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Abstract. We introduce Incomplete Bipolar Argumentation Frame-
works (iBAFs), the extension of Dung’s Abstract Argumentation
Frameworks (AAFs) allowing the simultaneous presence of supports
(borrowed from BAFs - Bipolar AAFs) and of uncertain elements of
the argumentation graph (borrowed from iAAFs - incomplete AAFs).
We investigate the computational complexity of verification prob-
lem (under the possible perspective) and the acceptance problem, by
studying its sensitivity to the semantics of supports and the semantics
of extensions. On the one hand, we show that adding supports on top
of incompleteness does not affect the complexity of the acceptance.
On the other hand, surprisingly, we show that the joint use of bipo-
larity and incompleteness has a deep impact on the complexity of
the verification: for the semantics under which the verification over
AAFs is polynomial-time solvable, although moving from AAFs to
BAFs or to iAAFs does not change the complexity, the complexity
of the verification over iBAFs may increase up to NP-complete.

1 Introduction

In the recent years, owing to the usefulness exhibited by Dung’s
Abstract Argumentation Framework (AAF [18]) in various contexts
(ranging from legal disputes [40] to process mining [25]), many ex-
tensions of AAFs have been proposed to enhance their modeling ca-
pability. Two directions have attracted particular attention: encoding
support relationships between arguments, and taking into account
possible uncertainty involving arguments and attacks. The efforts in
the former direction have led to Bipolar AAFs (BAFs), a family of
variants of AAFs differing from one another in the semantics of sup-
ports. Two well-established semantics of supports (to which those
in [38, 39, 27] are added) are the abstract semantics [12], where a
support encodes a positive interaction between arguments (semanti-
cally opposite to the meaning of attack), and the deductive seman-
tics [9], where supports encode a “deductive” correlation: “a sup-
ports b" means that the acceptance of a implies the acceptance of b.
The introduction of supports following these semantics has called for
extending the reasoning paradigm defined over AAFs, since combin-
ing supports and attacks yields “implicit" attacks, called supported
and supermediated attacks, as shown in Example 1.

Example 1 The BAF in Figure 1(a) has “explicit" attacks (solid-
line arrows) and supports (double-line arrows), as well as “implicit"
attacks (not shown in the figure). In fact, whatever the semantics of
supports (abstract or deductive), the facts that a supports b and that
b attacks c imply the so called “supported attack” (a, c). Moreover,
under the deductive semantics, since the acceptance of a supporting
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argument implies the acceptance of the supported argument, also
the so called “supermediated attack” (e, a) should be considered,
implied by the facts that b is attacked by e and supported by a.

The second direction of research has led to several variants of
AAFs, where the uncertainty affecting arguments and attacks is mod-
eled qualitatively, by allowing the uncertain aspects of the dispute
to be specified, or quantitatively, by also allowing the specification
of the extent of this uncertainty. Incomplete AAFs (iAAFs) [8] are
prominent representatives of qualitative approaches. Basically, an
iAAF is an AAF where some arguments and/or attacks are marked as
uncertain, as their occurrence in the dispute is not guaranteed. To ad-
dress this form of incompleteness, the reasoning paradigm of AAFs
has been refined to consider the multiple scenarios for the argumen-
tation graph implied by the uncertainty, as shown in Example 2.

Example 2 Figure 1(b) is an iAAF where the argument a and the
attack (c, d) are uncertain. This iAAF compactly represents the four
AAFs in Figure 1(c), called “completions", representing the alterna-
tive combinations of presence/absence for a and (c, d). The existence
of alternative scenarios has been taken into account in the literature
by revising the notion of “extension" into “i∗-extension", under two
perspectives: a set is a “possible" (resp., “necessary") i∗-extension if
it is an extension (in the classical sense) in at least one (resp., every)
completion of the iAAF. Thus, under the complete semantics, {a, c}
is a possible (but not necessary) i∗-extension (as it is an extension
only in the rightmost completion), while {b, d} is a necessary (thus,
also possible) i∗-extension.

In the literature, there are several works investigating suitable
adaptions of the traditional extension-based reasoning paradigm to
BAFs, iAAFs [8] and their variants. A fundamental result [14, 13]
is that reasoning over BAFs, in terms of verifying extensions, is the
same as over AAFs, under the so called “Dungean" semantics (i.e.
the admissible, stable, grounded, complete, preferred semantics), in-
dependently from the semantics of supports (abstract or deductive)
and the coherence condition underlying the semantics – in fact, in
the presence of supports, it may make sense to consider more gen-
eral coherence conditions than the conflict-freeness. This means that
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Figure 1: A BAF (a), an iAAF (b) and its completions (c)
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admissible stable complete grounded preferred
d-ad s-ad c-ad d-st s-st c-st d-co s-co c-co d-gr s-gr c-gr d-pr s-pr c-pr

AAF, BAF P P P P coNP-compl
iAAF P P P P Σp

2-compl
d-iBAF NP-compl P P NP-compl NP-compl Σp

2-compl
s-iBAF P NP-compl P P NP-compl in NP NP-compl in NP Σp

2-compl

Table 1: Complexity of verifying extensions (for iAAFs and iBAFs, the possible perspective is taken into account). The prefixes d-, s- and c-
denote the coherence conditions considered for BAFs in the literature (specifically, d- consists in the conflict-freeness condition).

the verification problem over BAFs is coNP-complete under the pre-
ferred semantics and in P under every other Dungean semantics. The
same holds for iAAFs, with the only exception of the preferred se-
mantics under the possible perspective [20]: in this particular case,
the verification problem’s complexity moves from coNP-complete to
Σp

2-complete, but is the same as over AAFs in the other cases: it is in
coNP under the preferred semantics in the necessary perspective, and
in P under the other Dungean semantics, whatever the perspective.
In other words, using BAFs to specify supports or iAAFs to specify
uncertain arguments/attacks does not make the reasoning computa-
tionally more complex than over AAFs.

Pushed by the popularity of BAFs and iAAFs, we introduce
Incomplete Bipolar AAFs (iBAFs), that augment AAFs with
(abstract or deductive) supports and the possibility of specifying
which arguments, attacks, and supports are uncertain. The need for
introducing uncertain supports was thoroughly discussed in [37],
where an empirical study investigating how different people perceive
the relationships between arguments was presented and showed
that, analogously to the case of attacks, it often happens that, for a
pair of arguments a, b, some people may see a support from a to b,
while others may not. This clearly calls for resorting to the notion
of uncertain support when merging different subjective views into
a single AAF. As a real-life example motivating uncertain supports
under the deductive perspective (the case of abstract supports is
covered by several examples in [37]), consider the arguments below,
claimed in a trial against a company PharmaX producing a vaccine:
a: “As drug preparations must be sterile, mercury was used by
PharmaX as an excipient of the vaccine";
b: “As the vaccine contains harmful ingredients, it should not have
been used on humans."

Now: 1) some jurors believing that mercury is harmful may see a
deductive support (a, b), as they believe that if a is accepted then b is
accepted too; 2) other jurors believing that mercury is dangerous may
not see this support, since they adopt a more "scientific" reasoning:
they think that even if a is accepted, b may not be accepted, since
b does not take into account that toxicity may be dosage-dependent;
3) jurors believing that mercury is safe probably see no correlation
between a and b, and so on.

Starting from this, we thoroughly address the computational com-
plexity of the reasoning over iBAFs, and consider both the verifi-
cation problem (for which we investigate the variant IBVER under
the possible perspective) and the acceptance problem. Interestingly,
we show that, while adding bipolarity on top of incompleteness does
not affect the complexity of the acceptance problem (as it can be
easily shown to coincide with the case of iAAFs, where supports
cannot be specified), the simultaneous presence of bipolarity and in-
completeness makes things much more intricate for the verification
than the case where these aspects do not occur or do not co-exist, as
the complexity of IBVER depends on the combination 〈semantics of
supports, semantics of extensions〉:
1) under the stable and the preferred semantics, IBVER is in P and

Σp
2-complete, respectively, meaning that there is no additional source

of complexity compared with BAFs and iAAFs;
2) under the other Dungean semantics, IBVER may become in-
tractable (NP-complete), depending on the semantics of supports and
on the coherence condition underlying the semantics of extension,
meaning that in these cases new sources of complexity can arise from
the joint use of supports and incompleteness.

Our results on the verification problem are summarized in Table 1,
looking into which it is possible to appreciate that in some cases IB-
VER under the (variants of) the stable semantics is in P while it is NP-
complete under (variants of) the admissible semantics. This is rather
unusual in the context of frameworks generalizing AAFs, as typically
the verification problems under the admissible and stable semantics
lie in the same complexity class. Overall, the complexity analysis,
besides being relevant per se, provides further contributions: 1) the
hardness proofs give insights into conditions that can be expressed in
iBAFs and that could not be expressed in BAFs or in iAAFs; 2) the
algorithms used in the proofs of polynomial-time solvability provide
practical solutions to the verification problem.

2 Preliminaries

We assume that the reader is familiar with Abstract Argumentation
Frameworks (AAFs) and review Bipolar Abstract Argumentation
Frameworks (BAFs). We do not provide specific preliminaries for
incomplete AAFs (iAAFs) since what said in the introduction about
them provides a sufficient background.

Definition 1 [BAF] A bipolar abstract argumentation framework
(BAF) is a tuple F = 〈A,Ra,Rs〉, where A is a set of arguments,
while Ra ⊆ A×A and Rs ⊆ A×A are relations whose elements
are called attacks and supports, respectively.

If Ra (resp., Rs) contains (a, b), we say “a attacks b" or “a→ b"
(resp., “a supports b" or “a⇒ b"). Moreover, for every (a, b) in the
closure of Rs, we say that “a transitively supports b" or a⇒+ b. Since
in the following we will introduce forms of attack other than those
encoded by Ra, those in Ra will be referred to as “direct attacks".
In what follows, all the definitions and notions regarding BAFs will
be reviewed by assuming that a BAF F = 〈A,Ra,Rs〉 is given.

In the first proposal of BAF [12], supports were given an abstract
semantics, that is the opposite of the traditional semantics of attack
in AAFs. According to this semantics. the combination of supports
and direct attacks implies further attacks, called supported attacks.

Definition 2 [Supported attack] Let a, b ∈ A. There is a supported
attack from a to b (written a →s b) iff there is c ∈ A such that
a⇒+ c ∧ c→b.

Among the other semantics for supports in the literature, we con-
sider the well-established deductive semantics [9]: “a supports b”
means that if a is accepted, then b is accepted. As observed in [13],
adopting this semantics calls for considering not only direct and sup-
ported attacks, but also supermediated attacks.
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Definition 3 [supermediated attack] Let a, b ∈ A. There is a su-
permediated attack from a to b (written as a →m b) iff there is an
argument c ∈ A such that b⇒+ c ∧ (a→s c ∨ a→c).

Example 3 The BAF in Figure 1(a) has the “direct" attacks (e, b),
(b, c), (f, d), the supports (a, b), (c, d), the supported attack (a, c),
and the supermediated attacks (e, a), (f, c).

We partition BAFs into s-BAFs and d-BAFs: s-BAFs (resp., d-
BAFs) adopt the abstract (resp., deductive) semantics, so only direct
and supported attacks (resp., direct, supported and supermediated)
are considered. In BAFs of any type, a→∗ b will denote the existence
of a “generic attack" from a to b: that is, over s-BAFs, a→∗ b ≡ a→
b ∨ a→s b, while, over d-BAFs, a→∗ b ≡ a→b ∨ a→s b ∨ a→m b.

The classical notion of defense becomes: given a, b ∈ A such that
a→∗ b, the set S defends b against a if ∃s ∈ S s.t. s→∗ a. In turn,
a ∈ A is acceptable w.r.t. S ⊂ A if ∀b ∈ A such that b→∗ a, S
defends a against b.

2.1 Semantics of extensions

Three different requirements for coherence were defined: “conflict-
freeness”, “safety”, and “support closedness".

Definition 4 [Conflict-freeness, safety, support closedness] A set of
arguments S is conflict-free iff � ∃ a ∈ S such that S→∗ a, is safe iff
� ∃ a ∈ A such that S→∗ a∧ (S⇒+ a∨ a ∈ S), and is closed for Rs

iff � ∃ a ∈ A \ S such that S⇒a.

When moving from AAFs to BAFs, the classical semantics of
extensions can be adapted by imposing different combinations of
coherence requirements. In particular, we consider the following
classical semantics (denoted as “Dungean semantics”): admissible
(ad), stable (st), complete (co), grounded (gr), preferred (pr),
and start with reviewing the adaptions of the admissible one. A
set S ⊆ A that defends all of its arguments is 1) a d-admissible
(Dung-admissible) or d-ad extension iff S is conflict-free; 2) an s-
admissible (Safe-admissible) or s-ad extension iff S is safe; 3) a c-
admissible (Closure-admissible) or c-ad extension iff S is conflict-
free and closed for Rs. Given this, S is an extension of type:

– d-complete or d-co (resp., s-co, c-co) iff S is d-ad (resp., s-ad,
c-ad) and contains every acceptable argument;

– d-grounded or d-gr (resp., s-gr, c-gr) iff S is a minimal (w.r.t.
⊆) d-co (resp., s-co, c-co) extension;

– a d-preferred or d-pr (resp., s-pr, c-pr) iff S is a maximal (w.r.t.
⊆) d-co (resp., s-co, c-co) extension.

Analogously, a set S ⊆ A is a d-stable or d-st (resp., s-st,
c-st) extension iff ∀a ∈ A \ S S→∗ a and S is conflict-free (resp.,
is safe; is conflict free and closed for Rs).

Example 4 In the BAF in Figure 1(a), {a, b, f} is conflict-free and
safe, but is not a d-ad extension for s-BAF or d-BAF (since b is
not defended). Furthermore, for the s-BAF case, {a, f} is a s-ad,
s-gr and s-pr extension, {a, e, f} is a st, d-ad, d-gr, and d-pr
extension, {e, f} is a c-pr and c-gr extension. For the d-BAF case
{e, f} is the unique st extension, that is also c-pr and c-gr.

Remark 1 Safety implies conflict-freeness, and these two require-
ments are equivalent in d-BAFs (but not in s-BAFs). So, in d-BAFs,
the d- and s- variants of every semantics coincide. Furthermore, in d-
BAFs, the three variants of the semantics st coincide, as the conflict-
freeness and the requirement that an extension S attacks every argu-
ment outside S implies that S can support no argument outside itself.

We denote as BVERσ(F , S) the fundamental problem of verify-
ing if the set S of arguments is an extension over the BAF F under
the semantics σ. It is well known that the computational complex-
ity of BVER under any x-variant (with x ∈ {s, d, c}) of a classical
Dungean semantics σ is the same as the verification problem VER for
AAFs under σ, as observed in [21]. The reason is that checking if S
is an extension of a BAF F under x-σ can be done by first checking
if S is a σ-extension of the AAF obtained from F by materializing
all the implicit attacks and removing the supports, and then checking
over F the coherence requirements of x.

3 Incomplete BAFs (iBAFs)

We extend incomplete AAFs (iAAFs) [4, 8, 7, 19, 20, 23] to incom-
plete BAFs (iBAFs).

Definition 5 (iBAF) An incomplete Bipolar Abstract Argumenta-
tion Framework is a tuple 〈A,A?,Ra,R?

a,Rs,R?
s〉, where A, A?

are disjoint sets of arguments, Ra and R?
a disjoint sets of attacks be-

tween arguments in A∪A?, and Rs and R?
s disjoint sets of supports

between arguments in A ∪A?.

The arguments in A are said to be certain (they are definitely known
to exist), while those in A? uncertain (it is not known for sure if
they occur in the argumentation or not). Analogously, the attacks
in Ra and the supports in Rs are said to be certain (they are
known to occur, if both the incident arguments exist), while those
in R?

a and R?
s uncertain (they may not occur, even if both the in-

cident arguments exist). An iBAF represents alternative scenarios,
called completions, corresponding to the different combinations of
occurrence/non-occurrence of uncertain arguments/attacks/supports.

Definition 6 (Completion) A completion for an iBAF IF =
〈A,A?,Ra,R?

a,Rs,R?
s〉 is a BAF F = 〈A′,R′

a,R′
s〉 where A ⊆

A′ ⊆ (A∪A?) and Ra∩(A′×A′)⊆R′
a⊆ (Ra∪R?

a)∩(A′×A′)
and Rs ∩ (A′ ×A′)⊆R′

s⊆ (Rs ∪R?
s) ∩ (A′ ×A′).

As happens for iAAFs, the notion of extension in AAFs can be
adapted to iBAFs under a possible and a necessary perspective,
where the condition imposed by the semantics is required to be true
in at least one and every completion, respectively. This yields the
definition of i∗-extension below.

Definition 7 (i∗-extension) Given an iBAF IF and a semantics σ,
a set S is a possible (resp., necessary) i∗-extension for IF (under
σ) if, for at least one (resp., for every) completion F of IF , S is an
extension of F under σ.

In this paper, we focus on possible i∗-extensions, and address IB-
VERσ(IF , S), that is the adaption of the verification problem to
iBAFs and asks if S is a possible i∗-extension of IF under σ.

Example 5 Consider the iBAF IF obtained from the BAF in Fig-
ure 1 imposing that the argument c, the attack (b, c) and the support
(c, d) are uncertain. It is easy to see that, under both the abstract and
deductive semantics of supports, {a, c, e} is a possible i∗-extension
of IF under d-ad (as it is a d-ad extension in the completion where
(b, c) and (c, d) are not present), but it is not a possible i∗-extension
under s-ad or c-ad (as, in every completion, e→b and a⇒b).

Given an iBAF IF = 〈A,A?,Ra,R?
a,Rs,R?

s〉, every symbol
� ∈ {→,→∗,⇒,⇒+} introduced for BAFs will be used for IF with
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the semantics: a � b over IF means that a � b over the BAF 〈A ∪
A?,Ra ∪ R?

a,Rs ∪ R?
s〉. Moreover, we write a �∗ b to say that

a→∗ b in the BAF F ′ = 〈A′,R′
a,R′

s〉, where A′ = A ∪ {a, b},
R′

a = Ra ∩ (A′ × A′), R′
s = Rs ∩ (A′ × A′), i.e. there is a

generic attack from a to b even if every uncertain attack, support,
and argument (different from both a and b) is removed from IF . For
instance, consider the d-iBAF obtained from the BAF in Figure 1(b)
by adding the support (a, c). Then, b �∗ a, but not a �∗ d (since
if the uncertain attack (c, d) is removed, the supported attack (a, d)
cannot be triggered).

Attacks and supports will be also considered from sets of argu-
ments to arguments, and from arguments to sets of arguments: for
any � ∈ {→,→s,→m,→∗,⇒,⇒+,�∗}, S � a (resp., a � S) means that
there is b ∈ S such that b�a (resp., a�b). Moreover, we write IF\X ,
where X ⊆ A?, to denote the iBAF obtained from IF by remov-
ing all the arguments in X and the attacks and supports involving an
argument in X .

4 Computational Complexity of Verifying
i∗-extensions

We here provide a thorough analysis of the complexity of reason-
ing over iBAFs (in terms of solving IBVER), where the sensitivity
to the semantics of supports and the semantics of extensions is stud-
ied. Theorem 1 states a general upper bound for the complexity of
IBVER.

Theorem 1 For both s- and d- iBAFS. IBVERσ(IF , S) is in NP
under every semantics x-σ, with x ∈ {s, d, c} and σ ∈ {ad, st,
co, gr}, and in Σp

2 under every semantics x-pr, with x ∈ {s, d, c}.

Proof. IBVERσ(IF , S) can be solved by guessing a completion F
of IF and then solving BVERσ(F , S). Thus, IBVER is in NP (resp.,
Σp

2) when BVER is in P (resp., coNP). �

Under the variants of the preferred semantics, it is easy to see that the
upper bound of Theorem 1 is tight, so IBVER is Σp

2-complete. In fact,
the Σp

2-hardness holds for iAAFs [8], that are iBAFs where supports
are not used. We now focus on the variants of the other semantics,
and show when the upper bound is tight or not. We consider s-and
d- iBAFs separately, in order to highlight the role of the supports’
semantics in the complexity.

4.1 Reasoning over s-iBAFs

Theorem 2 states under which semantics IBVER over s-iBAFs is NP-
complete. This result (and all the NP-hardness results in this paper)
is proved by showing reductions from the problem 3-SAT(φ) of de-
ciding the satisfiability of a 3-CNF formula φ. To avoid repetitions,
in all these reductions we assume that the formula φ has the form
φ = C1 ∧ · · · ∧Cm, where each clause Cj is a disjunction of literals
l1j ∨ l2j ∨ l3j , and each literal is a variable xi or its negation ¬xi from
the set of variables X = {x1, . . . , xn}.

Theorem 2 Over s-iBAFs, IBVERσ is NP-complete under σ ∈
{s-ad, d-co, s-co, d-gr, s-gr}.

Proof. Reducing 3-SAT(φ) to IBVERσ(IF , S) under σ = s-ad. Let
IF = 〈A,A?,Ra,R?

a,Rs,R?
s〉 be the iBAF where:

−A contains the arguments: 1) φ; 2) Cj , for each j ∈ [1..m]; 3) xi,
¬xi, x̂i, ¬x̂i, for each i ∈ [1..n];
− Ra contains: 1) (Cj , φ) for each j ∈ [1..m], 2) (x̂i, Cj) (resp.,

(¬x̂i, Cj)) whenever the literal xi (resp., ¬xi) occurs in Cj , 3)
(¬x̂i, x̂i), for each i ∈ [1..n];
− R?

s contains (xi, x̂i), (¬xi,¬x̂i) for each i ∈ [1..n];
− A? = R?

a = Rs = ∅.
Figure 2 shows IF for φ = C1 ∧ C2 = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x2 ∨ ¬x3). We prove the correctness of the reduction by proving
“φ is satisfiable" ⇔ “S={φ, x1,¬x1, . . . , xn,¬xn} is an s-ad ex-
tension of IF".
(⇒): Let t be a satisfying truth assignment over X , and F the com-
pletion of IF containing, for each i ∈ [1..n], the support (xi, x̂i)
(resp., (¬xi,¬x̂i)) iff t(xi) = TRUE (resp., t(xi) = FALSE). As t
makes φ true, each Cj is the target of at least one supported attack
from some xi or ¬xi, hence φ is defended by S against the attacks
from C1, . . . , Cm, thus S is an s-ad extension of F .
(⇐): Let F be a completion of IF such that S is an s-ad ex-
tension of F . Consider the following relation t between X and
{TRUE, FALSE}: t = {(xi, TRUE)|(xi, x̂i) is a support in F} ∪
{(xi, FALSE)|(¬xi,¬x̂i) is a support in F} ∪ {(xi, FALSE)| neither
(xi, x̂i) nor (¬xi,¬x̂i) are supports in F}. Since S is an s-ad ex-
tension of F , there is no x̂i such that xi⇒ x̂i and ¬xi→∗ x̂i. Thus,
there is no i ∈ [1..n] such that F contains both the supports (xi, x̂i)
and (¬xi,¬x̂i) (the latter implies ¬xi →s x̂i). Hence, t is a truth
assignment over X , as it assigns exactly one truth value to every xi.
In F , since S is an s-ad extension, φ is defended by S against the
attacks from C1, . . . , Cm, thus every Cj must be the target of at least
one supported attack from some xi or ¬xi. In turn, this means that,
for every clause Cj , t makes at least one literal in Cj true, meaning
that t makes φ satisfied.
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(b) Case s-co

Figure 2: φ = C1 ∧ C2 = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
(supports are depicted as dashed lines)

Reducing 3-SAT(φ) to IBVERσ(IF , S) under σ ∈ {d-co,
s-co, d-gr, s-gr}. We focus on σ = s-co, as a similar rea-
soning over the same construction works in the other cases. Let IF
be the iBAF 〈A,A?,Ra,R?

a,Rs,R?
s〉 where:

− A contains the arguments: 1) φ; 2) Cj , for each j ∈ [1..m]; 3)
xi, ¬xi, x̂i, ¬x̂i, yi, ¬yi, zi for each i ∈ [1..n];
− Ra contains: 1) (Cj , φ) for each j ∈ [1..m], 2) (x̂i, Cj)
(resp., (¬x̂i, Cj)) whenever the literal xi (resp., ¬xi) occurs in
Cj , 3) (zi, x̂i), (zi,¬x̂i), (yi, yi), (¬yi,¬yi), (x̂i, yi), (¬x̂i,¬yi),
(yi, zi), (¬yi, zi), for each i ∈ [1..n];
− R?

s contains (xi, x̂i), (¬xi,¬x̂i) for each i ∈ [1..n];
− A? = R?

a = Rs = ∅.
We prove the correctness of the reduction by proving the equiva-
lence: “φ is satisfiable" ⇔ “S = {φ, x1,¬x1, . . . , xn,¬xn} is a
s-co extension of IF".
(⇒): Let t be a satisfying truth assignment over x1, . . . , xn,
and F the completion of IF containing, for each i ∈ [1..n]
the support (xi, x̂i) (resp., (¬xi,¬x̂i)) iff t(xi) = TRUE (resp.,
t(xi) = FALSE). It is easy to see that S is an s-ad extension of
F , since it is conflict-free, it attacks no argument supported by
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itself (that is, no x̂i or ¬x̂i) and defends its arguments, since the
fact that t makes φ true implies that each Cj is the target of at
least one supported attack from some xi or ¬xi, thus φ is defended
by S against the attacks from C1, . . . , Cm. Moreover, there is
no argument outside S acceptable w.r.t. S, since: 1) every Cj is
attacked by S; 2) every x̂i and ¬x̂i is not defended by S against the
attack from zi; 3) every ŷi and every ¬ŷi attacks itself; 4) every zi
is defended by S against only one of the attacks from yi and ¬yi,
since S →s yi iff t(xi) = TRUE, and S →s ¬yi iff t(xi) = FALSE.
Hence, S is an s-co extension of F .

(⇐): Let F be a completion of IF such that S is an s-co ex-
tension of F . Consider the following relation t between X and
{TRUE, FALSE}: t = {(xi, TRUE)|(xi, x̂i)is a support in F} ∪
{(xi, FALSE)|(¬xi,¬x̂i) is a support in F} ∪ {(xi, FALSE)| neither
(xi, x̂i) nor (¬xi,¬x̂i) are supports in F}.

Since S is an s-co extension of F , no argument zi is acceptable
w.r.t. S, meaning that for every i ∈ [1..n] at least one of the supports
(xi, x̂i), (¬xi,¬x̂i) is not in F (otherwise, F would contain both
the supported attacks (xi, yi), (¬xi,¬yi), that defend zi against the
attacks from yi and ¬yi). Hence, t is a truth assignment over X ,
as it assigns exactly one truth value to every xi. Since S is an s-co
extension, φ is defended by S against the attacks from C1, . . . , Cm,
thus every Cj must be the target of at least one supported attack
from some xi or ¬xi. In turn, this means that t makes true at least
one literal in every Cj , meaning that t makes φ satisfied. �

We now address the semantics not covered above, and show that
under them IBVER is in P. Preliminarily, we introduce some proper-
ties that may be satisfied or not by a given s-iBAF, and a lemma, that
will help the reasoning in the main theorem’s proof.

Definition 8 Properties p1, p2, p3 are satisfied by an s-iBAF IF=
〈A,A?,Ra,R?

a,Rs,R?
s〉 and a set S ⊆ A ∪A? iff:

– p1: R?
a∩

((A ∪A?
)× S

)
= ∅, i.e. there are no uncertain attacks

towards S;
– p2: � ∃a ∈ A? \S s.t. a�∗S, i.e. there are no uncertain arguments
that will (generically) attack S even if every other uncertain argu-
ment/attack/support is removed;
– p3: � ∃(a, y) ∈ R?

s s.t. y ∈ A ∧ y�∗S, i.e. there are no uncertain
supports towards certain arguments that will (generically) attack S
even if every other uncertain argument/attack/support is removed.

Lemma 1 Let IF = 〈A,A?,Ra,R?
a,Rs,R?

s〉 be an s-iBAF and
S ⊆ A ∪A?. Then:
I) under σ ∈ {d-ad, c-ad, d-st, s-st, c-st}, S is a possi-
ble i∗-extension of IF iff it is a possible i∗-extension of IF ′ =
〈A,A?,Ra,R?

a \ ((A ∪A?
)× S

)
,Rs,R?

s〉;
II) under σ ∈ {d-ad, d-st}, if p1 is satisfied, then, ∀a ∈ A? \ S
s.t. a �∗ S, S is a possible i∗-extension of IF iff S is a possible
i∗-extension of IF ′ = IF \ {a};
III) under σ ∈ {d-ad, d-st}, if p1, p2 are satisfied, then ∀(a, y) ∈
R?

s s.t. y ∈ A∧ y�∗S, S is a possible i∗-extension of IF iff S is a
possible i∗-extension of IF ′ = IF \ {(a, y)}.

The theorem below states under which semantics IBVER is in P.
Its proof (for the case σ = d-ad) relies on the correctness of Algo-
rithm 1, that first enforces properties p1, p2, p3 by removing the un-
certain attacks/arguments/supports making them violated, and then
returns as answer the result of the verification performed over the
completion containing all the uncertain arguments/attacks/supports
that were not removed. The other cases can be solved via minor
changes to the strategy of Algorithm 1.

As for c-co and c-gr, the general NP upper bound of Theorem 1
holds and a tighter characterization is left to future work.

Theorem 3 Over s-iBAFs, IBVERσ is in P under σ ∈ {d-ad, c-ad,
d-st, s-st, c-st}.

Proof. (σ = d-ad, the other cases are analogous). We first prove
that Algorithm 1 is correct (i.e. it returns true iff S is a possible
i∗-extension for IF under σ =d-ad). Lemma 1 implies that, under
σ = d-ad, S is a possible i∗-extension for IF iff S is a possible i∗-
extension for the iBAF IF ′ constructed by Lines 1- 5. Thus, to prove
the correctness of Algorithm 1, it suffices to prove the equivalence
EQ: “S is a d-ad extension of F ′”⇔ “S is a possible i∗-extension
for IF ′ under d-ad”, where F ′ is the BAF built at Line 6 and IF ′

the iBAF buillt by Lines 1- 5. The ⇒ direction is straightforward.
We prove the ⇐ direction reasoning by contradiction. Assume that
S is a possible i∗-extension for IF ′ under d-ad and S is not a d-ad
extension of F ′. Let F be a completion of IF ′ such that S is a d-ad
extension of F . Since S is not a d-ad extension of F ′, (at least) one
of the following holds:

i) ∃a, b ∈ S such that a→∗ b,
ii) ∃a ∈ S and ∃b ∈ A′ \ S such that b→∗ a and S does not

defend a against b.

We show that i) and ii) yield contradictions. If i) holds, a →∗ b
also over F , as all the supports/attacks and arguments that imply the
presence of the attack (a, b) over F ′ are certain in IF ′, as implied
by p1, p2, p3. Hence, S is not a d-ad extension of F , as it is not
conflict free, which is a contradiction. If ii) holds, properties p1, p2
and p3 imply that b→∗ a over F . Hence, since S is a d-ad extension
of F , S → b over F , and this, in turn, implies that S → b over
F ′, as every uncertain attack in IF ′ from S towards arguments not
in S is present in F ′. Therefore, S defends a against b, which is a
contradiction. This completes the proof of EQ and of the correctness
of Algorithm 1. Then, the statement follows from the fact that that
Algorithm 1 runs in polynomial time. �

4.2 Reasoning over d-iBAFs

Theorem 4 Over d-iBAFs, IBVERσ is NP-complete under σ ∈
{d-ad, s-ad, d-co, s-co, c-co, d-gr, s-gr, c-gr}.

Proof. Reducing 3-SAT(φ) to IBVERσ(IF , S) under σ ∈ { d-ad,
s-ad }. Since the two semantics d-ad, s-ad coincide in d-
iBAFs (see Remark 1), we consider σ = s-ad only. Let

Algorithm 1 Solving IBVERσ(IF , S) under σ = d-ad

Input: IF = 〈A,A?,Ra,R?
a,Rs,R?

s〉; S ⊆ A ∪A?

Output: TRUE iff S is a possible i∗-extension for IF under d-ad;

Initialize IF ′ as the maximal “sub-iBAF" of IF that satisfies p1
1: IF ′ = 〈A′,A′?,R′

a,R′?
a ,R′

s,R′?
s 〉, where

A′ = A; A′? = A?; R′
a = Ra; R′

s = Rs; R′?
s = R?

s

R′?
a = R?

a \ ((
A ∪A?

)× S
)

Enforce p2
2: while ∃a ∈ A′? \ S s.t. ∃s ∈ S where a�∗ s in IF ′ do
3: IF ′ = IF ′ \ {a}

Enforce p3
4: while ∃(a, y) ∈ R′?

s s.t. y ∈ A′ ∧ y�∗S in IF ′ do

5: R′?
s = R′?

s \ {(a, y)}
6: F ′ = 〈A′ ∪ A′?,R′

a ∪R′?
a ,R′

s ∪R′?
s 〉

7: return TRUE if S is a d-ad extension of F ′; FALSE otherwise
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Algorithm 2 Verifying c-ad extensions over d-iBAFs

Input: IF = 〈A,A?,Ra,R?
a,Rs,R?

s〉; S ⊆ A ∪A?;
Output: TRUE iff S is a possible i∗-extension for IF under c-ad;
1: F ′ = 〈A′,R′

a,R′
s〉: where

A′ = A ∪A? \ {
a ∈ A? | ∃x ∈ S s.t. (x, a) ∈ Rs

}

R′
a = Ra ∪ (R?

a \ (S × S)
)

R′
s = Rs ∪ (R?

s \ (S × (A′ \ S))
)

2: if S is not conflict free and closed for R′
s in F ′ then

3: return FALSE
4: R′

a = R′
a \ {(x, s) ∈ R?

a| s ∈ S ∧ not S→∗ y}
5: while ∃(y, s) ∈ R′

a s.t. s ∈ S and not S→∗ y do

6: if y ∈ A? then F ′ = F ′ \ {y} else return FALSE
7: return TRUE

IF = 〈A,A?,Ra,R?
a,Rs,R?

s〉 be the iBAF where:
− A? = ∅, while A contains the arguments: 1) φ; 2) Cj , for each
j ∈ [1..m]; 3) xi, ¬xi, x̂i, for each i ∈ [1..n];
− Ra contains: 1) (Cj , φ) for each j ∈ [1..m], 2) (x̂i, Cj)
whenever the literal ¬xi occurs in Cj ;
− Rs contains (Cj , x̂i) whenever the literal xi occurs in Cj ;
− R?

a contains (xi, x̂i), for each i ∈ [1..n];
− R?

s contains (¬xi, x̂i), for each i ∈ [1..n].
Similarly to the previous NP-hardness results, the correctness
of the reduction is due to the equivalence: “φ is satisfiable" ⇔
“S = {φ, x1,¬x1, . . . , xn,¬xn} is a s-ad extension of IF". The
proof for σ ∈ {d-co, s-co, c-co, d-gr, s-gr, c-gr} uses an
analogous reasoning. �

As for the other semantics, Theorem 5 below states that IBVER

is in P for the semantics not considered in Theorem 4 (under which
IBVER is NP-complete). For the case σ = c-ad, the core of the
tractability result of Theorem 5 is Algorithm 2. This algorithm first
computes the completion F containing all the certain and uncertain
arguments/attacks/supports except: 1) the uncertain attacks between
arguments in S, 2) the uncertain arguments that are supported (via
certain supports) by S, and 3) the uncertain supports from S towards
arguments outside S. After checking in F if S is conflict free and
closed for supports (otherwise, it returns FALSE), it considers every
undefended attack (a, s) towards S and tries to remove it from F :
it accomplishes this in the two cases where (a, s) was uncertain
in IF (in this case, (a, s) is directly removed from F ) or a was
uncertain in IF (in this case, (a, s) is removed as the side effect of
removing a). Finally, it returns TRUE if and only if the so obtained
F contains no more undefended attacks towards S. Basically, the
proof of Theorem 5 consists in showing that this strategy is correct:
as F is obviously a completion for which S is a c-ad extension,
the hard part of the proof consists in showing that, if the algorithm
returns FALSE, there is no completion (different from F ) for which
S is a c-ad extension.

Theorem 5 Over d-iBAFs, IBVERσ is in P under σ ∈
{c-ad, d-st, s-st, c-st}.

Proof. Case σ = c-ad (the other cases can be proved with similar
reasoning). We first prove that Algorithm 2 is correct (it returns TRUE

iff S is a possible c-ad i∗-extension of IF ). The only if direction is
straightforward as Algorithm 2 returns TRUE iff S is a c-ad exten-
sion of F ′, which is a completion of IF . We prove the if direction
reasoning by contradiction. Assume that S is a possible c-ad exten-
sion of IF , but Algorithm 2 returns FALSE. If FALSE is returned at
line 3, at least one of the following cases holds:

c1 : ∃(x, y) ∈ Ra ∩ (S × S);

c2 : ∃(x, y) ∈ Rs ∩ (S × (A \ S)).
As in both cases there is no completion of IF where S is conflict
free and closed for supports, S is not a possible c-ad extension of
IF , which is a contradiction. This means that FALSE is returned at
line 6. We use the following claim.

Claim 1 Assume that Algorithm 2 returns FALSE at some iteration of
the while loop (lines 5-6), and let j be the iteration at which FALSE

is returned. Let i < j and F i = 〈Ai,Ri
a,Ri

s〉 be the completion
generated at the end of the i-th step of the while loop. For any com-
pletion F ′′ = 〈A′′,R′′

a ,R′′
s 〉 of IF , if A′′\Ai �= ∅ or R′′

a \Ri
a �= ∅

or R′′
s \ Ri

s �= ∅, then S is not a c-ad extension of F ′′.

Let n be the while step before the one at which Algorithm 2 returns
FALSE. Now, for any completion F ′′ of IF such that A′′ \ An �= ∅
or R′′

a \ Rn
a �= ∅ or R′′

s \ Rn
s �= ∅, Claim 1 implies that S is not

a c-ad extension of F ′′. Moreover, for any completion F ′′ of IF
such that A′′ \An = ∅ and R′′

a \Rn
a = ∅ and R′′

s \Rn
s = ∅, it holds

that ∃(y, x) ∈ R′′
a s.t. x ∈ S and not S→∗ y and (y, x) �∈ R?

a and
y �∈ A?, and then S is not a c-ad extension of F ′′ either, as y attacks
S but is not attacked by S in F ′′. Thus, every completion F ′′ of IF
is such that S is not a c-ad extension of F ′′, which is a contradiction.
This completes the proof of the correctness of Algorithm 2. The fact
that Algorithm 2 runs in polynomial time concludes the proof for
σ = c-ad. The proof for σ ∈ {d-st, s-st, c-st} is analogous. �

5 The Acceptance Problem

We start from the classical definitions of credulous acceptance (CA)
and skeptical acceptance (SA) over AAFs:
“CAσ(a, F ) (resp., SAσ(a, F )) is the problem of deciding if the ar-
gument a is in at least one (resp., every) extension of the AAF F "

Then, we consider the adaption of the acceptance problem in-
troduced in [7] for iAAFs (where supports are not considered).
That is, we consider the four variants of the acceptance problem
PCA,PSA,NCA,NSA, where the credulous (C) and skeptical (S) per-
spectives implied by the presence of multiple extensions are com-
bined with the possible (P) and necessary (N) perspectives implied
by the presence of multiple completions:
“PXAσ(a, IF ) (resp., NXAσ(a, IF )), where X ∈ {C,S}, is the
problem of deciding if in at least one (resp., every) completion F
of IF the answer of XA(a, F, σ) is yes."

Now, we naturally extend the acceptance problem to the case of
iBAFs by using the same definition above, with the only difference
that now IF is an iBAF.

In order to provide a complexity characterization of the accep-
tance problems over iBAFs, we start from what is known about the
same problems over iAAFs. A complete picture of the complexity of
PCA, NCA, PSA, NSA over iAAFs is given by Table 2, taken from [7].
From Table 2, it turns out that, except for the trivial case of PSA and
NSA under σ =ad, under the other Dungean semantics PCA, NCA,
PSA, NSA over iAAFs are complete for complexity classes above
P in the polynomial hierarchy. An immediate consequence is that,
except for the above mentioned trivial cases, PCA, NCA, PSA, NSA

over (s- and d-) iBAFs are hard for the same classes as over iAAFs,
since iAAFs are iBAFs without supports. Moreover, the guess-and-
check strategies used in [7] to prove the memberships work also in
the case of s- and d- iBAFs, after a minor change to the check phase.
In fact, in the case of iBAFs, the guessed completion is a BAF (while
in the case of iAAFs, the guessed completion is an AAF). Hence,
the check phase over iBAFs simply consists in performing the same
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Semantics σ PCA NCA PSA NSA
ad NP-c Πp

2-c trivial trivial
st NP-c Πp

2-c Σp
2-c coNP-c

gr NP-c coNP-c NP-c coNP-c
co NP-c Πp

2-c NP-c coNP-c
pr NP-c Πp

2-c Σp
3-c Πp

2-c

Table 2: Computational complexity of the (variants of) the acceptance
problem over iAAFs and iBAFs. As for iBAFs, the results hold for s-
iBAFs and d-iBAFs and for all the coherence conditions (d-,s-,c-).

check phase done over iAAFs after two preliminary steps: 1) trans-
lating the guessed completion/BAF into an equivalent AAF where
the implicit attacks are materialized; 2) checking the coherence con-
dition (conflict-freeness, safety, or support closedness). Since 1) and
2) can be done in polynomial time, the check phase over iBAFs has
the same complexity as over iAAFs, thus also the memberships re-
ported in the table above hold for iBAFs.

What said above, along with the fact that, under σ = x-ad (with
x ∈ {d, s, c}), it is straightforward to see that PSA and NSA over
iBAFs are trivial (as over iAAFs), proves the following statement.

Theorem 6 The computational complexities of PCA, NSA, PSA and
NSA over d-iBAFs and s-iBAFs and for all the coherence conditions
(d-,s-,c-) are reported in Table 2.

6 Related Work

BAFs (along with the abstract semantics of supports) were first intro-
duced in [12], and then revisited in [9, 35, 36], where the deductive,
necessary, evidential semantics (that are comprehensively reviewed
in [13]) were introduced, respectively. We observe that the results in
this paper hold also under the necessary semantics, that is dual to
the deductive one (as necessary supports are deductive supports in
the opposite direction). More recently, alternative supports’ seman-
tics have been proposed in [38, 39], where supporting arguments are
capable of defending the supported arguments. Analogously, the se-
mantics in [27] pursues the idea of enforcing some monotonicity, in
the sense that supports are prevented from decreasing the acceptance
degree of arguments (from skeptically to credulously accepted, or
even rejected). In fact, the various semantics in the literature catch
different intuitions on the meaning of supports, so there can hardly
be consensus on which is the most natural one. In this context, this
paper has focused on two traditional and well-established semantics
of supports, and proposes a line of research that is worth investigating
under the other semantics in the literature.

Further related works are those where correlations similar to sup-
ports have been investigated, such as the subarguments in [33]
(which are closely related with necessary supports [15]), the depen-
dencies in [10, 43], the pro arguments in [29], as well as the accep-
tance conditions of Abstract Dialectical Frameworks [10], that can
express different forms of supports.

As for iAAFs, they were introduced in [8], and their semantics
based on i∗-extensions in [20]. Previously, Partial Argumentation
Frameworks (PAFs) had been introduced in [11] to encode incom-
pleteness affecting attacks. The possibility of specifying correla-
tions over iAAFs between uncertain arguments/attacks was studied
in [19, 23, 31], where correlations are expressed in terms of con-
straints restricting the set of completions to be considered in the rea-
soning (thus, in spirit, these constraints are different from constraints
and preferences studied in the deterministic setting [5, 2, 1]). A re-
cent survey discussing how iAAFs are related to the forms of incom-
pleteness encoded in other variants of AAFs (such as Control Ar-

gumentation Frameworks [34]) can be found in [32]. The reasoning
over AAFs in the presence of incompleteness is also related to re-
vising AAFs to enforce the existence of an extension [6], or to make
a set an extension [16], even when information on the agents who
claimed the arguments is available [26]. In this regard, this paper
suggests that the enforcement problem over BAFs is worth investi-
gating, since it may raise issues that are not present over AAFs (as
the enforcement over BAFs would require the insertion/removal of
supports to be considered as a new primitive, that comprises the in-
sertion/removal of groups of attacks).

iBAFs are also related to probabilistic BAFs (prBAFs) [21], that
merge BAFs with prAAFs (i.e. probabilistic AAFs adopting the con-
stellations approach [3, 17, 22, 24, 28, 30]): basically, iBAFs can be
viewed as prBAFs where all the uncertain terms of the dispute are
independent one from another, and no measure of this uncertainty is
given. However, the results in this work are not subsumed by those
in [21], where the problem P-EXT of computing the probability of ex-
tensions (that is the probabilistic counterpart of the verification) has
been shown to be highly intractable under independence (i.e. FP#P -
complete) for every combination of semantics of supports and exten-
sions. Indeed, the results obtained for prBAFs neither subsume those
in this paper nor make them less surprising: on the one hand, the
role of assembling supports and probabilities in the high complexity
of P-EXT over prBAFs is blurred by the fact that P-EXT is already
FP#P -hard under most of Dungean semantics over prAAFs (without
supports). On the other hand, the FP#P -hardness of P-EXT gives no
hint for a tight complexity characterization of IBVER, as the source
of complexity related to the counting mechanism underlying prob-
ability evaluation is absent in the verification problem (in fact, the
literature contains several functional problems complete for “hard"
complexity classes, whose decision counterparts are in P).

Finally, the framework in [42] is related to iBAFs since it mixes
probabilities, supports (in the form of subarguments [41]) and a form
of incompleteness: it allows labelings where some arguments are
marked as “OFF" (thus, excluded from the reasoning), but the se-
mantics of “OFF" differs from iBAFs’ “non-occurrence", since the
“OFF" label is propagated to the supporting arguments (and this does
not happen with non-occurrence).

7 Conclusions and Future Work

We have augmented Abstract Argumentation Frameworks with the
possibility of simultaneously specifying supports between arguments
(according to the traditional abstract and deductive supports’ seman-
tics) and the presence of uncertain elements of the argumentation
graph. We have studied the computational complexity of fundamen-
tal reasoning problems, and obtained a surprising result regarding the
verification problem under the possible semantics: we have shown
that, although bipolarity and incompleteness do not affect the com-
plexity of this problem under the Dungean semantics (except for the
preferred semantics) if considered separately, they may have a deep
impact on the tractability/intractability of this problem when jointly
used. Future work will focus on: 1) the two cases (under the variants
c-co and c-gr of the complete and grounded semantics) for which
the complexity characterization in this paper was not tight, and 2)
extending the study to the necessary perspective of the verification
problem, and 3) extending iBAFs with the possibility of specifying
correlations between uncertain arguments/attacks/supports, as done
in [19, 23] for arguments and attacks only.
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