
Strategy Repair in Reachability Games
Pierre Gaillard a;*, Fabio Patrizi b;** and Giuseppe Perelli b;***

aENS Paris-Saclay, University Paris-Saclay
bSapienza University of Rome

ORCiD ID: Fabio Patrizi https://orcid.org/0000-0002-9116-251X, Giuseppe Perelli
https://orcid.org/0000-0002-8687-6323

Abstract. We introduce Strategy Repair, the problem of finding a
minimal amount of modifications to turn a strategy for a reachability
game from losing into winning. The problem is relevant for a num-
ber of settings in Planning and Synthesis, where solutions essentially
correspond to winning strategies in a suitably defined reachability
game. We show, via reduction from Vertex Cover, that Strategy Re-
pair is NP-complete and devise two algorithms, one optimal and ex-
ponential and one polynomial but sub-optimal, which we compare
experimentally. The reported experimentation includes some heuris-
tics for strategy modification, which proved crucial in dramatically
improving performance.

1 Introduction
A Reachability Game (RG) [11] is a finite-state game played by two
players, Player 0 (P0) and Player 1 (P1). The states of the game are
partitioned intoP0’s andP1’s; when the game is in a P0’s (resp.P1’s)
state s, P0 (P1) can move to a new state s′ by selecting any of the
transitions (s, s′) allowed by the game. Transitions do not guarantee
strict alternation, i.e., s′ can still be P0’s (P1’s), so that P0 (P1) can
keep moving until (if ever) a P1’s (P0’s) state is reached.

In a RG, some states are designated as target, and solving the game
amounts to finding a winning strategy for P0, i.e., a function which
prescribes P0 the next move to take in each of its states, so as to guar-
antee that a target state is eventually reached whenever possible, no
matter how P1 moves in its states. This is a very well-studied prob-
lem, in Synthesis [8, 3, 2, 7] and in other areas, such as Fully Observ-
able Nondeterministic (FOND) Planning [5], known to be solvable in
polynomial time wrt the game size, thus exponential wrt (exponen-
tially) succinct game representations, as typical, e.g., in Planning.
Such bounds are in fact tight, the decision version of the problem
being P-complete [11, 14, 6, 4].

RGs can serve as semantic models for reasoning about dynamic
domains, with the resulting strategy representing the behavior that an
agent can execute, in order to achieve a desired state. Typically, how-
ever, at execution time, models deviate from the actual trajectory that
stems from strategy execution, resulting in a situation where the state
does not match that of the model. There may also be situations where
the goal changes during strategy execution. In both these examples,
the agent is unable to keep executing the computed strategy (which
was originally winning) and take appropriate actions to achieve the

∗ Email: pierre.gaillard1@ens-paris-saclay.fr
∗∗ Email: patrizi@diag.uniroma1.it
∗∗∗ Corresponding Author. Email: perelli@di.uniroma1.it

desired goal. Thus, the problem arises of coming up with a new strat-
egy that guarantees goal achievement.

Observe that the original strategy might have been designed to
guarantee not only goal achievement, but also a number of additional
properties, such as cost minimization, reward maximization, or for-
bidden states avoidance, which might yield a significant additional
computational effort. Thus, when the unexpected changes are small
and yield only a slightly different problem wrt the original one, i.e.,
only few target states are added or removed and state mismatches oc-
cur rarely, it is reasonable to seek for a solution obtained as a slight
modification of the original one, under the assumption that the new
strategy will retain all (or part of) the properties featured by the ini-
tial strategy, without needing the computational overhead required to
achieve such properties.

This paper investigates this approach from the general perspective
of RGs. We introduce a problem, called Strategy Repair, which re-
quires, given a losing (i.e., not winning) strategy σ0, to find a minimal
amount of modifications which turn σ0 into a winning strategy.

We make the following contributions. Firstly, we formally de-
fine the problem by introducing a notion of distance between two
strategies, which intuitively corresponds to the number of states over
which the strategies differ. Then, based on such a notion, we de-
vise a solution algorithm and characterize its complexity. Specifi-
cally, we prove, by reduction from Vertex Cover, that the decision
version of Strategy Repair is NP-complete. We then investigate more
efficient, but sub-optimal, alternatives, devising a polynomial greedy
algorithm with an effective heuristic, called MustFix, which can be
integrated also in the optimal algorithm. Finally, we report on an ex-
perimental analysis, which shows that the polynomial algorithm, to-
gether with the MustFix heuristic, yields impressive results in terms
of running time, scalability and accuracy (measured as distance from
the optimal solution). Also the optimal algorithm greatly benefits
from the MustFix heuristic, outperforming the running times of the
basic version by orders of magnitude. The experiments also measure
the impact of repairing a strategy when the goal is subject to small
changes wrt computing a strategy from scratch, showing that the for-
mer approach produces strategies that are considerably closer to the
original one, despite the fact that the latter uses exaclty the same al-
gorithm before and after the goal changes.

Strategy Repair is very related to the notion of plan repair, orig-
inally introduced (as plan reuse) in Classical Planning, by [13].
While in that work it is shown that repairing is not more efficient,
in general, than replanning, the former exhibits higher effective-
ness in practice [10, 17]. Surprisingly, while the problem is actively

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230344

780

https://orcid.org/0000-0002-9116-251X
https://orcid.org/0000-0002-8687-6323

studied in this context , we could not find analogous contributions
in the context of Fully Observable Nondeterministic (FOND) Plan-
ning, where plans are replaced by policies. The results we obtain for
RGs are of immediate interest for this setting, since RGs can eas-
ily model (FOND) Planning (as well as Classical Planning), with
winning strategies corresponding to policies. Moreover, some con-
nections can be made between Strategy Repair and strategy improve-
ment, which consists to generate a strategy and apply iteratively some
modifications until a winning strategy is found. This technique can be
used to compute a winning strategies in games on graphs [12, 20, 1].
However, notice that no distance minimization is taken into account,
as the purpose of strategy improvement is not repairing a strategy,
but generating one from scratch.

Our work shares the same motivations as those for the work in
Classical Planning, spanning from the idea that repairing is a natural
way to save computational efforts by maximizing reuse [13], to more
qualitative arguments concerning quality preservation in the new so-
lution (similar solutions are likely to have same properties), impact
on human observers (validating a solution similar to one validated
before is likely simpler than analyzing a new one), and implementa-
tion/execution efforts (modifying a deployed solution is likely to re-
quire less effort than implementing a new one). These are somehow
summarized in the stability maximization principle discussed in [9],
although applied to deterministic plans, which essentially states that,
for the above reasons, minimal distance solutions are more desirable.
In this respect, it is worth observing that, with the recent exception
of [16], most of the previous approaches, such as [18, 9, 10, 19], do
not offer minimal-distance guarantees.

This work transfers these ideas to the more general setting of RGs,
by devising, studying and experimentally evaluating two approaches
for strategy repair, one that offers optimality guarantees and one that
is suboptimal but extremely efficient and returning near-optimal so-
lutions in practice.

2 Preliminaries

We here introduce the basic notions and definitions related to reach-
ability games.

A 2-player arena, or simply arena is a tuple A = 〈V, V0, V1,E〉,
where V is the set of nodes, or vertices, with V = V0 ∪ V1 and
V0 ∩ V1 = ∅, and E ⊆ V × V is the set of edges of the arena. We
say that V0 is the set of nodes controlled by player 0, (P0), whereas
V1 is the set of nodes controlled by player 1 (P1).

Definition 1 (Reachability game) A Reachability game is a pair
G = 〈A, T 〉, where A is an arena, and T ⊆ V is a subset of nodes
of such arena, sometimes called target or winning nodes.

A path in the arena is a sequence π = v0 · v1 · v2 . . . ∈ V ω such
that (vi, vi+1) ∈ E for each i ∈ N.

As usual, by πi, we denote the i-th node occurring in the sequence
π, whereas by π≤i we denote the prefix of π up to node πi, also
called partial path. We say that a path π is winning for player 0 if
πi ∈ T for some i ∈ N, otherwise it is winning for player 1.

A strategy for player 0 is a function σ0 : V ∗ · V0 → E mapping
partial paths to edges, such that σ0(v0 . . . vn) is an edge outgoing
from vn, for each partial path in V ∗ · V0. A strategy σ1 for player 1
is defined accordingly.

A path π is compatible with strategy σ0 if σ0(π≤i) = (πi, πi+1)
for each πi ∈ V0. Analogously, it is compatible with strategy σ1 if
σ1(π≤i) = (πi, πi+1) for each πi ∈ V1. By out(v, σ0) we denote

the set of paths starting from v that are compatible with σ0. Analo-
gously, out(v, σ1) denotes the set of paths starting from v that are
compatible with σ1. Notice that there exists only one path starting
from v that is compatible with both σ0 and σ1, which we denote
play(v, σ0, σ1).

We say that a strategy σ0 is winning for player 0 from v, if every
path in out(v, σ0) is winning. We say that a node v is winning for
player 0 if there exists a strategy σ0 winning from v. We denote by
Win0(G) and Win1(G) the sets of nodes in G that are winning for
player 0 and 1, respectively. Finally, a strategy is said to be simply
winning if it is winning from every vertex in Win0(G). It is well
known that reachability games are memoryless determined [15], that
is, every node v is either winning for player 0 or winning for player
1 and that there always exists a memoryless winning strategy. There-
fore, from now on we restrict our attention to only memoryless strate-
gies, that are defined as σ0 : V0 → E mapping each node belonging
to an agent to an outgoing edge.

Such restriction allows us to define a very natural distance between
two player 0 strategies σ0 and σ′0 over the same game, that is

dist(σ0, σ
′
0) = |{v ∈ V | σ0(v) 6= σ′0(v)}|

Intuitively, we count the number of nodes on which the two strate-
gies map to a different outgoing edge. This can be proved to be an
actual distance.

Proposition 1 For a given arena A, the function dist is a distance
in the space of memoryless strategies of A.

Proof We show the properties of a distance separately. That is, for
every σ0, σ

′
0, σ
′′
0 , the following hold:

• dist(σ0, σ0) = 0; (Nonzero)
• σ0 6= σ′0 =⇒ dist(σ0, σ

′
0)
 0; (Positivity)

• dist(σ0, σ
′
0) = dist(σ′0, σ0); (Symmetry)

• dist(σ0, σ
′′
0) 6 dist(σ0, σ

′
0) + dist(σ′0, σ

′′
0) (Triangle Inequality)

The first three are immediate. Regarding the triangle inequality,
notice that if σ0(v) 6= σ′′0 (v), then σ0(v) 6= σ′0(v) or σ′0(v) 6=
σ′′0 (v) (since otherwise σ0(v) = σ′0(v) = σ′′0 (v)). Therefore {v ∈
V | σ0(v) 6= σ′′0 (v)} ⊆ {v ∈ V | σ0(v) 6= σ′0(v)} ∪ {v ∈ V |
σ′0(v) 6= σ′′0 (v)}, so dist(σ0, σ

′′
0) 6 dist(σ0, σ

′
0)+dist(σ′0, σ

′′
0) �

We conclude this section by introducing some useful notation.
For a given game G and an edge e = (v1, v2) ∈ E, by Ge we

denote the game induced from G by removing every edge (v′1, v
′
2)

incompatible with e, that is, such that v′1 = v1 and v′2 6= v2. This can
be extended to subsets E′ ⊆ E of edges, where GE′ = (GE′\{e})e is
recursively defined by projecting the edges e of E′ one by one.

Notice that a (memoryless) strategy σ0 can be regarded as a subset
of edges, one for each node in V0, therefore Gσ0 denotes the game
induced from G by removing every edge (v, v′) incompatible with
σ0, that is, such that v ∈ V0 and (v, v′) 6= σ0(v). Note that every
vertex of V0 has only one successor in Gσ0 , which means that player
0 has only one strategy available in the game, which is indeed σ0.

3 The Strategy Repair Problem
We now introduce the strategy repair problem for reachability
games. First, for a given reachability game G and a player 0 strategy
σ0, define Win(G, σ0) to be the set of nodes from which σ0 is win-
ning. It is not hard to show that Win(G, σ0) = Win(Gσ0), that is, the

P. Gaillard et al. / Strategy Repair in Reachability Games 781

nodes that are winning for player 0 when it is using strategy σ0 can
be obtained by considering the game Gσ0 where the choices incom-
patible with σ0 have already been ruled out. Observe that it always
holds that Win(G, σ0) ⊆ Win(G), with Win(G, σ0) = Win(G) if,
and only if, σ0 is winning for player 0.

We define the strategy repair problem as follows.

Definition 2 (Strategy repair problem) For a given reachability
game G and a strategy σ0, find a winning strategy σ′0 such that
dist(σ0, σ

′
0) ≤ dist(σ0, σ

′′
0) for each winning strategy σ′′0 .

The problem introduced requires to minimize the number of
modifications that are required to turn a strategy σ0 into a strat-
egy σ′0 winning for a given reachability game G. The correspond-
ing decision problem, instead, consists in fixing a given threshold
k ∈ N and checking whether some winning strategy σ′0 exists with
dist(σ0, σ

′
0) ≤ k. We now prove that the strategy repair problem for

reachability games is NP-complete. To do so, we show a reduction
from the NP-complete problem vertex cover [4], defined below.

Definition 3 (Vertex cover) For a given undirected graph G =
〈S,A〉 with A a set of pairs of S elements, and a natural number
k ∈ N, find a subset S′ ⊆ S, with |S′| ≤ k, such that, for each
{v, v′} ∈ A, v ∈ S′ or v′ ∈ S′.

Theorem 1 The strategy repair problem for reachability games is
NP-complete.

Proof First, observe that checking whether a strategy σ′0 is winning
can be done in polynomial time, as it amounts to checking whether
Win(G, σ′0) = Win(G) and so to solve two reachability games of
size linear in |G|. Also, checking that dist(σ0, σ

′
0) ≤ k can be done

in time linear with respect to the number of nodes in V0. This then
proves membership in NP.

To prove that the problem is hard for NP, consider an instance
〈S,A〉, k of the vertex cover problem, and construct the following
strategy repair problem G =〈A, T 〉, σ0, k whereA =〈V, V0, V1,E〉
is defined as

• V = S × {0, 1} ∪ {t} where t is a fresh new vertex;
• V0 = S × {0} ∪ {t};
• V1 = S × {1};
• T = {t}
• E = {((v, 0), (v, 1)) | v ∈ S} ∪ {((v, 0), t) | v ∈ S} ∪
{(v, 1), (v′, 0) | {v, v′} ∈ A}

And strategy σ0 is such that σ0(v, 0) = (v, 1), for each v ∈ S.

v0 v1

v′0v′1

t
σ0

σ0

Figure 1: The structure of vertex cover reduction.

Intuitively, for each node v of the original graph, we construct two
nodes in the arena (v, 0), (v, 1) under the control of player 0 and 1

respectively, and an extra target node t, which is the only winning
node of the game. In each node under his control, player 0 can either
move towards the 1-type version of the same vertex or to the target
node t. Player 1, instead, can move towards the 0-type version of any
node that is connected to the current vertex in the original undirected
graph.

The strategy σ0, instead selects the 1-type version of every vertex
in the original graph.

Essentially, for each edge {v, v′} ∈ A of the original graph, a
structure depicted in Figure 1, where the labels σ0 represent the ini-
tial strategy of Player 0. First, note that Win0(G) = V , as the strat-
egy that selects all edges going to the target t is clearly winning from
every node of the game.

We now show that the undirected graph G has a vertex cover S′

of size at most k if, and only if, the corresponding strategy repair
problem admits a solution σ′0 such that dist(σ0, σ

′
0) ≤ k.

To simplify the notation, vertices of the form (v, 0) are noted v0
and the ones of the form (v, 1) are denoted v1.

From the one hand, assume that S′ ⊆ S is a vertex cover ofGwith
|S′| ≤ k and consider the strategy σ′0 = σ0[v0 7→ (v0, t); v0 ∈ S′].
Essentially, the strategy diverts directly to the target state t all and
only those nodes that belong to the vertex cover S′ of G. Clearly,
we have that dist(σ0, σ

′
0) = |S′| ≤ k. It remains to prove that it is

winning in every node of the game.
Obviously, it holds that t ∈ Win0(G, σ′0). For the remaining

nodes, we distinguish four cases:

1. v0 ∈ V0 with v ∈ S′. Therefore, σ′0(v0) = (v0, t) and so v0 ∈
Win0(G, σ′0).

2. v1 ∈ V1 with v /∈ S′. Therefore, for every successor v′0 of v1
in G, it holds that v′ ∈ S′, and so that, from case 1 that v′0 ∈
Win0(G, σ′0), which implies that v1 ∈Win0(G, σ′0).

3. v0 ∈ V0 with v /∈ S′. Therefore, σ′0(v0) = (v0, v1) with v /∈ S′,
which, from case 2, implies that v1 ∈ Win0(G, σ′0) and so that
v0 ∈Win0(G, σ′0).

4. v1 ∈ V1 with v ∈ S′. Since any successor v′0 of v1 belongs to
V0, we fall in either case 1 or case 3, which implies that v1 ∈
Win0(G, σ′0).

On the other hand, consider a solution σ′0 to the strategy repair
problem and define S′ = {v ∈ S | σ′0(v0) 6= σ0(v0)}. Clearly,
|S′| = dist(σ0, σ

′
0) ≤ k. It remains to prove that S′ is a vertex cover.

By contradiction, assume that there is an edge {v, v′} that is not
covered by S′, i.e., v, v′ /∈ S′. This means that σ′0(v0) = (v0, v1)
and σ′0(v′0) = (v′0, v

′
1). Now, as it is also depicted in Figure 1, Player

1 can select v′0 from v1 and v0 from v′1, which makes the four nodes
not winning, hence a contradiction. �

4 Algorithmic Solutions
In this section, we discuss two algorithms for Strategy Repair, which
we called Opt and Greedy, respectively. The former returns the opti-
mal solution to the problem, but runs in exponential time. The latter,
instead, returns a sub-optimal solution but runs in polynomial time. It
is important to remark that they both produce correct winning strate-
gies for the game. However, the algorithm Greedy does not provide
the most optimal one in terms of distance from the originally speci-
fied strategy σ0.

4.1 The algorithm Opt

We now proceed with the description of Algorithm Opt. In order to
do so, we first introduce some useful definition.

P. Gaillard et al. / Strategy Repair in Reachability Games782

For a given game G and a set X ⊆ V of nodes, the Frontier of X ,
denoted Frontier0(X) = ((V0 \ X) × X) ∩ E, is the set of edges
that are outgoing from a Player 0 node and incoming to a node in X .
Intuitively, the edges in Frontier0 can be used by Player 0 to enter
in a single step the region X of nodes.

Consider a game G and a strategy σ0, and let X = Win0(G, σ0)
be the set of nodes that are winning for strategy σ0. Observe that for
an edge (v, v′) ∈ Frontier0(X), it holds that σ0(v) 6= (v, v′), oth-
erwise v would have been winning for σ0 in the first place. Moreover,
it is trivial to show that the strategy σ′0 = σ0[v 7→ (v, v′)] is such
that Win0(G, σ0) (Win0(G, σ′0), with the inclusion being proper
because v ∈Win0(G, σ′0) \Win0(G, σ0).

We are now ready to present the algorithm Opt, which is reported
in Algorithm 1

Input: G a reachability game, σ0 a strategy for player 0
Output: Winning strategy for G minimizing the distance

from σ0

Fix(G, σ0) :
T ′ ←Win0(G, σ0) // vertices already winning following σ0

if T ′ = Win0(G) then
return (σ0, 0)

else
select (v, v′) from Frontier(T ′)
(σ′0, β

′)← Fix(G, σ0[v 7→ (v, v′)])
G′ ← Gσ0(v) // player 0 must follow σ0 on v
if v ∈Win0(G′) then

(σ′′0 , β
′′)← Fix(G′, σ0)

if β′′ < β′ + 1 then
return (σ′′0 , β

′′)
end

end
return (σ′0, β

′ + 1)
end

Algorithm 1: Pseudocode of Algorithm Opt.

The algorithm works as follow. First, it computes the winning re-
gion following σ0 T

′ = Win0(G, σ0) and compares it with the
winning region of the game Win0(G). If the two sets are equal, it
means that σ0 is already winning, so it returns the optimal solution
(σ0, 0), with the second component denoting the cost of fixing. If
that is not the case, the algorithm proceeds by first computing the
frontier of Win0(G, σ0), in order to select an edge (v, v′) from it,
then it compares two possible solutions. The first is obtained by solv-
ing the problem where the initial strategy is σ0[v 7→ (v, v′)], ob-
tained from σ0 by diverting the choice on v with the frontier edge
(v, v′). The second is obtained by solving the problem when Player
0 is forced to select edge σ0(v) in v. This is obtained by considering
the game G′ = Gσ0(v), where all other outgoing edges from v are
removed. Both solutions are computed with their relative costs β′

and β′′, which are then compared to select the best between the two.
Note that the latter solution might not exist, as the choice of σ0 in
v might lead, for instance, out of the winning region. The algorithm
then first checks whether such solution is viable before making a use-
less recursive call on (G′, σ0). Observe that in the first case the total
modification cost β′ must be increased by 1, as the initial strategy
σ0[v 7→ (v, v′)] is at distance 1 from σ0 itself.

We have the following.

Theorem 2 The algorithm Opt returns the optimal solution to the
Strategy Repair problem.

Proof (sketch) For the sake of space, we provide a high-level intu-
ition of it. The proof proceeds by induction on the number of recur-
sive calls that are made by Opt. In particular, the base case trivially
holds when the input to the algorithm is a pair (G, σ0) such that σ0 is
already winning for G. For the induction case, the proof essentially
shows that one of the two solutions computed by the two recursive
calls must return a winning strategy at the minimum distance from
the input σ0. �

4.2 The algorithm Greedy

The algorithm Opt presented in the previous section is of exponen-
tial complexity, as it requires two recursive calls at each iteration
to compare the distances between the initial strategy and two can-
didate best solutions. Also, notice that the recursive call that makes
use of the selected edge in the frontier always computes a correct
solution, although it might not be the optimal one. Therefore, a sub-
optimal but polynomially computable solution could be found by just
selecting the one obtained from such call, disregarding the other.
This is how the algorithm Greedy is conceived. However, in or-
der to improve the quality of the solution, i.e., the accuracy w.r.t.
the optimum, we employ a selection criterion for the edge in the
frontier set. Indeed, consider an instance (G, σ0) of Strategy Re-
pair, and an edge (v, v′) ∈ Frontier0(Win0(G, σ0)). First, note that
σ0(v) 6= (v, v′), otherwise, the node v would be winning for σ0

and (v, v′) would not be in the frontier. Therefore, consider the set
Repairσ0(v, v

′) = Win0(G, σ0[v 7→ (v, v′)]) \Win0(G, σ0), that
is, the set of nodes that are indirectly repaired by using the frontier
edge (v, v′) in the solution.

Therefore, when selecting the frontier edge, one might decide to
greedily maximize the number of nodes that are indirectly repaired
by such a selection. This is how the algorithm Greedy works, as it is
presented in Algorithm 2.

Input: G a reachability game, σ0 a strategy for player 0
Fix(G, σ0) :
T ′ ←Win0(G, σ0) // vertices already winning following σ0

if T ′ = Win0(G) then
return (σ0, 0)

end
F ← Frontier0(T

′)
(v, v′)← argmax{|Repairσ0(v, v

′)|; (v, v′) ∈ F}
(σ′0, β

′)← Fix(G, σ0[v 7→ (v, v′)])
return (σ′0, β

′ + 1)

Algorithm 2: Pseudocode of Algorithm Greedy.

4.3 A Better Selection Method of Frontier Edges

The algorithm Greedy employs a selection method for the frontier
edges that maximizes the number of nodes that enter the winning
area of the fixing in progress. Note that this method can always be
applied. Indeed, the fact that a given strategy σ0 needs to be repaired
is equivalent to the fact that Frontier0(Win0(G, σ0)) 6= ∅ and so at
least one edge can be selected.

Instead, we now present another method, which we called
MustFix, that aims at selecting frontier edges that must be used to
repair the current strategy.

Consider an instance (G, σ0) and a frontier edge (v, v′) ∈
Frontier0(Win0(G, σ0)). Assume that v /∈ Win0(Gσ0(v)), that is,
there is no strategy consistent with σ0(v) that is winning for v. This

P. Gaillard et al. / Strategy Repair in Reachability Games 783

means that edge σ0(v) must be replaced and the best way to do so
is by using the frontier (v, v′). Thus, the selection method MustFix
first checks whether some of the frontier edges satisfy this condition
and, if so, selects them to the recursive call.

Observe two things. First, there is no guarantee that at least one
frontier edge satisfies the MustFix condition, therefore, it is still
necessary to employ other selection methods, as in the Algorithm
Greedy. Second, the MustFix method can be applied also to Opt as
a preprocessing mechanism. Indeed, it identifies edges that necessar-
ily must be used even in the optimal solution so when such an edge is
selected, only one recursive call is made by Opt. In the next section,
we discuss also on the performance of such method applied to Opt

and Greedy, both in terms of running time and accuracy.
We conclude this section by showing that Greedy is not op-

timal, even when MustFix is adopted. Indeed, consider the in-

v0 v1 v4 v2

v3

t

σ0

σ0 σ0

σ0

σ0

Figure 2: Counter example for Greedy.

stance depicted in Figure 2 where strategy σ0 is represented with
labels over the edges. We have that Frontier0(Win0(G, σ0)) =
{(v1, t), (v2, t)} but MustFix does not select any of its elements.
Indeed, if σ0(v1) = (v1, v3) is imposed, then the path v1 · v3 · v2 · t
is winning, and if σ0(v2) = (v2, v4) is imposed, then the path
v2 · v4 · v1 · t is winning. Therefore, the algorithm Greedy enters the
computation of Repair(v1, t) = {v1, v0} and Repair(v2, t) = {v2},
and chooses to fix the strategy on v1 as it repairs two vertices in-
stead of one. Next, the two choices are between (v4, v1) and (v2, t)
but again, MustFix does not apply, and repairing v2 would not indi-
rectly repair any other vertex while repairing v4 would also repairs
v2, which means that Greedy selects (v4, v1). Finally, the algorithm
repairs v3, making it a total of three modifications. However, note
that σ0[v2 7→ (v2, t), v3 7→ (v3, v2)] is winning and its distance
from σ0 is only two.

5 Experimental setup
The algorithms Opt and Greedy, together with the MustFix heuris-
tics, have been implemented in Python and tested on a variety of
benchmarks. The implementation allows to tune the battery test un-
der a variety of parameters that are used to randomly generate the
game instances, which are introduced at each experiment description
below.

We run four kinds of experiments, each of them designed to test a
specific feature. First, we tested the effectiveness of MustFix. In par-
ticular, we compared two versions of Opt, one with and one without
the MustFix heuristics enabled, to compare their performance. The

results and comments on this experiment are presented in Section 5.1.
Second, in Section 5.2 we evaluated the performances of Opt and
Greedy, both with MustFix activated. In particular, we evaluated
both the running time and accuracy of Greedy, which was compa-
rably performing well with respect to Opt, in both terms. Third, we
run an additional comparison among Opt and Greedy in Section 5.3,
this time by generating benchmark instances specifically designed
to push the boundaries on scalability. In particular, we made use of
the reduction from Vertex Cover of Theorem 1 to identify instances
where Opt supposedly performs poorly. Finally, in Section 5.4 we in-
vestigate on a specific setting where the initial strategy of a Strategy
Repair instance comes as a winning strategy of a previously instan-
tiated game, where the target set has been slightly deviated. In this
case, we evaluate how convenient would be to employ Strategy Re-
pair (both with Opt or Greedy) against recomputing a new winning
strategy from scratch, after the underlying graph is changed for any
reason.

All tests have been run on an Intel Core i7-8700 CPU @ 3.20GHz,
with 32GB of RAM and running Ubuntu 20.04.06 LTS.

5.1 Testing the Effectiveness of MustFix

We first tested the effectiveness of MustFix, running experiments
on randomly generated games and solving them with two versions
of Opt, one making use of MustFix, the other randomly selecting
frontier edges and proceeding with recursive calls.

The random instances have been generated as follows:

• To input n, the random generator produces a game with n nodes.
• Each node is assigned to P0 or P1 with equal probability (0.5

each);
• For each node, a number d between smin and smax is uniformly

chosen and then, d successors are randomly assigned to the node.
For the experiments in place, we fixed two sets of smin and smax,
keeping them between 1% and 5% of n for a first set of experi-
ments, and between 5% and 10% of n for a second set. Here, we
report the experiments obtained with the first set, as they produced
similar results.

• A number t of target vertices, uniformly selected. In all the exper-
iments reported in the paper, we fixed t to be 5% of n.

Regarding the initial strategy σ0 that will be repaired, the random
generator works as follows. For each node v of P0, if there are any
successors that do not belong to the target set T , we uniformly select
one of them for σ0. To our opinion, this increases the chances that
a number of edges in σ0 must be repaired. It is open to establish
whether a better generation of strategies is possible.

N. nodes N. experiments no MustFix MustFix
40 1000 0.0043 0.0017
60 100 0.28 0.013
80 20 6.2 0.25

100 20 150 7.6

Table 1: Comparison of running time (in sec.) for Opt with and with-
out the MustFix selection method.

We tested the performance of Opt against a battery of tests, run-
ning from 40 nodes, up to 100 nodes. The results are reported in
Table 1 and a plot comparison of their running time provided in Fig-
ure 3. It can be easily seen that MustFix significantly improves the
running time of Opt by 2 order of magnitudes. This was expected, as
each application of MustFix avoids the propagation of two recursive
call per iteration, making the algorithm much more efficient.

P. Gaillard et al. / Strategy Repair in Reachability Games784

40 60 80 100
0

20

40

60

80

100

120

140

160

N. of nodes

Ti
m

e
(s

)

No MustFix

MustFix

Figure 3: Comparison of Opt with and without the MustFix selection
method.

5.2 Comparing Opt and Greedy

Once established that MustFix significantly improves the per-
formance of our approaches, we proceeded comparing Opt and
Greedy on the same set of randomly generated games. For
this case, given that Greedy does not provide the optimal solu-
tion, we also had to evaluate its accuracy, which is defined by
dist(σ0, σ

Opt
0)/dist(σ0, σ

Greedy
0), where σ0 being the original (pos-

sibly losing) strategy, σOpt
0 the one computed by Opt, and σGreedy

0 the
strategy computed by Greedy.

N. nodes N. experiments Opt Greedy Accuracy
40 5000 0.0012 0.001 0.9994
60 5000 0.02 0.0065 0.9952
100 1000 3.8 0.064 0.9904
200 700 3.39 0.79 0.9994
500 300 17.71 17.6 1
700 150 60.9 60.85 1

Table 2: Comparison of Opt and Greedy.

We tested our approach by running experiments with up to 700
nodes. The results are summarized and plotted in Table 2 and Fig-
ure 4, respectively. The running times of the two algorithms are es-
sentially equal, together with a very high accuracy rate. This is due
to the fact that the MustFix selection method is triggered most of the
time, boiling the two approaches down to the same execution.

5.3 Stress test on vertex cover

We run a third batch of tests, reported below, in which we gen-
erate games where it is unlikely to trigger MustFix, both for Opt
and Greedy. To do so, we generated instances directly from Vertex
Cover, the problem we used to prove that Strategy Repair is NP-
complete. The instance of the experiment is then generated starting
from a vertex cover problem with n nodes, and then reducing it to
Strategy Repair, the same way it is done in the proof of Theorem 1.

Results on this are reported in Table 3 and plotted in Figure 5.
In this case, the performances of Opt and Greedy diverge very

quickly. By setting a timeout of 30 minutes, the algorithm Opt could
solve instances of up to 80 nodes (for a total of 161 nodes of the
corresponding Strategy Repair), while Greedy was capable of solv-
ing the same instances in around 10 seconds, and scaling quite well.
Regarding the accuracy, it decreases a little with respect to random
games, but still it is maintained at around 0.9.

100 200 500 700
0

10

20

30

40

50

60

n. of nodes

Ti
m

e
(s

)

opt
Greedy

Figure 4: Comparison of Opt and Greedy.

VC nodes N. experiments Opt Greedy Accuracy
5 5,000 0.0009 0.0005 0.9815
10 2,000 0.013 0.004 0.889
20 500 0.32 0.041 0.875
30 100 2.8 0.185 0.8835
50 5 56.8 1.44 0.923
55 5 118.2 2.11 0.911
60 5 206 3.09 0.906
65 3 371 4.32 0.914
70 3 603 6 0.9254
75 2 985 8.28 0.937
80 2 1385 11 0.929
100 10 Timeout 29.7 N/A
120 4 Timeout 66.9 N/A
150 4 Timeout 182 N/A
175 3 Timeout 368 N/A
200 3 Timeout 692 N/A

Table 3: Vertex cover experiments.

5.4 Target deviation

We run a last battery experiments that aim at evaluating how conve-
nient in terms of strategy distance to employ Strategy Repair instead
of generating a completely new strategy from scratch.

We evaluated the following scenario. First, we generate a game in-
stance G using the same random generator of the first two batches of
experiments. We then found a winning strategy σ0 using the classic
backward induction approach. At this point, we randomly deviated
the target set T of G by a margin of 1%. Given that the target sets
are large around 5% of the nodes, this means that 1 out of 5 target
nodes are replaced with a new one, obtaining a new game G′. At this
point, the instance (G′, σ0) is fed into Opt and Greedy, which gener-
ate two winning strategies σOpt

0 , and σGreedy
0 , respectively. In addition

to them, we also solve G′ from scratch, generating a winning strategy
σ′0. At this point, we evaluate the distance of the original σ0 with all
the three winning strategies of G′ found with these three approaches.

These values are reported in Table 4 in columns “Opt dist”,
“Greedy dist”, and “scratch dist”, respectively. We could observe
that the distances obtained from Opt and Greedy are comparable.
This was expected, given the high accuracy of Greedy in random
games. On the other hand, observe that they improve the distance
of the strategy obtained recomputing the solution from scratch by a
margin ratio ranging between 2 and 4. This means that the amount of
repair needed can be reduced down to 25% when employing Strategy

P. Gaillard et al. / Strategy Repair in Reachability Games 785

0

500

1,000

VC nodes

Ti
m

e
(s

)
Opt

Greedy

Figure 5: Vertex Cover experiments.

Repair instead of recomputation from scratch.

N. nodes N. experiments Opt dist Greedy dist scratch dist
40 5000 0.81 0.811 1.6
60 1000 1.856 1.86 4

100 500 3.5 3.5 10.1
200 100 10.9 10.9 37.2
500 100 55.5 55.5 160
700 5 96 96 257

Table 4: Target deviation experiments.

6 Conclusion
We have introduced Strategy Repair, i.e., the problem of turning a
losing strategy for a RG into one that is winning, by means of a min-
imal number of modifications. The work can be seen as transferring
the idea of plan repair, originally introduced and studied in Classi-
cal Planning, together with its basic principles, to the setting of RGs,
which are a more general model, expressive enough to model also
FOND Planning. In this way, all the results obtained in the setting of
RGs are also immediately available for FOND Planning and, more in
general, to all those settings that can be modeled by RGs.

We have devised an algorithmic approach that returns a minimal-
distance solution (wrt the number of changes applied to the losing
strategy) and characterized its complexity as NP-complete, via re-
duction from Vertex Cover. To deal with the high-complexity in prac-
tice, we have then designed a greedy, polynomial algorithm, together
with a very effective heuristic, called MustFix, which has proven ex-
tremely efficient in practice, from the point of view of both running
time and distance from the initial strategy. The heuristic is also very
beneficial to the optimal algorithm, up to the point that on random
problems not specifically selected to stress the algorithms, the per-
formance of the optimal approach almost matches that of the poly-
nomial, sub-optimal one. An interesting experimental finding, is that
when the set of goal states is subject to small changes, it is more con-
venient to find a solution by repairing the initial strategy (computed
before goal change) than computing one anew. This offers a further
powerful tool for efficient RG strategy computation, especially when
the initial strategy features properties that are desirable to preserve.

This work is an initial investigation into the problem of Strategy
Repair and leaves at least two interesting questions open. Firstly,

while the polynomial algorithm, coupled with the MustFix heuris-
tic, exhibits outstanding experimental performance, no approxima-
tion guarantee was obtained. For future work, we aim at studying
such a property. Secondly, it is interesting to go beyond simple reach-
ability and apply the repair approach to other problems. In particular,
one immediate extension would be to investigate applicability and
effectiveness of the approach for strong cyclic [5] solutions. More
in general, the repair approach could be applied to more complex
games, such as parity or Büchi games [11, 15], which would have
an immediate impact on more complex forms of planning, such as
Classical or FOND Planning for temporally extended goals.

Acknowledgements
The work of Giuseppe Perelli was partially funded by MUR un-
der the PRIN programme, grant B87G22000450001 (PINPOINT),
and by the PNRR MUR project PE0000013-FAIR. The work of
Fabio Patrizi was partially funded by MUR under the PNRR MUR
project PE0000013-FAIR, the ERC Advanced Grant WhiteMech
(No. 834228), and the Sapienza Project MARLeN.

References
[1] Henrik Björklund and Sergei G. Vorobyov, ‘A Combinatorial Strongly

Subexponential Strategy Improvement Algorithm for Mean Payoff
Games’, Discret. Appl. Math., 155(2), 210–229, (2007).

[2] Alberto Camacho, Jorge A. Baier, Christian J. Muise, and Sheila A.
McIlraith, ‘Finite LTL synthesis as planning’, in Proceedings of the
Twenty-Eighth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018,
eds., Mathijs de Weerdt, Sven Koenig, Gabriele Röger, and Matthijs
T. J. Spaan, pp. 29–38. AAAI Press, (2018).

[3] Alberto Camacho, Christian J. Muise, Jorge A. Baier, and Sheila A.
McIlraith, ‘LTL realizability via safety and reachability games’, in Pro-
ceedings of the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
ed., Jérôme Lang, pp. 4683–4691. ijcai.org, (2018).

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein, Introduction to Algorithms, 3rd Edition, MIT Press, 2009.

[5] Marco Daniele, Paolo Traverso, and Moshe Y. Vardi, ‘Strong cyclic
planning revisited’, in Recent Advances in AI Planning, 5th European
Conference on Planning, ECP’99, Durham, UK, September 8-10, 1999,
Proceedings, eds., Susanne Biundo and Maria Fox, volume 1809 of
Lecture Notes in Computer Science, pp. 35–48. Springer, (1999).

[6] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani,
Algorithms, McGraw-Hill, 2008.

[7] Giuseppe De Giacomo, Marco Favorito, Jianwen Li, Moshe Y. Vardi,
Shengping Xiao, and Shufang Zhu, ‘Ltlf synthesis as AND-OR graph
search: Knowledge compilation at work’, in Proceedings of the Thirty-
First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, ed., Luc De Raedt, pp. 2591–
2598. ijcai.org, (2022).

[8] Giuseppe De Giacomo and Moshe Y. Vardi, ‘Synthesis for LTL and
LDL on finite traces’, in Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, eds., Qiang Yang and Michael J.
Wooldridge, pp. 1558–1564. AAAI Press, (2015).

[9] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina, ‘Plan
stability: Replanning versus plan repair’, in Proceedings of the Six-
teenth International Conference on Automated Planning and Schedul-
ing, ICAPS 2006, Cumbria, UK, June 6-10, 2006, eds., Derek Long,
Stephen F. Smith, Daniel Borrajo, and Lee McCluskey, pp. 212–221.
AAAI, (2006).

[10] Alfonso Gerevini and Ivan Serina, ‘Efficient plan adaptation through re-
planning windows and heuristic goals’, Fundam. Informaticae, 102(3-
4), 287–323, (2010).

[11] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, eds. Automata,
Logics, and Infinite Games: A Guide to Current Research [outcome of
a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in
Computer Science. Springer, 2002.

P. Gaillard et al. / Strategy Repair in Reachability Games786

[12] Walter Ludwig, ‘A Subexponential Randomized Algorithm for the
Simple Stochastic Game Problem’, Inf. Comput., 117(1), 151–155,
(1995).

[13] Bernhard Nebel and Jana Koehler, ‘Plan reuse versus plan generation:
A theoretical and empirical analysis’, Artif. Intell., 76(1-2), 427–454,
(1995).

[14] Christos H. Papadimitriou, Computational complexity, Academic Inter-
net Publ., 2007.

[15] Dominique Perrin and Jean-Eric Pin, Infinite words - automata, semi-
groups, logic and games, volume 141 of Pure and applied mathematics
series, Elsevier Morgan Kaufmann, 2004.

[16] Alessandro Saetti and Enrico Scala, ‘Optimising the stability in plan
repair via compilation’, in Proceedings of the Thirty-Second Inter-
national Conference on Automated Planning and Scheduling, ICAPS
2022, Singapore (virtual), June 13-24, 2022, eds., Akshat Kumar,
Sylvie Thiébaux, Pradeep Varakantham, and William Yeoh, pp. 316–
320. AAAI Press, (2022).

[17] Enrico Scala and Pietro Torasso, ‘Proactive and reactive reconfiguration
for the robust execution of multi modality plans’, in ECAI 2014 - 21st
European Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applications of Intelli-
gent Systems (PAIS 2014), eds., Torsten Schaub, Gerhard Friedrich, and
Barry O’Sullivan, volume 263 of Frontiers in Artificial Intelligence and
Applications, pp. 783–788. IOS Press, (2014).

[18] Enrico Scala and Pietro Torasso, ‘Deordering and numeric macro ac-
tions for plan repair’, in Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, eds., Qiang Yang and Michael J.
Wooldridge, pp. 1673–1681. AAAI Press, (2015).

[19] Roman van der Krogt and Mathijs de Weerdt, ‘Plan repair as an exten-
sion of planning’, in Proceedings of the Fifteenth International Con-
ference on Automated Planning and Scheduling (ICAPS 2005), June
5-10 2005, Monterey, California, USA, eds., Susanne Biundo, Karen L.
Myers, and Kanna Rajan, pp. 161–170. AAAI, (2005).

[20] Jens Vöge and Marcin Jurdziński, ‘A discrete strategy improvement al-
gorithm for solving parity games’, in Computer Aided Verification, eds.,
E. Allen Emerson and Aravinda Prasad Sistla, pp. 202–215, Berlin,
Heidelberg, (2000). Springer Berlin Heidelberg.

P. Gaillard et al. / Strategy Repair in Reachability Games 787

	Introduction
	Preliminaries
	The Strategy Repair Problem
	Algorithmic Solutions
	The algorithm Opt
	The algorithm Greedy
	A Better Selection Method of Frontier Edges

	Experimental setup
	Testing the Effectiveness of MustFix
	Comparing Opt and Greedy
	Stress test on vertex cover
	Target deviation

	Conclusion

