategically declare both their valuations and social connections [2].
Then, even though the generic VCG mechanism can be conveniently
extended to a diffusion auction, extreme cases exist that result in a
large negative revenue for the seller [11]. Last, unlike the traditional
auction designs, for diffusion auction no mechanism would simulta-
neously satisfy IC, individual rationality (IR), non-deficit (ND), as
well as optimal social welfare [17]. The fundamental challenge in
designing diffusion auctions is to mitigate the intrinsic conflict be-
tween the seller’s desire to attract more participants to the auction,
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and buyers’ wish to lower competition. Namely, by diffusing auction
information to neighbours, a buyer may increase the chance of being
out-bidded by others as more buyers may join the auction. Hence new
ideas and tools must be developed for designing diffusion auctions.

In recent years, numerous studies have proposed diffusion mecha-
nisms for single-unit auction, i.e., where the seller has only one item
to sell [12, 10, 21, 20]. For example, the IDM mechanism – one of
the starting points of this field [11] – achieves IC using the notion of
critical buyers, individuals who have the ability to alter the level of
competition, and rewarding critical buyers for their losses due to in-
formation diffusion. However, these mechanisms do not have guaran-
tee on efficiency. In contrast, GRP mechanism [8] achieves efficiency
under a weakened form of IC. Later, FDM [20] and NRM [21] focus
on redistribution issues while layered and recursive DPDMs [5] con-
sider privacy issues. Moving beyond single-unit case, multi-unit auc-
tions study cases when the seller has multiple (homogeneous) items
to sell. One would hope that this case, being a natural generalisation
of the single-unit counterpart, could be addressed using mechanisms
similar to IDM. However, repeated attempts have failed to satisfy the
crucial IC property: (1) The GIDM mechanism, proposed in [23],
determines the allocation of items and rewards using critical buyers.
This mechanism, however, was pointed out to violate the IC property
[17]. See App. A in our full paper. (2) The subsequent DNA-MU
mechanism, proposed in [6], also utilises critical buyers while fur-
ther leveraging a priority order based on buyers’ distances from the
seller. Unfortunately, this mechanism is once again shown to be not
IC [3]. See App. B. These failures attest the importance and difficulty
of finding a truthful multi-unit diffusion mechanism.

Remarkably, two recent mechanisms for multi-unit diffusion auc-
tion have claimed to be truthful. First, the SNCA mechanism [18]
extends the classical clinching auction to the social network context.
Similar to DNA-MU, the mechanism grants a buyer who is closer to
the seller in the social network a higher priority when determining
the allocation of items. This mechanism, however, relies on the buy-
ers’ budgets which is not available in the standard multi-unit diffu-
sion auction. Then, the LDM-Tree mechanism [13] applies a layer-
based iterative allocation process, where buyers in the same layer
have equal distance to the seller. Essentially, the LDM-Tree alleviates
competition by restricting information diffusion. This significantly
limits the achieved social welfare. Moreover, as the algorithm uses
certain feature about the social network which may not be known
a priori, the mechanism cannot be applied to the general setting of
diffusion auction. See App. C. All these suggest that the problem of
designing reasonable mechanisms for multi-unit diffusion auctions is
far from being settled.

Contribution. In this paper, we focus on designing a reasonable
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multi-unit diffusion auction. First, we introduce a technique for re-
alising multi-unit diffusion auction which iteratively explores the so-
cial network starting from the seller s. At each iteration, a part of
the network is explored. The mechanism chooses a winner from the
explored buyers while exhausting some other buyers. The winner
and exhausted buyers are incentivised to diffuse the auction infor-
mation allowing more buyers to be explored. We design a mecha-
nism, named MUDAN, that can be embedded into this framework.
MUDAN allocates an item to winners during the graph exploration
“on the fly”. It is IC, IR, ND, non-wasteful (NW), while satisfying a
weakened version of social welfare optimisation. Moreover, the op-
timality ratio of MUDAN is tight for any truthful diffusion auction
that incentivises buyers without using reward. See Section 3. Then,

as our mechanisms are defined for single-demand multi-unit diffu-
sion auction, where each buyer is assumed to demand only one item,
we extend the study to multi-demand multi-unit diffusion auction.
We present a reduction from multi-demand multi-unit diffusion auc-
tion to the single-demand counterpart. Thus MUDAN can be gen-
eralised to the multi-demand case and satisfy all mentioned proper-
ties. See Section 4. Last, since several priority scores of buyers – a
key ingredient of the mechanism – may be defined using a number
of traversal schemes, our focus is on evaluating the effect of these
traversal schemes to the auction outcomes. In particular, we pro-
pose new-agent-based selection and compare it against other possible
schemes over three real-world social networks. We demonstrate that
under reasonable valuation models, (i) our mechanism significantly
outperforms the benchmarks achieving near-optimal social welfare
and revenue, and (ii) new-agent traversal achieves the highest perfor-
mance in terms of both metrics among all tested traversal schemes.
See Section 5. We summarise the highlights of our achievements:

• A technique for realising diffusion auction that iteratively explores
the social network, and a new truthful multi-unit diffusion auction
MUDAN for the single-unit case.

• A reduction from multi- to single-demand multi-unit diffusion
auction which preserves the mechanism properties and a multi-
unit diffusion auction MUDAN-m for the multi-unit case.

• Experimental result demonstrating that MUDAN-m achieves
near-optimal social welfare and revenue with the new-agent traver-
sal scheme.

2 Model and problem formulation

We present our model for single-demand multi-unit diffusion auction
which was addressed by GIDM [23] and DNA-MU [6]. The more
general case of multi-demand multi-unit diffusion auction will be dis-
cussed in Section 4. Our model consists of the following:

• a seller, s, has m ≥ 1 homogeneous items to sell.
• n buyers B = {1, 2, . . . , n}. Each buyer i ∈ B demands one

item and attaches a valuation vi ∈ R+. We often call buyers or
the seller the agents of the network.

• a social network, represented as a directed graph G = (B ∪
{s}, E) on the agents, where the edge set E ⊆ (B ∪ {s})2 rep-
resents social connections between agents. The neighbour set of
an agent i ∈ V is ri := {j ∈ B | (i, j) ∈ E}. In particular, rs
is the set of all neighbours of s. We assume that all buyers v are
reachable from s in G via paths.

We assume that information regarding the auction is not publicly
known and the seller relies on buyers to spread this information to at-
tract potential buyers. Initially, the auction information only reaches

buyers in rs. During an auction, the buyers who have the auction
information are asked to report their neighbours and valuations. For-
mally, for buyer i:

• the true profile θi := (vi, ri) is private to the buyer i only;
• the reported profile θ′i := (v′i, r

′
i) where v′i ∈ R+ and r′i ⊆ B are

the reported valuation and neighbour set by buyer i.

The reported profile θ′i does not have to be θi. The idea is that the
buyer i might try to benefit from the auction by strategically reporting
θ′i. By reporting r′i, buyer i diffuses the auction information to all
j ∈ r′i. Following standard convention [11], we assume that r′i ⊆
ri. Some buyers may not be able to participate in the auction had i
misreported her neighbours (i.e., r′i � ri).

Fix the true profiles θ := (θ1, . . . , θn). The global profile is the
reported profiles of all buyers θ′ := (θ′1, . . . , θ

′
n). Given θ′, we

build the following directed graph, we call the profile graph Gθ′ :
The nodes are Vθ′ := {s} ∪ B; put a directed edge from i to j in
the edge set Eθ′ if j ∈ r′i. A buyer i is reachable if there is a path
from the seller s to i in this directed graph. Only reachable buy-
ers can get the auction information. Technically, any buyer j that is
not reachable should not have a reported profile, but for convenience
we assume that they have the silent report (v′j , r

′
j) where v′j = 0,

r′j = ∅, indicating the agent j’s absence from the auction.
Given a global profile θ′, a mechanism returns payment and allo-

cation rules to buyers in Gθ′ . Let Θ denote the set of possible global
profiles.

Definition 1 A mechanismM consists of two functions (π(·), p(·)),
where the mapping π : Θ → {0, 1}n is the allocation rule and
p : Θ → R

n is the payment rule. For a global profile θ′, the alloca-
tion result π(θ′) is written as (π1(θ

′), . . . , πn(θ
′)) and the payment

result p(θ′) as (p1(θ′), . . . , pn(θ′)).

For buyer i ∈ B, when πi(θ
′) = 1, i wins an item by paying pi(θ

′)
and is thus a winner. When πi(θ

′) = 0, i gets no item. The value
pi(θ

′) can be either positive or negative, denoting either cost or re-
ward of buyer i, respectively. When the context is clear, we write πi

for πi(θ
′) and pi for pi(θ′).

An ideal mechanism should meet a number of requirements: First,
it should incentivise buyers to participate in the auction, and truth-
fully report their neighbours and valuations. Then, it should max-
imally allocate items without causing deficit to the seller. Last, it
should achieve a target level of social welfare. To formally define
these properties, we introduce the following notions:

• The utility ui(θ
′) of the buyer i is defined as viπi − pi.

• The social welfare SW(θ′) of the mechanismM is the sum of the
utilities of all the agents, i.e.,

∑n
i=1 viπi.

• The optimal social welfare SWopt is the sum of the top-m valua-
tions in θ.

• The revenue RV(θ′) is the sum of the payment of all buyers, i.e.,∑n
i=1 pi.

In the next definition, let θ′−i := (θ′1, . . . , θ
′
i−1, θ

′
i+1, . . . , θ

′
n) denote

the profiles of all buyers but i.

Definition 2 LetM be a mechanism.

1. M is incentive compatible (IC) if for any buyer reporting truth-
fully is a dominant strategy: for all i ∈ B, all global profiles θ′

and θ′′, we have ui(θi, θ
′
−i) ≥ ui(θ

′′
i , θ

′′
−i)

1.

1 As r′′i may be different from r′i, some agents j who are reachable in Gθ′
may become unreachable had we replace θ′i with θ′′i . θ′′−i is obtained from
θ′−i by replacing θ′j with the silent profile for all such agents j.
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2. M is individually rational (IR) if any buyer by reporting truthfully
receives non-negative utility.

3. M is non-deficit (ND) if for any global profile θ′, the revenue is
non-negative, i.e., RV(θ′) ≥ 0.

4. M is non-wasteful (NW) if all items are allocated to buyers (up
to the number of reachable buyers), i.e., for any global profile θ′,∑

i∈Vθ′\{s} πi(θ
′) = min{m, |Vθ′ | − 1}.

5. M is efficient if it achieves optimal social welfare, i.e., for any
θ′, SW(θ′) = SWopt.

Def. 2 lays out ideal properties for individuals (e.g., IC and IR) and
for the entire network (e.g. ND and NW). For standard auctions
(without social network), mechanisms are expected to be efficient.
This, however, is impossible for diffusion auctions as no diffusion
auction mechanism can simultaneously satisfy IC, IR, ND and ef-
ficiency [17]. In subsequent sections, we present a new multi-unit
diffusion auction mechanism.

3 A New Multi-Unit Diffusion Auction

3.1 Diffusion auction by graph exploration

Earlier mechanisms. We first define a generic technique for multi-
unit diffusion auction. Our design draws lessons from earlier at-
tempts to the problem.

GIDM [23] and DNA-MU [6] are two prominent mechanisms de-
fined for multi-unit diffusion auction. Both of these mechanisms fail
to ensure the IC property as they potentially grant a buyer the op-
portunity to manipulate the auction outcome: (1) The mechanisms
select winners using a tree structure, called the diffusion critical tree,
which encodes information flow in the graph Gθ′ . (2) A misreport by
a node down a path (e.g. f in Figure 1) may affect the decisions of
the mechanism made for nodes that are higher up in the tree (e.g. a in
Figure 1). (3) This changes the level of competition globally, which
in turn presents an unfair advantage to the untruthful node. Appendix
A and Appendix B contain detailed descriptions of these mechanisms
along with proofs that they are not IC. To mitigate the problem above,
we need therefore to (a) confine our decisions to buyers within a local
area of the social network, and (b) mitigate the competitions within
this local area so that a buyer cannot affect other parts of the network.
We call this idea competition localisation.

Figure 1: A social network with a seller s and seven buyers (shown in circles).
The numbers are the valuations of the circled buyers. GIDM and DNA-MU
both fail to ensure truthful reporting here.

The LDM-Tree mechanism [13] applies a form of competition lo-
calisation. Specifically, it localise competition within each layer of
the diffusion critical tree, where layer Li contains agents whose dis-
tance from the seller is i. The auction runs several rounds. In round i,
the mechanism only considers nodes in Li and those nodes in Li+1

that do not pose a potential competition to nodes in Li. However,
LDM-Tree has an obvious flaw: it severely restricts information dif-
fusion. For instance, if buyers in L1 win all items in the first-layer
auction, the outcome of the auction would coincide with the standard
VCG mechanism applied only to neighbours of s. This defeats the
purpose of diffusion auction. It will turn out that when applied to
single-unit auction (i.e., m = 1), LDM-Tree may produce outcomes
with arbitrarily inferior social welfare than our MUDAN mechanism.
App. C contains detailed descriptions and discussions of LDM-Tree.

The generic graph exploration mechanism. We apply a different
form of competition localisation. The idea is to explore the graph Gθ′

from the seller s, iteratively building a set of explored buyers. At each
iteration, competition is localised to within the explored buyers: A
winner is chosen from the explored buyers while some other buyers
are exhausted. The winner and exhausted buyers are incentivised to
report their neighbours, which enables more nodes to be explored.
Below we explain terms used in a given iteration.

• Explored buyers A: Initially, the set of explored buyers A = rs,
i.e., neighbours of s. Then at each iteration the set A is updated
through exhausted and winner agents (introduced below) using the
following procedures:
– Repeatedly adding reported neighbours of exhausted agents un-

til no more buyer can be added.
– Adding the reported neighbours of the chosen winner.

• Potential winner set P : At the given iteration, a buyer i ∈ A is a
potential winner if i is already selected as a winner, i.e., i ∈ W ,
or may be selected as a winner in the future. The exact definition
of P depends on the mechanism and will be made clear in the next
sections.

• Exhausted agent: At the given iteration, a buyer in A\P is called
an exhausted agents. The mechanism will ensure that an exhausted
agent stays exhausted.

• Priority σi: The algorithm uses priority scores σi, i ∈ P , to select
a winner. The priority σi of agent i must satisfy the following: The
value of σi should be independent of vi and does not decrease as
|r′i| increases. A straightforward σi that meets this condition is
σi := |r′i|.2

• Winner set W : The buyer with the highest priority score in P is
selected as the winner and is added to the set W .

• Tentative payment p̂w: When a winner w is selected by the mech-
anism, a tentative payment p̂w is assigned. The tentative payment
p̂w will be used to determine the payment pw of w. The exact
definition of p̂w and pw will be made clear for each mechanism.

• Termination condition: Terminate the graph exploration if all ex-
plored buyers are either winners or exhausted, i.e., P \W �= ∅.

Algorithm 1 The generic graph exploration mechanism

1: Initialise W ← ∅, A← rs
2: Initialise P
3: while P \W �= ∅ do � Termination condition
4: while A contains an unmarked agent i ∈W ∪ (A \ P ) do

5: Update A← A ∪ r′i, mark agent i
6: Update set P
7: end while

8: Assign a priority σi to each i ∈ P
9: Add agent w ∈ P \W who has the highest priority in W

10: Record tentative payment p̂w
11: end while

12: Determine the allocation and payment results using W and ten-
tative payments

Given the ingredients above, Alg. 1 describes the generic graph
exploration mechanism. Our MUDAN can be embedded into this
framework. Note that the lines in italic need to be instantiated.

2 We introduce other possible σi and evaluate them empirically in Section 5.
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3.2 The MUDAN mechanism

We now describe our MUDAN (Multi-Unit Diffusion Auction with
No reward) mechanism for single-demand multi-unit diffusion auc-
tion. MUDAN implements the generic mechanism (Alg. 1) as fol-
lows: Maintain a variable m′ ≥ 0 which records the remaining num-
ber of items to be sold. Initially, m′ := m, and is decremented every
time a winner is selected. Hence m−m′ buyers are selected as win-
ners. At a given iteration, the mechanism sets the following:

• Potential winner set P : Rank the buyers in A \W by their val-
uations such that v′i1 ≥ v′i2 ≥ . . .. If |A \ W | ≤ m′, then set
P := A; otherwise, add in P the buyers with the top-m′ valua-
tions in A \W , i.e., P := W ∪ {i1, . . . , im′}.

• Tentative payment p̂w: When a winner w is selected, set p̂w as
the current (m′ + 1)th highest valuation in A \ W , i.e., p̂w :=
vm′+1.

After the last iteration, we allocate to each winner w ∈ W an item,
i.e., set πw := 1, and set pw := p̂w. No other buyer will receive an
item and the payment to them is 0. Table 1 and Figure 5 (in App. D)
provide a run-through example of MUDAN.

Table 1: Running MUDAN on the network in Fig. 1 with m = 4 assuming all
buyers report truthfully. Set the priority σi := |ri|, where buyers with more
neighbours get higher priority. ‘Iter.’ shows the iteration number. ‘Incr. to A’
column shows the nodes to be added to A in each iteration. The ‘P ’ column
lists potential winners in descending order of vi. The winners are b, c, e, f .

Iter. m′ Incr. to A P π, p
1 4 a, b a, b πb = 1, pb = 0
2 3 c a, c πc = 1, pc = 0
3 2 d, e d, e πe = 1, pe = 3
4 1 f f πf = 1, pf = 4

By the definition of P , the algorithm terminates when m′ = 0
(after m iterations). We now show that MUDAN has desirable prop-
erties. The next lemma is straightforward (See Appendix D).

Lemma 3 MUDAN satisfies IR, ND, and NW. �

Lemma 4 The MUDAN mechanism satisfies IC.

Proof. We prove two statements: 1. A buyer cannot benefit from mis-
reporting her valuation. Our argument is the following. Consider an
iteration and suppose that w, if reporting her profile truthfully, will be
selected a winner. We prove that w cannot benefit from misreporting
her valuation:

• If v′m′+1 ≤ v′w < vw or v′m′+1 ≤ vw < v′w, then w is allocated
an item, pays the (m′ + 1)th highest valuation, and the utility
uw((v

′
w, rw), θ−w) = uw((vw, rw), θ−w).

• If w reports v′w ≤ v′m′+1 ≤ vw, then w loses the item and her
utility is 0.

Now consider another buyer i ∈ P \W , i �= w. We prove that i also
cannot benefit from misreporting her valuation:

• if i reports valuation v′i such that v′m′+1 ≤ vi ≤ v′i or v′m′+1 ≤
v′i < vi, i would still be a potential winner in this iteration, her
priority would stay unchanged.

• If i reports valuation v′i < v′m′+1 < vi, she would not be a poten-
tial winner and her utility is 0.

Lastly, consider a buyer i ∈ A \ P . We prove that i cannot benefit
from misreporting her valuation:

• if i reports her valuation v′i such that vi < v′m′ ≤ v′i, then: (i) If
she has the highest priority, then her utility is ui((v

′
i, ri), θ−i) =

vi − v′m′+1 < 0 = ui((vi, ri), θ−i). (ii) Otherwise, her utility
remains 0.

• If she reports vi < v′i < v′m′ or v′i < vi < v′m′ , her utility
remains 0.

2. A buyer cannot benefit from misreporting her neighbours. Our
argument is the following. Take i ∈ A. If i hides any neigh-
bour, her priority cannot increase. Consider winner w in a cer-
tain iteration. If w hides some of her neighbours and her priority
is still the highest, her allocation and payment do not change, so
her utility uw((vw, r

′
w), θ−w) = uw((vw, rw), θ−w). If her prior-

ity is not the highest, she loses some items, her utility decreases,
i.e., uw((vw, r

′
w), θ−w) < uw((vw, rw), θ−w). Now consider agent

i ∈ A\{w}. If i hides any neighbour, i’s priority would not increase
and hence, she is still not allocated an item and ui((vi, r

′
i), θ−i) =

ui((vi, ri), θ−i) = 0. �

Social welfare. We now analyse the social welfare achieved by
MUDAN. Note that MUDAN sets the payment pi ≥ 0 for any buyer
i ∈ B. This condition means that critical buyers are not incentivised
to diffuse the auction information using reward, and thus we call it
no-reward condition. We will show that MUDAN achieves the high-
est possible social welfare guarantee among IC diffusion auctions
with no-reward. Let w∗ ∈ W denote the winner selected in the final
iteration. We say that w∗ is critical for a buyer i if all paths from s
to i pass through w∗. The next lemma characterises buyers that are
explored by the mechanism.

Lemma 5 A buyer i is explored if and only if w∗ is not critical for i.

Proof. Suppose i is explored by the mechanism at the jth iteration.
One can easily prove by induction on j that a path exists from s to i
without passing through w∗.

Conversely, suppose a path exists from s to i without passing
through w∗. Let di denote the length of the shortest such path. Sup-
pose further i is a node with the smallest di that is not explored. Note
that di > 1 as all nodes in rs are explored. Now take the node j
that immediately precedes i in the shortest path from s to i without
passing w∗. Note that j ∈ A and i ∈ rj by Lemma 4. If j is selected
as a winner by the mechanism, then i is explored. Thus j will not be
selected as a winner. This will happen only when vj ≤ vw∗ , which
means that j will be exhausted eventually. When j is exhausted, i
will be added in A. Contradiction. �
Let B∗ denote the set of buyers for whom w∗ is not critical.

Lemma 6 Suppose a buyer y ∈ B has a higher valuation than all
winners, i.e., vy > vw for all w ∈W . Then y /∈ B∗.

Proof. Take such a buyer y that has the highest valuation. Suppose for
a contradiction that a path exists from s to y without passing through
w∗. By Lemma 5, y will eventually be added to A. Consider the last
iteration before w∗ is chosen as the winner. Since vy > vw∗ , w∗

would not be an element of P . Contradiction. �
Lemma 6 describes how MUDAN may fail to achieve optimal so-

cial welfare: There exists a buyer i ∈ B \B∗ who has a high (top-m)
valuation. This motivates us to define the following weakened notion
of efficiency.

Definition 7 Let SWwopt denote the sum of the top-m valuations
among buyers in B∗. A mechanism M is ε-weakly efficient if for
any global profile θ′, we have SW(θ′) ≥ εSWwopt.
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Weak efficiency means achieving the highest social welfare among
the explored buyers. By Lemma 6, MUDAN selects the buyer with
the highest valuation from A as a winner, thus achieving 1/m-weak
efficiency. The only currently-known IC multi-unit diffusion auction
mechanism, LDM-Tree, may produce outcomes for the single-unit
case that are arbitrarily inferior than MUDAN in terms of social wel-
fare. See Appendix C.

The theorem below summarises the results above.

Theorem 8 MUDAN terminates within time O(n2 + |E|), satisfies
IC, IR, ND, NW, and 1/m-weak efficiency. �

Lastly, we show that 1/m-weak efficiency is as good as it can be
for IC and ND diffusion auctions with no-reward.

Theorem 9 For any m ≥ 1 and any constant λ > 0, there ex-
ists profile θ where no m-unit IC and NW diffusion auction with no-
reward achieves (1/m+ λ)-weak efficiency.

Figure 2: A social network with a seller s and 2m buyers.

Proof. Consider the graph as shown in Fig. 2 which depicts a situation
with 2m buyers. The valuations and connections of the buyers are
defined as follows:

• i1, i2, i3, . . . , im−1 have valuation n > 1,
• j1, j2, . . . , jm−1 have valuation n2 − τ for a small τ > 0,
• im has valuation n2, and im+1 has valuation n3.

To guarantee IC and NW, a mechanism must allocate m − 1 items
to buyers i1, i2, . . . , im−1 and the last item to im. Thus the social
welfare of any IC mechanism is at most n2 + (m− 1)n. For such a
mechanism, SWwopt is mn2 − (m− 1)τ . For sufficiently large n,

n2 + (m− 1)n

mn2 − (m− 1)τ
=

1

m
+

(m− 1)τ/m+ (m− 1)n

mn2 − (m− 1)τ

≤ 1

m
+

1

mn2 −m
+

1

n− (m− 1)τ/mn
<

1

m
+ λ.

�
Remark. A natural question arises as to whether a mechanism ex-

ists which achieves efficiency. As demonstrated above, such a mech-
anism necessarily incentivises critical buyers using rewards. We pro-
vide a mechanism, named MUDAR, towards meeting this goal. Sim-
ilar to MUDAN, MUDAR also implements the generic mechanism
(Alg. 1). The difference between the two mechanism lies in how they
incentivise winners. Unlike MUDAN, once a winner w is chosen,
MUDAR may either allocate an item to w or give w a reward (i.e.,
a negative payment), which equals to the utility of w had she been
allocated an item. The allocation result is determined after the graph
exploration is completed, when the buyers’ connections are fully re-
vealed. In this way, MUDAR can identify buyers that report the m-
highest valuations globally. MUDAR achieves IR, ND, and NW. As-
suming that the mth highest valuation among buyers is public, MU-
DAR ensures a weaker form of IC. Moreover, the buyers form an
equilibrium such that applying MUDAR leads to an efficient alloca-
tion. See details in Appendix E.

4 Multi-demand multi-unit diffusion auction

We now generalise the single-demand setting in Section 2 to multi-
demand auction. Here each buyer i ∈ B may demand more than
one item and attaches a valuation vi,j to the jth item she gets, where
1 ≤ j ≤ m. The valuation for all items is denoted by a vector
	vi := (vi,1, . . . , vi,m) ∈ R

m
+ ; we call 	vi the valuation vector of the

buyer i. The valuation vector of a buyer who demands k < m units
is represented by an m-dim vector with m−k 0s at the end. For sim-
plicity, we omit 0 in the vector. Each additional unit often brings less
additional utility than that from the previous unit, which is known
as the law of diminishing marginal utility in micro-economics [1]. 3

Therefore, we assume that the buyers have diminishing valuation to-
wards the items: vi,j ≥ vi,j+1 for j = 1, . . . ,m− 1. In this setting,
we denote the (multi-demand) profile of a buyer i as ηi := (	vi, ti)
where 	vi is the valuation vector and ti ⊆ B is the set of neighbours
of i. The global profile is η′ := (η′

1, . . . , η
′
n) that corresponds to

profile graph Gη′ .
Let H denote the set of all possible (multi-demand) global profiles.

A mechanism M in this setting consists of allocation rule π : H →
{0, 1}n×m and payment rule p : H → R

n×m. Here, each πi(η
′),

pi(η
′) are m-dimensional vectors; We write them as πi(η

′) =
(πi,1(η

′), . . . , πi,m(η′)) and pi(η
′) = (pi,1(η

′), . . . , pi,m(η′)).
We formally define properties of a mechanism below:

• The utility ui(η
′) of the buyer i is defined as

∑m
j=1 vi,jπi,j−pi,j .

• The social welfare SW(η′) of the mechanismM is the sum of the
utilities of all the agents, i.e.,

∑n
i=1

∑m
j=1 vi,mπi,j .

• The optimal social welfare SWopt is the sum of the top-m valua-
tions among vi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

• The revenue RV(η′) is the sum of the payment of all buyers, i.e.,∑n
i=1

∑m
j=1 pi,j .

Instead of designing a mechanism for the multi-demand setting
from scratch, we reduce the problem to its single-demand counter-
part. Given (multi-demand) profiles η of buyers B = {1, . . . , n},
our goal is to construct a set of buyers B̃ with (single-demand) pro-
files θ in such a way that any mechanism M̃ that is applied to B̃
corresponds to a mechanismM that is applied to B. The intuition is
that, essentially, we may view a buyer i ∈ B as m buyers, each de-
manding one item with valuation vi,j . More precisely, given a profile
η′, to define our mechanismM we perform the following steps.
(1). For each buyer i ∈ B, create m nodes i1, . . . , im in B̃, each
corresponding to an item 1 ≤ j ≤ m, i.e., B̃ := {ij | 1 ≤ i ≤
n, 1 ≤ j ≤ m}.
(2). Construct the following profiles θ′ for buyers in B̃:

• In the profile graph Gθ′ , connect all buyers i1, . . . , im to form a
chain using edges (i1, i2), . . . , (im−1, im).

• If an edge exists between the seller s and buyer i in Gη′ , then add
an edge (s, i1) in Gθ′ .

• If an edge exists between buyers i and j in Gη′ , then add an edge
(im, j1) in Gθ′ .

• The true and reported valuation of a buyer ij ∈ B̃ are vi,j and
v′i,j , resp.

• The priority of the buyer ij , for 1 ≤ j ≤ m, is the priority of i in
B.

(3). Apply a (single-demand) mechanism M̃ = (π̃, p̃) to θ′, where π̃
is the allocation rule and p̃ is the payment rule. Return the mechanism

3 As an analogy, think of a hot summer, the first bottle of iced water brings
much satisfaction while the second or even third one brings lower satisfac-
tion.
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M := (π, p) where allocation rule π and payment rule p are defined
below:

• Define π : H → {0, 1}n×m by πi,j(η
′) := π̃ij (θ

′).
• Define p : H → R

n×m by pi,j(η
′) := p̃ij (θ

′).

Figure 3 illustrates the construction of θ′ given a multi-demand pro-
file η′ over seven buyers. When we choose MUDAN as M̃, the cor-
responding mechanismM is called MUDAN-m.
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Figure 3: The reduction of an multi-demand auction (above) to the single-
demand setting (below). Valuation is on top of each node.

Consider a mechanism M̃ applied to B̃ with the constructed pro-
file θ, and the corresponding mechanism M applied to B with
the profile η. It is straightforward to observe from the construction
that the utility of a buyer i from M equals the sum of utilities of
i1, . . . , im from M̃. Additionally, the social welfare, optimal social
welfare, revenue, and number of allocated items of M are equal to
those of M̃, respectively. Please refer to Lemma 18 in Appendix F
for the formal statement. Moreover, analogously to Def. 2, we define
IC, IR, ND, NW and efficiency for a mechanism in multi-demand
case. See Def. 19 of App. F. The next lemma follows from Lem. 18.

Lemma 10 M satisfies any of the properties in IR, ND, NW, effi-
ciency whenever so does M̃. �

The MUDAN-m mechanism. We show the MUDAN-m mech-
anism has desirable properties (in Theorem 12). IR, ND, NW, and
1/m-weak efficiency easily carry over from the single-demand case.
The proof of IC, however, requires a non-trivial justification: If a
buyer i ∈ B misreports her valuation vector 	vi, a group of buyers in
B̃, namely i1, . . . , im, may misreport their valuations together. This
amounts to a case of collusion among the buyers in B̃, which is not
accounted for in the single-demand case. Nevertheless, in Lemma 11
below, we show that the buyers in B would not violate the truthful-
ness properties. In particular, our mechanism ensures that at most one
buyer ij where 1 ≤ j ≤ m may be in the set P \W for any i ∈ B
at any iteration, hence collusion does not give extra incentive for the
buyers i1, . . . , im. See the full proof in Appendix F.

Lemma 11 The MUDAN-m mechanism is IC.

Proof. We first prove that no buyer in B can benefit from misreport-
ing her valuation vector. To run M, we first execute the MUDAN
mechanism M̃ given the constructed profile θ′ on B̃. Now consider
the execution of M̃.

If i1 is selected as a winner, then M̃ will proceed to select more
ij as winners until the valuation is so low that ij is not added in P .
That is because after ij is chosen as winner, the only buyer in B̃ that
is added to A is ij+1. By definition of the priority on B, if ij+1 is

added to P , then ij+1 will be the next node with the highest priority
and is thus chosen as the winner.

Consider a given iteration of M̃. By the argument above, if a buyer
ij ∈ P is not chosen as the winner, then j = 1. Moreover, if ij
is exhausted, then i� for all � > j are exhausted also due to the
diminishing valuation. This means that for any buyer i ∈ B, either
i1 ∈ P , or {i1, . . . , im} ∩ P = ∅. This observation is crucial for
the proof of truthfulness.

Now suppose in the given iteration, wj is chosen as the winner.
Suppose w ∈ B misreports her valuation vector so that 	v′w �= 	vw.
We show that this strategy will not give w extra utility at this it-
eration: (a) Suppose vw,� �= v′w,� where � > j. At this iteration,
w� would not have been added in A. Therefore for w, misreporting
vw,� does not affect the tentative payment p̂(wj) for her jth item. (b)

Suppose vw,k �= v′w,k where k < j. Note that wk must have been a
winner in an earlier iteration. So the valuation of wk is not taken into
consideration when the algorithm sets the tentative payment p̂(wj).
(c) Suppose w misreports the valuation of vw,j in such a way that
v′w,j > vw,j > ˆpwj or vw,j > v′w,j > ˆpwj . Here, ˆpwj is the tentative
payment of wj assuming M̃ sets wj as the winner. As this does not
change wj’s priority, w is still chosen as the winner in this iteration
and is allocated her jth item with payment ˆpwj . This item will add
w a utility of uwj ((v

′
wj

, rwj ), θ−wj ) = uwj ((vwj , rwj ), θ−wj ). (d)

On the other hand, if v′w,j < ˆpwj < vw,j , then w loses the jth item
as all w� where � ≥ j are exhausted, giving her no extra utility. Sum-
marising (a)-(d), in the given iteration, misreporting any element in
valuation vector (vw,1, . . . , vw,m) will not give w extra utility.

We then prove that for buyer i �= w, i1 ∈ P and for i �=
w, {i1, . . . , im} ∩ P = ∅, i cannot benefit from misreporting valu-
ation using similar arguments above. See full argument in App. F.

It remains to prove that no buyer in B can benefit from misre-
porting her neighbour set. Our argument is the following: For each
agent ij ∈ B̃, her priority cannot increase when she hide any of her
neighbours. And her neighbours is only added in A either when im
is chosen as a winner or when im is exhausted so that her neighbours
cannot influence her allocation. The rest of the proof is the same as
in the proof of Lemma 4. �

To analyze the social welfare of MUDAN-m, we introduce the
definition of ε-weak efficiency. Similarly to the single-demand case,
we define critical buyers, the set B∗, weakly-optimal social welfare
SWwopt, and ε-weak efficiency for the multi-demand case. The only
difference is that SWwopt is the sum of the top-m valuations among
vi,j where i ∈ B∗, 1 ≤ j ≤ m. See formal statement in Appendix
F. The next theorems is also proved in Appendix F.

Theorem 12 MUDAN-m is IC, IR, ND, NW, and 1/m-weakly
efficient. �

5 Experiments

Finally, we empirically evaluate our mechanism4. We have two
purposes: First we evaluate the social welfare and revenue when
MUDAN-m is applied, and second we focus on priority score σi. Re-
call that the priority σi determines the selection of winner at an iter-
ation. It affects the outcome of MUDAN-m. The idea of priorities to
buyers has been exploited by several existing diffusion auction mech-
anisms, and three priority orderings were used: (1) depth-based se-

lection [23] (2) distance-based selection [6], and (3) degree-based

selection [18]. Yet their effectiveness has not been analysed. Since

4 The code of this work is available at https://anonymous.4open.science/r/
MUDAN-2C0B.
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Figure 4: Social welfare and revenue of different traversal strategies in three models for Facebook, Hamsterster and Email networks

all three approaches can be adopted by our mechanisms, we now ex-
amine how they affect social welfare in MUDAN-m.

Depth-based (or distance-based) selection prioritizes buyers who
are farthest away from (or closest to) the seller, which poses a risk
of omitting buyers with high valuations but who are close to (or far
away from) the seller. Degree-based selection prioritizes buyers who
have more neighbors, but this does not necessarily guarantee the ex-
ploration of a large number of buyers. With this in mind, we propose
a new traversal strategy: (4) New-agent-based selection: Prioritize
agents who can bring the highest number of unexplored buyers to A.
In this strategy, only the contribution to graph exploration is taken
into account, which we expect to lead to higher social welfare. We
describe our experiments below.

Dataset. We use three real-world datasets, including Facebook so-
cial network [9], Hamsterster friendships [7], and email-Eu-core net-
work [19]. Facebook network has 4, 039 nodes and 88, 234 edges,
Hamsterster friendship network has 1, 858 nodes and 12, 534 edges,
while email-Eu-core network has 1, 005 nodes and 25, 571 edges.
Table 2 shows the key statistics of these three datasets. For each
dataset, we randomly select one node as the seller. As the initial
setup, especially the neighbour set of the seller, may effect experi-
ment results, we repeat each scenario n/2 times, where n is the num-
ber of nodes, and calculate the average revenue and social welfare as
the result for the scenario.

dataset |V | |E| C diameter
Facebook social network 4039 88234 0.6055 8
Hamsterster friendships 1858 12534 0.0904 14
email-Eu-core network 1005 25571 0.3994 7

Table 2: Dataset statistics. C denotes clustering coefficient

Valuation. We use three different models to generate the agents’
valuation. Model 1: All the valuations of buyers are sampled at ran-
dom i.i.d. Specifically, we assume vi,j ∼ U(0, 200000) for 1 ≤ i ≤
n, 1 ≤ j ≤ m. Model 2: To increase diversity, the highest valua-
tions of buyers are sampled i.i.d. while their subsequent valuations
are independently but non-identically distributed. Here, we assume
that vi,1 ∼ U(0, 200000) for 1 ≤ i ≤ n, and vi,j ∼ U(1, vi,1) for
1 ≤ i ≤ n, 1 < j ≤ m. Model 3: The valuation of the buyers are
affected by their neighbours, in particular, the homophily principle
asserts that agents who are tightly connected tend to exhibit similar
preferences [14]. To capture possible dependence among closely-tied
buyers, we deploy the DeGroot model, an established model of social
influence [4], to generate the highest valuations vi,1 for 1 ≤ i ≤ n.
DeGroot model [4] assumes that each agent’s valuation for the next
iteration is derived from a weighted average of her own valuation

and those of her neighbours in the network. The weight is assigned
by the agent, and it represents her confidence in her own valuation
or her friendship with others. The other valuations of a certain buyer
vi,j ∼ U(1, vi,1) for 1 ≤ i ≤ n, 1 < j ≤ m.

Benchmark. The only currently known IC multi-unit diffusion
auction mechanism, LDM-Tree [13], is chosen as our benchmark.
Random selection is used as a benchmark for traversal strategies. It
randomly allocates a buyer from the potential winner set. The op-
timal social welfare, i.e., the sum of top-m valuations, is also in-
cluded in the comparison. We evaluate all four implementations of
MUDAN-m as well as these benchmarks in terms of social welfare
SW and revenue RV as defined in Sec. 2.

Results. Figure 4 shows the average SW and RV per item. (1) As
shown, MUDAN-m significantly outperforms LDM-Tree. MUDAN-
m with new-agent selection loses by at most 9%, 12% and 8% from
the optimal social welfare in Facebook, Hamsterster, and Email net-
works, respectively, exhibiting that it achieves near-optimal social
welfare. In contrast, LDM-Tree loses nearly 75%, 62% and 62%,
resp. (2) Among the priority schemes, new-agent selection in gen-
eral outperforms the other schemes. When the number of items is
small, new-agent selection is slightly less than that of other strate-
gies, but grows faster as the number of items increases. (3) Across the
valuation models, MUDAN-m with new-agent selection performs
better in general. This is particularly visible in model 3, which is
consistent with our expectation: When the valuations are dependant,
buyers with similar valuations form communities, new-agent-based
selection is more advantageous as it could more easily jump out
from lower-valuation communities. We may draw consistent conclu-
sions from the results for all three datasets showing robustness of our
mechanism.

6 Conclusion and future work

We focus on multi-unit diffusion auctions in this paper. We propose
the MUDAN mechanism, the first multi-unit diffusion auction that
satisfies the properties IC, IR, ND, NW, and 1/m-weak efficiency;
We gave a case when the 1/m-weak efficiency bound is tight. We
also define a reduction from multi-demand case to single-demand
case so that MUDAN can be employed to this generalised problem.
The corresponding MUDAN-m mechanism satisfies all properties in
the single-demand case.

As future work, we plan to explore the cases (1) when buyers can
perform false name attacks, i.e., reporting agents who are not in their
neighbour set, (2) when buyers may collude to benefit from group
misreporting, and (3) when the values of the items are not additive.
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