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Abstract. The dynamics of real-world applications and
systems require efficient methods for improving infeasible solu-
tions or restoring corrupted ones by making modifications to
the current state of a system in a restricted way. We propose
a new framework of solution discovery via reconfiguration for
constructing a feasible solution for a given problem by execut-
ing a sequence of small modifications starting from a given
state. Our framework integrates different aspects of classical
local search, reoptimization, and combinatorial reconfiguration.
We exemplify our framework on a multitude of fundamental
combinatorial problems, namely Vertex Cover, Indepen-
dent Set, Dominating Set, and Coloring. We study the
classical as well as the parameterized complexity of the so-
lution discovery variants of those problems and explore the
boundary between tractable and intractable instances.

1 Introduction

In many dynamic real-world applications of decision-making
problems, feasible solutions must be found starting from a
certain predetermined system state. This is in contrast to the
classical academic problems where we are allowed to compute
a feasible solution from scratch. However, when constructing
a new solution from scratch, we have no control over the
difference between the current state and the new target one.
In this work, we develop a new framework, where we aim for
modifying some, possibly infeasible, solution to a feasible one
via a bounded number of “small” modification steps.
As an example, consider a frequency assignment prob-

lem [1, 24] where a number of agents communicate via wireless
message transmissions. Each agent can broadcast over a fixed
frequency. Any two nearby agents are required to operate
over different frequencies, as otherwise their signals would
interfere, which must be avoided. The objective is to assign a
given number of frequencies such that no interference occurs.
This problem can conveniently be modeled as a graph coloring

problem. The vertices of the graph represent the agents and
two vertices are connected by an edge if they are close to one
another and frequencies of the corresponding agents could in-
terfere. Then, the frequencies correspond to colors assigned to
the vertices, as adjacent vertices must receive distinct colors.
Now, consider the situation where agents have already been

assigned frequencies that cause some interference. This might
happen to a previously correct (non-interfering) system, e.g.,
because new agents were added, locations changed, or the
broadcasting range increased. Recomputing a valid coloring
from scratch might be undesirable as this may induce many
changes in the system. Depending on the given infeasible
assignment, it might be possible to satisfy the feasibility con-
straints by just a few controlled changes to the coloring. A
change however, may trigger other changes, and the question
is whether a “cheap” reconfiguration of the system into a
valid state is possible. In terms of graph coloring, the solution
discovery variant of the problem has as input a non-proper
coloring of a graph using a fixed number of colors and a fixed
budget. The goal is to transform the given non-proper coloring
into a proper one such that the number of recoloring steps
does not exceed the budget (various definitions of a recoloring
step exist; we discuss the most common ones later).
As a second motivation for our framework, consider a group

of mobile agents tasked with monitoring (parts of) a country
(represented by a graph) for security threats, such as natural
disasters. Each agent is responsible for monitoring a certain
subset of the country (a few cities), and the cities are connected
in a way that reflects the adjacencies between the different
parts of the network. The agents in a dominating set would
represent agents that are able to monitor the entirety of the
parts of interest. By identifying a small dominating set in
this graph, it is possible to identify/place a small number of
agents that are responsible for maintaining the security of the
country. In a real-world application, agents can be retired from
or added to the system or the areas of interest to monitor
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(i.e. cities) can also change over time. Given that it is most
likely expensive to move the agents around (think of agents as
being mobile monitoring vehicles), it is desirable to be able to
compute a new dominating set in the modified system while
accounting for the cost of transformation steps.
In this work, we propose a new framework that models such

solution discovery problems. We focus on fundamental graph
problems, where we are given a graph G and an integer k and
the goal is to find a feasible solution of size (at least/most) k,
e.g., finding a vertex subset with certain properties (such as
an independent set, vertex cover, dominating set) of size k or
a proper vertex coloring using at most k colors. We introduce
the solution discovery variant of such problems, where we are
given a graph G, a starting configuration of size k (which is
not necessarily a feasible solution), and a budget b. The goal is
to transform the starting configuration into a feasible solution
using at most b modification steps.
We restrict the modification steps to changes along edges of

the graph that can be described as token sliding. We borrow
this notion from the area of combinatorial reconfiguration [40,
37] and we may also discuss related notions such as token
addition/removal resp. swapping and jumping. The restriction
of modification steps in this way does not only give a precise
characterization of a “small” change in the system state, but
it also appropriately captures situations in which a solution
can be modified by moving entities along edges in a graph
such as in the two examples presented above. More generally,
we model applications where items/agents can be moved only
along links in a given physical network such as road networks
or computer networks, or whenever there are restrictions on
the movement trajectories.
The solution discovery framework is related to other ap-

proaches transforming one solution into another such as local
search [2], reoptimization [5], dynamic algorithms [27], and
combinatorial reconfiguration [37, 40]. The key characteristics
of our framework are: we ask for finding a feasible solution
starting from a predefined system state (as in local search,
dynamic algorithms, reoptimization), but we restrict the local
modification steps as is in combinatorial reconfiguration.
We demonstrate our framework by applying it to the Ver-

tex Cover, Independent Set, Dominating Set, and Col-
oring problems. These are prominent combinatorial problems
in artificial intelligence, see e.g. [11, 26, 28, 35, 39, 41], with
plenty of applications, including feature selection [43], schedul-
ing, planning, resource allocation [4], frequency assignment [1],
network security [12], sensor systems [32], etc. These are central
and well-studied problems also from the perspective of local
search, reoptimization, and combinatorial reconfiguration.
We initiate the study of solution discovery problems. We

identify polynomial-time solvable cases and show that most
solution discovery problems are NP-hard already on quite re-
stricted classes of graphs and hence considered intractable
from a classical complexity-theoretic point of view. There-
fore, we also apply the theory of parameterized complexity [18],
which provides a powerful framework to overcome this obstacle.
The key goal in this theory is to find one or more additional
dimensions by which to measure the inputs to (NP-hard) com-
putational problems, called the parameter(s), and to provide
algorithms whose running time restricts the combinatorial
explosion to the parameter(s). On instances where the param-
eter values are relatively small, parameterized algorithms are

efficient. For our applications, we are naturally concerned with
finding small sequences from initial to target configurations.
Therefore, the number of reconfiguration steps, i.e., the bud-
get, is one ideal candidate for parameterization. Other natural
candidate parameters are the size of configurations as well as
structural graph parameters.

1.1 Solution discovery via reconfiguration
We formally define the solution discovery variant of graph
vertex-subset problems as follows. Let Π be a vertex subset
problem, i.e., a problem defined on undirected graphs such that
a solution consists of a subset of vertices. The Π-Discovery
problem is defined as follows. We are given a graph G, a subset
S ⊆ V (G) of size k (which at this point is not necessarily
a solution for Π), and a budget b (as a positive integer).
We assume that each vertex in S contains a token (which
corresponds to an agent). The goal is to decide if we can move
the tokens on S using at most b moves such that the resulting
set is a solution for Π.
Depending on the underlying problem, different notions

of token moves have been established in the reconfiguration
literature. That is, for token configurations Q, Q′ ⊆ V (G),
we have the following models. In the token sliding model, we
say a token slides from u ∈ V (G) to v ∈ V (G) if u ∈ Q,
v �∈ Q, v ∈ Q′, u �∈ Q′, and {u, v} ∈ E(G). In the token
jumping model, a token jumps from u ∈ V (G) to v ∈ V (G)
if u ∈ Q, v �∈ Q, v ∈ Q′, and u �∈ Q′. Finally, in the token
addition/removal model, a token is added to vertex v ∈ V (G)
if v �∈ Q and v ∈ Q′. Similarly, a token is removed from vertex
v ∈ V (G) if v ∈ Q and v �∈ Q′.
We note that we focus on the sliding model for vertex subset

problems as most of our results for Π-Discovery are based
on it. By instantiating Π with Vertex Cover, Independent
Set, or Dominating Set, we obtain the Vertex Cover
Discovery, Independent Set Discovery, or Dominating
Set Discovery problem, respectively.
Similar to the vertex subset discovery problems, we define

the Coloring Discovery problem and specify the reconfigu-
ration moves in Section 5. Coloring is a very fundamental
combinatorial problem and does not fall into the class of vertex
subset problems. We selected it to exemplify the richness of
our solution discovery framework beyond problems in which
the solution is a single vertex set satisfying certain properties.

1.2 Our results
We study the classical as well as the parameterized complexity
of solution discovery problems and prove the following results.
All proofs that are missing due to space constraints can be
found in the appended full version. To formally state our
results, we assume some familiarity with graph theory, the
considered problems, and (parameterized) complexity.

Vertex Cover Discovery: We show that the problem is
polynomial-time solvable on every fixed graph class of bounded
treewidth (that is, XP for parameter treewidth), FPT for
parameter k on general graphs and FPT for parameter b when
restricted to structurally nowhere dense classes of graphs. On
the negative side, we show that the problem is NP-complete
even on planar graphs of maximum degree four and W[1]-hard
for parameter b, even on 2-degenerate bipartite graphs.

M.R. Fellows et al. / On Solution Discovery via Reconfiguration 701



Independent Set Discovery: We show that the problem
is XP for parameter treewidth, FPT for parameter k on
d-degenerate and nowhere dense classes as well as FPT for pa-
rameter b on structurally nowhere dense classes of graphs. On
the negative side, we show that the problem is NP-complete
even on planar graphs of maximum degree four, W[1]-hard
for parameter k + b even on graphs excluding {C4, . . . , Cp}
as induced subgraphs (for any constant p), and W[1]-hard for
parameter b even on 2-degenerate bipartite graphs.

Dominating Set Discovery: We show that the problem
is XP for parameter treewidth, FPT for parameter k on biclique-
free and semi-ladder-free graphs as well as FPT for parameter b
on structurally nowhere dense classes of graphs. On the neg-
ative side, we show that the problem is NP-complete even
on planar graphs of maximum degree five, W[1]-hard for pa-
rameter k + b even on bipartite graphs, and W[1]-hard for
parameter b even on 2-degenerate graphs.

Coloring Discovery: We show that the problem is
polynomial-time solvable for k = 2 and FPT parameterized
by k + b on structurally nowhere dense classes of graphs. On
the negative side, we show that the problem is NP-complete
for every k ≥ 3 even on planar bipartite graphs (that is, para-
NP-hard for parameter k), W[1]-hard for parameter treewidth,
and W[1]-hard for parameter k + b on general graphs.

Our results provide an almost complete classification of
the complexity of the problems on minor-closed, resp. mono-
tone (i.e. subgraph-closed) classes of graphs. Concerning the
polynomial-time solvable cases, observe that a class of graphs
has bounded treewidth if and only if it excludes a planar graph
as a minor [38]. Hence, for the vertex subset discovery prob-
lems, hardness on planar graphs implies that for minor-closed
classes of graphs efficient algorithms can only be expected
for classes with bounded treewidth, which is exactly what
we establish. Coloring Discovery is NP-complete both on
planar graphs and on classes with bounded treewidth, for any
k ≥ 3, hence, our tractability result for k = 2 is the best we
can hope for. It remains open whether Coloring Discovery
is tractable for parameter k + b on d-degenerate graphs, pa-
rameter b on planar graphs, and parameter k on classes with
bounded treewidth.
The notions of degeneracy and nowhere density are very gen-

eral notions of graph sparsity. Besides the theoretical interest
in these classes, many real-world networks, including several
social networks (such as physical disease propagation net-
works), biological networks (such as gene interactions or brain
networks), and informatics networks (such as autonomous
systems), turn out to be degenerate or nowhere dense, see
e.g. [10, 16, 21]. The further considered classes, like biclique-
free classes, semi-ladder-free classes and structurally nowhere
dense classes are dense generalizations of these classes that
preserve some of their good algorithmic properties.
We provide an almost complete classification on monotone

classes of graphs for the vertex-subset discovery problems
and the parameter b; we establish hardness on degenerate
classes and tractability on (structurally) nowhere dense classes.
For parameter k, Vertex Cover Discovery is tractable on
all graphs. Similarly, for parameter k, Independent Set
Discovery is tractable both on degenerate and on nowhere
dense classes, and it remains open whether it is tractable on
biclique-free classes. Dominating Set Discovery is tractable

even on semi-ladder-free, and hence on biclique-free classes.

Organization. In the presentation of our results, we mainly
focus on the Independent Set Discovery problem. We
selected it as a representative for vertex subset problems and
demonstrate the techniques and the kind of theoretical results
that will be obtained in our framework. We further discuss
results for the Coloring Discovery problem, which does not
fall into the class of vertex subset problems, to reflect the broad
applicability of our framework. Due to space constraints, all of
our remaining results are presented in the appended version.

2 Preliminaries

We denote the set of natural numbers by N. For k ∈ N we
define [k] = {1, 2, . . . , k}.
Graphs. We consider finite, simple, loopless, and undirected
graphs. For a graph G, we denote by V (G) and E(G) the vertex
set and edge set of G, respectively. Two vertices u, v ∈ V (G)
with {u, v} ∈ E(G) are called adjacent or neighbors. The
vertices u and v are called the endpoints of the edge {u, v}.
The degree of a vertex v is the number of neighbors of v. A
sequence v1, . . . , vq of pairwise distinct vertices is a path of
length q − 1 if {vi, vi+1} ∈ E(G) for all 1 ≤ i < q. A sequence
v1, . . . , vq of pairwise distinct vertices is a cycle of length q if
{vi, vi+1} ∈ E(G), for all 1 ≤ i < q, and {vq, v1} ∈ E(G). We
write Pq to denote a path of length q and Cq to denote a cycle
of length q.
Parameterized complexity. An instance of a parameterized
problem L ⊆ Σ∗ × N, where Σ is a fixed finite alphabet, is a
tuple (x, κ) ∈ Σ∗ × N. The number κ is called the parame-
ter of the instance. The problem L is called fixed-parameter
tractable, FPT for short, if there exists an algorithm that on in-
put (x, κ) decides in time f(κ) · |(x, κ)|c whether (x, κ) ∈ L, for
a computable function f and constant c. Likewise, the problem
belongs to para-NP if it can be solved within the same time
bound by a nondeterministic algorithm. L is slice-wise polyno-
mial, XP for short, if there is an algorithm deciding whether
(x, κ) belongs to L in time f(κ) · |(x, κ)|g(κ), for computable
functions f, g.
The W-hierarchy is a collection of parameterized complexity

classes FPT ⊆ W[1] ⊆ . . . ⊆ W[t] ⊆ . . . ⊆ para-NP ∩ XP. We
have FPT �= para-NP if and only if P �= NP, which is a standard
assumption. Also the inclusion FPT ⊆ W[1] is conjectured to
be strict (and this is known to be true when assuming the
exponential-time hypothesis). Therefore, showing intractabil-
ity in the parameterized setting is usually accomplished by
establishing an FPT-reduction from a W-hard problem.
Let L, L′ ⊆ Σ∗ × N be parameterized problems. A parame-

terized reduction from L to L′ is an algorithm that, given an
instance (x, κ) of L, outputs an instance (x′, κ′) of L′ such
that (x, κ) ∈ L ⇔ (x′, κ′) ∈ L′, κ′ ≤ g(κ) for some com-
putable function g, and the running time of the algorithm is
bounded by f(κ) · |(x, κ)|c for some computable function f
and constant c.

3 Independent set discovery

In the Independent Set (IS) problem, we are given a graph G
and an integer k and the problem is to decide whether G
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contains an independent set of size at least k, where an inde-
pendent set is a set of pairwise non-adjacent vertices.
In the Independent Set Discovery (ISD) problem, we are

given a graph G, a starting configuration S given by k tokens,
and a budget b ∈ N. The goal is to decide whether we can
reach an independent set of G (of size k) starting from S using
at most b token slides (we do not allow two or more tokens to
occupy the same vertex). We denote an instance of ISD by
(G, S, b); the considered parameter will be explicit in the text.
Note that, for Independent Set Discovery, the token

jumping model and token addition/removal model boil down
to the following problems. If k ≤ b for token jumping or
k ≤ 2b for token/addition removal, then the question is simply
whether there exists a solution of size k, as in this case we can
simply move the tokens to this solution one by one. In other
words, the problem boils down to the classical Independent
Set problem. If b ≤ k (for token jumping) or 2b ≤ k (for
token addition/removal), then the question is whether there
exists a solution whose symmetric difference with the initial
configuration is at most 2b. This question has been studied in
the local search version of Independent Set; see Section 3.1.
We therefore focus on the token sliding model.

3.1 Related work
The Independent Set problem is NP-complete [31], and even
NP-complete to approximate within a factor of n1−ε, for any
ε > 0 [44]. The Independent Set problem parameterized by
solution size k is W[1]-complete and therefore assumed to not
be fixed-parameter tractable [17].
Hence, on general graphs, local search approaches cannot

be expected to improve the above stated approximation factor.
However, in practice we are often dealing with graphs belonging
to special graph classes, e.g. planar graphs and, more generally,
classes with subexponential expansion, where local search
leads to much better approximation algorithms, and even to
polynomial-time approximation schemes (PTAS), see e.g. [25].
The Independent Set problem is one of the most stud-

ied problems under the combinatorial reconfiguration frame-
work [37, 40]. Recall that in the reconfiguration variant of a
(graph vertex subset) problem, we are given a graph G and
two feasible solutions S (source) and T (target) and the goal
is to decide whether we can transform S to T via “small” re-
configuration steps while maintaining feasibility (sometimes
bounding the number of allowed reconfiguration steps).
In contrast to the decision variant, Independent Set Re-

configuration (ISR) is known to be PSPACE-complete on
general graphs for the token sliding, token jumping, and to-
ken addition/removal models [29, 30]. This remains true even
for very restricted graph classes such as graphs of bounded
bandwidth/pathwidth/treewidth [42]. On the positive side,
polynomial-time algorithms are known only for very simple
graph classes such as trees [15]. More positive results (which
vary depending on the model) are possible if we consider the
parameterized complexity of the problem [9].

3.2 Tractability
We first show that Independent Set Discovery is polyno-
mial time solvable on every graph class of bounded treewidth.
Our proof is based on dynamic programming techniques on

graphs of bounded treewidth. Note that k in the theorem is
in O(n) so that 2O(t log k) ∈ nO(t). Hence, the problem is XP
when parameterized by the treewidth of the input graph.

Theorem 1 The Independent Set Discovery problem can
be solved in time 2O(t log k) · nO(1), where t denotes the treewidth
of the input graph.

Our positive results for Independent Set Discovery pa-
rameterized by k make use of the notion of independence
covering families introduced in [34]. Intuitively, such families
cover all independent sets of a fixed size k. Formally, for a
graph G and k ≥ 1, a family of independent sets of G is
called an independence covering family for (G, k), denoted by
F(G, k), if for every independent set I in G of size at most k,
there exists J ∈ F(G, k) such that I ⊆ J .

Theorem 2 ([34]) Let C be a d-degenerate or nowhere dense
class of graphs. For every graph G ∈ C , and k ≥ 1, we can
compute in time f(k) · nO(1) an independence covering family
for (G, k) of size at most g(k) · nO(1), where f(k) and g(k)
are functions depending only on k and the class C but are
independent of the size of the graph.

We are now ready to prove the following theorem:

Theorem 3 The Independent Set Discovery problem is
fixed-parameter tractable when parameterized by k for every
class C of graphs that admits independence covering families
of size g(k) · nO(1) computable in time f(k) · nO(1), where f
and g are computable functions. In particular, the problem is
fixed-parameter tractable on d-degenerate and nowhere dense
classes of graphs.

Proof. Given an instance (G, S, b) of ISD where G ∈ C , we
start by computing an independence covering family F(G, k)
of size g(k) · nO(1) in time f(k) · nO(1), which is possible by
assumption (or by Theorem 2 for d-degenerate and nowhere
dense classes of graphs). Let F(G, k) = {J1, J2, . . .} denote
the resulting family. Let J ∈ F(G, k). We construct a complete
weighted bipartite graph HS,J as follows. Let S be the ver-
tices S on one side and J be the vertices on the other side. We
set the weight of each edge {u, v} to be the number of edges
along a shortest path from u to v in G (we set the weight to
m+ b+ 1 whenever u and v belong to different components).
It remains to show that (G, S, b) is a yes-instance if and

only if there exists a J ∈ F(G, k) such that |J | ≥ k and the
minimum weight perfect matching inHS,J has weight at most b.
Assuming the previous claim, the algorithm then follows by
simply iterating over each J of size at least k, constructing the
graph HS,J , and then computing a minimum weight perfect
matching in HS,J . If we find a matching of weight at most b
then we have a yes-instance; otherwise we have a no-instance.
Assume that (G, S, b) is a yes-instance. Then, there exists

an independent set I of size k that can be reached from S
by at most b token slides. By the definition of independence
covering families, there exists J ∈ F(G, k) such that I ⊆ J .
Moreover, since I is reachable from S in at most b slides, it
must be the case that the weight of a perfect matching in HS,I

is at most b. Hence, the minimum weight perfect matching
in HS,J has weight at most b, as needed.
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Now assume that there exists a J ∈ F(G, k) of size at least k
such that the minimum weight perfect matching in HS,J has
weight at most b. Recall that, by the definition of independence
covering families, J is an independent set in G. Hence, any
subset I of J of size k is an independent set of size k in G.
Let I denote the set of vertices that are matched to some
vertex in S in the minimum weight perfect matching. As we
just described, I is an independent set of size k in G. Hence,
it remains to show that we can reach I from S using at most b
slides. Since we do not allow two tokens to lie on the same
vertex at any time, we can resolve conflicts as follows. Assume
the path that a token t1 takes to reach its destination has
another token t2 on it. Then we switch their destinations and
thereby resolve the conflict. One can check that the number
of moves does not exceed the weight of the perfect matching.
It is well-known that Minimum Weight Perfect Match-

ing can be solved in O(n3) time using either the blossom
algorithm [20] or the Hungarian algorithm [33]. �

By a reduction to first-order model checking on structurally
nowhere dense classes of graphs (which is fixed-parameter
tractable parameterized by formula length [19]), we can show
the following result.

Theorem 4 The Independent Set Discovery problem is
fixed-parameter tractable when parameterized by the budget b
and restricted to structurally nowhere dense classes of graphs.

3.3 Intractability
We next establish that our results are essentially optimal by
proving hardness results on more general classes of graphs.
First, note that for all solution discovery variants of (graph)
vertex subset problems, we can always assume that b ≤ n2,
where n is the number of vertices in the input graph. This
follows from the fact that each token will have to traverse a
path of length at most n. Hence, all the solution discovery
variants of such problems are indeed in NP and it remains to
prove NP-hardness.

Theorem 5 The Independent Set Discovery problem is
NP-complete on planar graphs of maximum degree four.

Proof. We give a reduction from IS on planar graphs of
maximum degree three, which is known to be NP-complete [36].
Given an instance (G, κ) of IS, where G is a planar graph of
maximum degree three, we construct an instance of ISD as
follows. We create a new graph H that initially consists of a
copy of G. Then, for each vertex v ∈ V (H), we create a new
path on five vertices wv, xv, cv, yv, zv and we connect v to cv

(this will be called a path gadget). We choose S = {cv, xv, yv |
v ∈ V (G)} and we set the budget b = 2n−κ, where n = |V (G)|.
Note that k = |S| = 3|V (G)|. This completes the construction
of the instance (H, S, b). It is easy to observe that the graph H
is planar and of maximum degree four. We prove that (G, κ)
is a yes-instance of IS if and only if (H, S, b) is a yes-instance
of ISD.
First assume that G has an independent set I of size at

least κ. Then, in H we can slide every token on cv to v, where
v ∈ I. For all other vertices v /∈ I we slide every token on xv

to wv and every token on yv to zv. Observe that we need a

budget of 2 to repair the path on every vertex v /∈ I, while we
need only a budget of 1 to repair the paths on vertices v ∈ I.
Since I is of size at least κ, we need no more than 2n − κ = b
slides. To see that the resulting set is an independent set of H,
note that for every path on a vertex v ∈ I we have moved the
token from cv to v itself. As I is an independent set, and the
only conflicting neighbor of xv resp. yv is cv, the tokens from
these paths form an independent set. The tokens on paths
of vertices v /∈ I also form an independent set. As the only
neighbor of wv is xv and the token has been moved from xv

to wv, hence there is no conflict. This is also true for yv and zv.
As the neighbors xv and yv of cv have been freed, and there is
no token on v itself, i.e., these paths form an independent set.
For the reverse direction, assume that (H, S, b) is a

yes-instance of ISD. Let I be the resulting independent
set. We need to show that |I ∩ V (G)| ≥ κ, which then
corresponds to an independent set in G. Assume towards
a contradiction that |I ∩ V (G)| = � < κ. This implies that
3n − � tokens are still on the path gadgets. Since every path
gadget can contain at most 3 independent vertices and I is an
independent set, at least n − � path gadgets contain 3 tokens.
It takes at least 2 slides to keep the 3 tokens independent
while not moving them out of the path. Hence, we require
a budget of at least 2n − 2� for these slides. Moreover,
each of the � tokens on V (G) require at least one slide. In
total, we require a budget of 2n−� > 2n−κ, a contradiction. �

We next show that the problem is also hard from a parame-
terized perspective when considering the parameter k + b.

Theorem 6 The Independent Set Discovery problem is
W[1]-hard when parameterized by k+b even on graphs excluding
{C4, . . . , Cp} as induced subgraphs, for any constant p.

Proof. We present a parameterized reduction from the Multi-
colored Independent Set (MIS) problem, which is known
to be W[1]-hard on graphs excluding {C4, . . . , Cp} as induced
subgraphs, for any constant p [6]. Recall that in the MIS
problem we are given a graph G and an integer κ, where V (G)
is partitioned into κ cliques V1, V2, . . ., Vκ, and the goal is to
find a multicolored independent set of size κ, i.e., an indepen-
dent set containing one vertex from each set Vi, for i ∈ [κ].
Given an instance (G, κ) of MIS, we construct an instance
(H, S, b) of ISD as follows. First, let H be a copy of G. Then,
for each i ∈ [κ], we add an edge on two new vertices {ui, wi}
and we make ui adjacent to all vertices in Vi. Finally, we
choose S = {ui | i ∈ [κ]} ∪ {wi | i ∈ [κ]} and we set b = κ.
Note that k = |S| = 2κ.
Assume that G has a multicolored independent set of size κ.

Let I = {v1, . . . , vκ} denote such a set, where vi ∈ Vi. Then
we can solve the discovery instance by sliding each token
on ui to the vertex vi, as needed. For the reverse direction,
since we need to slide all the tokens on vertices ui and each
set Vi can contain only one token, it follows that this is only
possible if G has a multicolored independent set of size κ. �

In what follows, we further investigate the complexity of the
Independent Set Discovery problem when parameterized
only by b or k instead of k + b on even more restricted graph
classes. It turns out that the problem remains W[1]-hard when
parameterized by b and restricted to the class of 2-degenerate
bipartite graphs.
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Theorem 7 The Independent Set Discovery problem is
W[1]-hard when parameterized by the budget b even on the
class of 2-degenerate bipartite graphs.

Proof. We present a parameterized reduction from the Multi-
colored Clique problem, which is a well-known W[1]-hard
problem [14]. Recall that in the Multicolored Clique prob-
lem we are given a graph G and an integer κ, where V (G) is
partitioned into κ independent sets V1, V2, . . ., Vκ, and the goal
is to find a multicolored clique of size κ, i.e., a clique containing
one vertex from each set Vi, for i ∈ [κ]. Given an instance
(G, κ) of Multicolored Clique, we construct an instance
(H, S, b) of ISD as follows. We first describe the graph H. For
each vertex set Vi, we create a new set Xi, where each vertex
v ∈ Vi is replaced by a path on 3 vertices which we denote by
xv, yv, and zv. Moreover, we add a vertex ui that is connected
to all vertices zv, for v ∈ Vi. Finally, we add a vertex wi that
is only adjacent to vertex ui. For i < j ∈ [κ], we use Ei,j to
denote the set of edges between vertices in Vi and vertices in Vj

(in the graph G). For each Ei,j , we create a new set of vertices,
which we denote by Yi,j , that contains one vertex euv for each
edge {u, v} ∈ Ei,j . We additionally add an edge (consisting
of two new vertices) {wi,j , ui,j}, where ui,j is also adjacent to
every vertex in Yi,j . For each vertex euv ∈ Yi,j , i < j ∈ [κ], we
connect euv to yu via a path consisting of two new vertices and
we connect euv to yv via a path consisting of two new vertices.
Let X =

⋃
i∈[κ] Xi and Y =

⋃
i,j∈[κ] Yi,j . We use W to denote

the set of all vertices along paths from Y to X that are at dis-
tance one from some vertex in Y and we use Z to denote the set
of all vertices along such paths that are at distance two from
some vertex in Y . Finally, let S = W ∪{ui | i ∈ [κ]}∪{wi | i ∈
[κ]}∪{ui,j | i < j ∈ [κ]}∪{wi,j | i < j ∈ [κ]}∪{yv | v ∈ V (G)}
and let b = 3

(
κ
2

)
+2κ and k = 2κ+2

(
κ
2

)
+n+2m (see Figure 1).

Xi

Xj

...

...

ui wi

uj wj

Yi,j

ui,jwi,j

Figure 1. An illustration of the W[1]-hardness reduction for
Independent Set Discovery on 2-degenerate bipartite graphs.

It is not hard to see that the graph H is indeed bipartite by
construction. To see that the graphH is 2-degenerate it suffices
to note that after deleting all yv vertices, ui vertices, and ui,j

vertices, we get a graph of maximum degree two and none of
the deleted vertices are adjacent. Hence every subgraph of H
either has a vertex of the form wi, wi,j , xv, zv, or a vertex
in W ∪ Y which all have degree at most 2, or no such vertex
implying that every other vertex has degree at most 2. We
claim that (G, κ) is a yes-instance of Multicolored Clique
if and only if (H, S, b) is a yes-instance of ISD.
First assume that (G, k) is a yes-instance and let C =

{v1, v2, . . . vκ} denote a multicolored clique in G, where each
vertex vi belongs to Vi, for i ∈ [κ]. We construct a sequence

of slides transforming S to an independent set as follows. For
each i, we slide the token on yvi to xvi and then slide the
token on ui to zvi . This requires a total of 2κ slides. Next,
for each pair i, j with i < j, we slide the token on ui,j to
the vertex evivj and then slide the two tokens in W to their
neighbors in Z. This requires a total of 3

(
κ
2

)
slides which gives

us a total of b = 3
(

κ
2

)
+ 2κ slides. Since C is a multicolored

clique in G, it follows that the resulting configuration is indeed
an independent set of H.
For the reverse direction, assume that (H, S, b) is a

yes-instance of ISD. Since we have two adjacent tokens on ui

and wi, for each i ∈ [κ], we know that we need at least one
move for each i. Moreover, since every vertex yv contains a
token, we know that we need an extra slide for each i. Hence,
we need a minimum of 2κ slides for the edges of the form
{ui, wi}. Similarly, for each pair i, j with i < j, we have two
adjacent tokens on wi,j and ui,j . Moreover, all vertices in W
contain tokens. Hence, for each pair i, j with i < j we need
at least three slides for a total of 3

(
κ
2

)
slides for the edges of

the form {ui,j , wi,j}. Hence, there must exist κ vertices yvi

and
(

κ
2

)
vertices evivj adjacent to those vertices in order to

successfully slide the tokens on the ui and ui,j vertices away
from their neighbors wi and wi,j that contain tokens. �

4 Vertex cover and dominating set
discovery

In what follows, we summarize our results for Vertex Cover
Discovery and Dominating Set Discovery.

Theorem 8 The Vertex Cover Discovery problem can be
solved in time O(2k · n3) and in time 2O(t log k) · nO(1), where k
denotes the number of tokens and t denotes the treewidth of
the input graph.

Theorem 9 The Vertex Cover Discovery problem is
fixed-parameter tractable when parameterized by b and re-
stricted to structurally nowhere dense classes of graphs.

Theorem 10 The Vertex Cover Discovery problem is
NP-complete on planar graphs of maximum degree four and
W[1]-hard when parameterized by the budget b even on 2-
degenerate bipartite graphs.

Theorem 11 The Dominating Set Discovery problem can
be solved in time 2O(t log k) · nO(1), where t denotes the treewidth
of the input graph.

Theorem 12 The Dominating Set Discovery problem is
fixed-parameter tractable for parameter k and restricted to
semi-ladder-free graphs and when parameterized by b and re-
stricted to structurally nowhere dense classes of graphs.

Theorem 13 The Dominating Set Discovery problem is
NP-complete on planar graphs of maximum degree five, W[2]-
hard when parameterized by k + b on the class of bipartite
graphs, and W[1]-hard when parameterized by the budget b
even on the class of 2-degenerate graphs.
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5 Coloring discovery
A k-coloring of a graph G is a mapping ϕ : V (G) → [k]. A
k-coloring is said to be proper if whenever {u, v} ∈ E(G)
then ϕ(u) �= ϕ(v). In the Coloring problem, we are given a
graph G and an integer k and the goal is to decide whether G
admits a proper k-coloring.
In the Coloring Discovery (CD) problem, we are given a

(non-proper) k-coloring and a budget b ∈ N, and the task is to
decide whether there is a transformation of the given coloring
into a proper k-coloring by using at most b recoloring steps.
There are many possible definitions of adjacency relations

between feasible (and infeasible) colorings. We consider the
following reconfiguration steps proposed in the reconfiguration
literature. In the color flipping model, in each step, we can
change the color of any vertex to any color in the color set
[k] = {1, . . . , k}. In the color swapping model, a (u, v)-color-
swap allows for the swap of colors between two arbitrary
vertices u ∈ V (G) and v ∈ V (G), where u �= v. Finally, in the
color sliding model, a (u, v)-color-slide is a (u, v)-color swap
along an edge of the graph. In other words, in color sliding we
can only perform a (u, v)-color-swap if {u, v} ∈ E(G).
The reconfiguration variant of the NP-complete Coloring

problem [22] is a central problem in combinatorial reconfigu-
ration and has been studied in the color flipping model [8, 13]
and the color sliding model [7].
The Coloring Discovery problem has already been stud-

ied in the color flipping model and the color swapping model
under the names k-Fix [23] and k-Swap [3], respectively. Gar-
nero et al. [23] show that, for color flipping, the discovery vari-
ant is NP-complete, even for bipartite planar graphs. Moreover,
they show that the problem is W[1]-hard when parameterized
by b, even for bipartite graphs, whereas it is fixed-parameter
tractable when parameterized by k+b. Interestingly, the latter
is not true in the color swapping model, where the problem is
W[1]-hard for any fixed k ≥ 3 when parameterized by b [3]. It
is also shown that both problems k-Fix and k-Swap are W[1]-
hard when parameterized by the treewidth of the input graph.
Finally, it is shown that the k-Fix problem, i.e., discovery in
the color flipping model, is polynomial-time solvable for k ≤ 2
colors but this question was left open for the color swapping
and color sliding models [23] and we answer it below.

Theorem 14 Coloring Discovery with k = 2 is solvable
in polynomial time in the color swapping and sliding models.

Proof sketch. We may restrict ourselves to bipartite graphs.
(A graph is 2-colorable if and only if it is bipartite, and a
graph can be verified to be bipartite by a graph search in
polynomial time.) For each connected component Gi of the
bipartite input graph G we find a bipartition (Li, Ri) of V (Gi).
Any proper coloring of Gi colors all vertices of Li in color red
and all vertices of Ri in color green, or vice versa.
Both the needed budget for recoloring as well as the number

of vertices colored in red and green in a proper coloring might
be different for the two choices. For a given choice, both the
needed number of swaps and number of colors can be calculated
straightforwardly. As a swap always swaps colors red and green,
the overall needed budget is given by the number of vertices
colored in red that have to be recolored to green. Dependent on
the two possibilities, we denote the needed budget by bi

1 or bi
2 to

recolor the connected component Gi properly. Additionally, for

each choice we define the excess of a connected component Gi

by the number of vertices that are initially colored in color
red minus those that have to be colored in color red, i.e.,

e1(Gi) = |{v ∈ V (Gi) | ϕ(v) = red}| − |Li| , and
e2(Gi) = |{v ∈ V (Gi) | ϕ(v) = red}| − |Ri| .

Thus, dependent on the two possible choices we either need
a budget bi

1 and realize an excess e1(Gi), or a budget of bi
2

with excess e2(Gi). Overall, we can recolor the whole graph
with the given budget if and only if there is a set of choices
such that the overall excess is 0 and the needed budget is at
most b. We finish the proof by presenting a dynamic program
for the problem. �

Theorem 15 Coloring Discovery with k ≥ 3 colors is
NP-complete under all three models, even when restricted to
planar bipartite graphs.

Due to this hardness, we consider the parameterized com-
plexity of the problem with respect to the parameters k, b,
and treewidth; On restricted classes of graphs the Coloring
Discovery problem becomes tractable. For general graphs,
the problem is intractable for the same parameters.

Theorem 16 Coloring Discovery is fixed-parameter
tractable when parameterized by k + b and restricted to struc-
turally nowhere dense classes of graphs under all three models.

Theorem 17 Coloring Discovery parameterized by k + b
and Coloring Discovery parameterized by treewidth are
W[1]-hard in the color sliding model.

6 Conclusion and future work
We have proved many positive and hardness results concerning
solution discovery variants of fundamental graph problems.
While some problems resulting from our framework have al-
ready been considered in the literature (albeit under different
names), we believe that viewing such problems from a unified
perspective can lead to more global insights and, hopefully,
more unifying results.
We hope to foster further research on discovery variants of

other problems, in graphs and beyond, as well as other relevant
model variations, e.g., different reconfiguration steps, which
model other restrictions on the changes of a system state.
Our model captures static decision-making settings, where

an arbitrary infeasible solution shall be turned into a feasible
one using only few well-defined modification steps. In some
dynamic settings, the starting state may not be completely
arbitrary, but is due to predictable or controlled changes in the
system. It would be interesting to explore a generalization of
our model in which the initial state can be assumed to satisfy
certain properties. Besides the practical relevance, this also
increases the degrees of freedom in which we can analyze the
problems and pushes towards multivariate analyses, where the
changes in the graph can now also be part of the parameter.
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