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Abstract. Accumulated Local Effects (ALE) is a widely-used ex-
plainability method for isolating the average effect of a feature on the
output, because it handles cases with correlated features well. How-
ever, it has two limitations. First, it does not quantify the deviation of
instance-level (local) effects from the average (global) effect, known
as heterogeneity. Second, for estimating the average effect, it parti-
tions the feature domain into user-defined, fixed-sized bins, where
different bin sizes may lead to inconsistent ALE estimations. To ad-
dress these limitations, we propose Robust and Heterogeneity-aware
ALE (RHALE). RHALE quantifies the heterogeneity by considering
the standard deviation of the local effects and automatically deter-
mines an optimal variable-size bin-splitting. In this paper, we prove
that to achieve an unbiased approximation of the standard deviation
of local effects within each bin, bin splitting must follow a set of
sufficient conditions. Based on these conditions, we propose an al-
gorithm that automatically determines the optimal partitioning, bal-
ancing the estimation bias and variance. Through evaluations on syn-
thetic and real datasets, we demonstrate the superiority of RHALE
compared to other methods, including the advantages of automatic
bin splitting, especially in cases with correlated features.

1 Introduction

Recently, Machine Learning (ML) has been adopted across multi-
ple areas of human activity, including mission-critical domains such
as healthcare and finance. In such high-stakes areas, it is impor-
tant to accompany predictions with meaningful explanations [24, 5].
For this reason, there is an increased interest in Explainable AI
(XAI) [23, 14]. XAI literature distinguishes between local and global
methods [18]. Local methods provide instance-level explanations [4],
i.e., explain the prediction for a specific input, whereas global meth-
ods explain the entire model behavior [13]. Most of the times, global
methods aggregate the instance-level explanations into a single inter-
pretable outcome, usually a number or a plot.

Feature Effect (FE) [11] is a class of global explainability methods
that quantify the average (across all instances) partial relationship
between one feature and the output. The most popular FE methods
are Partial Dependence Plots (PDP) [6] and Accumulated Local Ef-
fects (ALE) [1]. PDPs have been criticized [2, 17, 21] for providing
misleading explanations in problems with highly correlated features,
making ALE the only reliable solution in such cases. Nevertheless,
ALE has two significant limitations. Firstly, the way ALE formu-
lates the FE (ALE definition of Eq. (2)), does not take into account
the heterogeneity of instance-level effects, a quantity that is crucial

for a complete interpretation of the average effect. Secondly, the way
ALE estimates the FE from the instances of the training set (ALE
approximation at Eq. (3)) relies on a user-defined binning process
that often results in poor estimations. Therefore, this paper presents
RHALE (Robust and Heterogeneity-aware ALE), a FE method build
on-top of ALE that overcomes these issues. To better understand the
advantages of RHALE over ALE, consider the following example,
which was first introduced in [9]:

Y = 0.2X1 − 5X2 + 10X2�X3>0 + E

E i.i.d.∼ N (0, 1), X1, X2, X3
i.i.d.∼ U(−1, 1)

(1)

where we draw N = 100 samples, i.e, D = {(xi, yi)}Ni=1. Given
the knowledge of Eq. (1), the FE of X3 is zero because the term
10X2�X3>0, where X3 appears, is part of the effect of X2. In con-
trast, X2 relates to Y in two opposite ways, as −5X2 when X3 < 0
and as 5X2 otherwise. Therefore, the zero average effect of X2 after
aggregating the two opposites effects, should not erroneously imply
that X2 does not affect Y . However, as demonstrated in Figure 1a
(for X2) and Figure 2a (for X3) ALE definition erroneously indi-
cates that both variables are not associated with the output. This phe-
nomenon, known as aggregation bias [16, 12], is a common issue of
global XAI methods.

RHALE addresses this issue by quantifying the heterogeneity
based on the standard deviation of the underlying instance-level ef-
fects. As shown in Figure 1c, although the average X2 effect is
zero, the presence of two opposing groups of instance-level effects,
namely, 5X2 and −5X2, is revealed by both (a) the shaded area in
the top subfigure (the limits of the shaded area are the lines 5X2 and
−5X2) and (b) the violin plots in the bottom subfigure (the distribu-
tion of the instance-level effects has most of its mass at−5 and 5). In
contrast, in Figure 2b, the zero heterogeneity states that X3 is indeed
not related to the output.

The second limitation is that ALE approximation requires an ini-
tial step where the feature axis is partitioned in K non-overlapping
fixed-size bins. Afterwards, an average effect (bin-effect) is com-
puted inside each bin, and ALE plot is the aggregation of the bin ef-
fects. Since there is no clear indication of an appropriate value for K,
users often rely on heuristics, such as ensuring that each bin contains
on average at least τ instances on average. In the example above,
for τ = 5, then K = 20, which, as we show in Figure 1b, results
in significant approximation errors. Specifically, the bin-effects and
bin-std values deviate significantly from their ground-truth, which
are 0 and 5, respectively. To overcome this limitation, RHALE auto-
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(a) x2 ALE plot (20 bins) (b) x2 ALE + heterogeneity (20 bins) (c) x2 RHALE (auto-binning)

Figure 1: Feature effect for x2 on the simple example of Eq. (1); (a) ALE incorrectly suggests that X2 does not relate to Y , (b) ALE with
heterogeneity using K = 20 fixed-size bins leads to significant approximation errors, (c) RHALE accurately estimates both the main effect
and the heterogeneity, indicating that the zero average effect comes from opposite groups of instance-level effects.

(a) x3 ALE plot (20 bins) (b) x3 RHALE plot (auto-
binning)

Figure 2: Feature effect for x3 on the simple example of Eq. (1). ALE
plot suggests that X3 does not relate to Y . However, as seen in Fig-
ure 1a, this interpretation can be misleading. Only after noticing the
zero heterogeneity (STD and bin-std are zero) of RHALE plot in (b),
we can confirm this claim.

matically determines the optimal sequence of variable-size bins. For
example, in Figure 1c, RHALE automatically finds that it is optimal
to create a single bin, which leads to a good approximation of both
the average effect and the heterogeneity. The optimal bin splitting de-
pends on the underlying instance-level effects (Section 3.2). Essen-
tially, a wide bin reduces the variance of the estimation by increasing
the samples inside the bin (better Monte Carlo approximation) but it
may also introduce bias in the estimation. Using this insight, we for-
mulate an optimization problem and propose an algorithm that min-
imizes the bias while ensuring that each bin has a sufficient number
of samples. The main contributions of this paper are:

• A new feature effect method, RHALE, that addresses aggregation
bias by providing information on the heterogeneity of instance-
level effects.

• A formulation of the selection of variable-sized bins to balance
RHALE bias and variance as an optimization problem.

• An algorithm that efficiently solves the optimal bin partitioning
problem.

• A thorough experimental evaluation of RHALE on synthetic and
real datasets, demonstrating its superiority over other feature ef-
fect methods, both in terms of accuracy and efficiency.

The code for reproducing all experiments is provided at
https://github.com/givasile/RHALE.

2 Background and related work

Let X ∈ R
d be the d-dimensional feature space, Y the target

space and f(·) : X → Y the black-box function. We use index
s ∈ {1, . . . , d} for the feature of interest and c = {1, . . . , d} − s
for the rest. For convenience, to denote the input vector, we use
(xs,xc) instead of (x1, · · · , xs, · · · , xD) and, for random vari-
ables, (Xs, Xc) instead of (X1, · · · , Xs, · · · , XD). The training set
D = {(xi, yi)}Ni=1 is sampled i.i.d. from the distribution PX,Y . Fi-
nally, f<method>(xs) denotes how < method > defines the feature
effect and f̂<method>(xs) how it estimates it from the training set.

2.1 Feature Effect Methods

The most popular feature effect methods are: Partial Dependence
Plots (PDP) and Accumulated Local Effects (ALE). PDP defines
the FE as an expectation over the marginal distribution Xc, i.e.,
f PDP(xs) = EXc [f(xs, Xc)]. A variation of PDP, known as Marginal
Plots (MP), computes the expectation over the conditional distribu-
tion Xc|xs, i.e., f MP(xs) = EXc|xs [f(xs, Xc)]. Both methods suf-
fer from misestimations when features are correlated. PDP integrates
over unrealistic instances and MP computes aggregated effects, i.e.,
attributes the combined effect of sets of features to a single fea-
ture [1]. ALE tackles these limitations, using a three-step compu-
tation; (a) the local effect at (z,Xc), fs(z,Xc) = ∂f

∂xs
(z,Xc), is

computed with the derivatives ∂f
∂xs

to isolate the effect of xs, (b) the
expected effect at z, μ(z) = EXc|z [f

s(z,Xc)], is taken over Xc|z,
and, (c) the accumulation,

∫
μ(z)dz, retrieves the main effect. ALE

definition is:

f ALE(xs) =

∫ xs

xs,min

EXc|Xs=z [f
s(z,Xc)]︸ ︷︷ ︸

μ(z)

∂z (2)

where xs,min is the minimum value of the s-th feature. In real ML
problems, p(X) is unknown, so [1] proposed estimating ALE from
the training set with:

f̂ ALE(xs) =

kx∑
k=1

1

|Sk|
∑

i:x(i)∈Sk

[
f(zk,x

(i)
c )− f(zk−1,x

(i)
c ))

]
(3)

where kx the index of the bin such that zkx−1 ≤ xs < zkx and Sk is
the set of the instances of the k-th bin, i.e. Sk = {xi : zk−1 ≤

V. Gkolemis et al. / RHALE: Robust and Heterogeneity-Aware Accumulated Local Effects860

https://github.com/givasile/RHALE


x
(i)
s < zk}. In Eq. (3) the axis of the s-th feature is split in K

equally-sized bins and the average effect in each bin (bin effect) is
estimated using synthetic instances, where x(i)

s is set to the right (zk)
and left (zk−1) limits of the bin. Recently, [8] proposed the Differ-
ential ALE (DALE) that computes the local effects of differentiable
models without modifying the training instances:

f̂ DALE(xs) = Δx

kx∑
k=1

1

|Sk|
∑

i:x(i)∈Sk

fs(xi) (4)

Their method allows formulating large bins without creating out-of-
distribution instances and changing the bin size without the need
to recalculate the instance-level effects. However, both Eq. (3) and
Eq. (4) are limited to equal-width partitioning, which has limitations.
As discussed in the Introduction, selecting between narrow and wide
bins is challenging and, even more, there are cases (Figure 4) where
neither narrow nor wide bins are appropriate. In these cases, it is nec-
essary to use variable bin sizes (Figure 3b).

2.2 Heterogeneity Of Local Effects

Relying only on the average effect may provide a misleading in-
terpretation of the model. Thus, there is an increasing interest in
quantifying the degree of divergence between local effects and the
average effect, which is commonly referred to as heterogeneity of
local effects. To measure heterogeneity, PDP has a local equivalent
called Individual Conditional Expectation (ICE) [9]. ICE, along with
its variations like c-ICE and d-ICE [9], creates one curve per in-
stance, f ICE

i (xs) = f(xs,x
(i)
c ), on top of the average PDP plot, as

seen in Figure 3a. In this way, the user assesses the heterogeneity
by visually inspecting the similarity between ICE curves. However,
as demonstrated in Section 4.1, ICE plots have the same limitations
as PDPs in cases of correlated features. Based on the variance of
the ICE plots, [19] proposed a method to quantify the standard er-
ror around the PDP plot. Some other methods[12, 3, 20] attempt to
address PDP-ICE failure in case of correlated features by cluster-
ing ICE plots based on their similarity. The focus of these works,
however, is on regional effects, i.e., subsets of the input space with
homogeneous effects, rather than global effects. Approaches such as
the H-Statistic [7], Greenwell’s interaction index [10], and SHAP in-
teraction values [15] provide a metric that quantifies the level of in-
teractions between feature pairs but do not provide insight into how
interactions influence different parts of the feature effect plot. To the
best of our knowledge, no existing method quantifies heterogeneous
effects for ALE.

3 RHALE

RHALE visualizes the feature effect with a plot as illustrated in Fig-
ure 3b. The plot includes (a) f̂ RHALE

μ (xs), the robust estimation of ALE
that shows the average effect (RHALE estimation), (b) STD(xs), the
standard deviation of the ALE effect that shows the heterogeneity of
the instance level effects (STD), (c) μ̂k∀k, the bin effects that show
the average change on the output y given a small change in xs (bin
effect) and (d) σ̂k∀k the bin standard deviations that quantify the het-
erogeneity inside each bin (bin std). In each bin, a violin plot on top
of the bin effect shows the exact distribution of the local effects. The
variable-size partitioning presented in Section 3.2 leads to an accu-
rate estimation of these quantities.

To explain these four interpretable quantities and to highlight
the advantages of RHALE compared to PDP-ICE, we will use

a running example. We define a generative distribution p(x) =
p(x1)p(x2)p(x3|x1) where x3 is highly correlated with x1, while
x2 is independent from both. Specifically, x1 lies in [−0.5, 0.5] with
most samples inside the first half, i.e. p(x1) = 5

6
U(x1;−0.5, 0) +

1
6
U(x1; 0, 0.5), x3 is almost equal to x1 i.e., p(x3|x1) =
N (x3; 0, σ3 = 0.01) and p(x2) = N (x2; 0, σ2 = 2). In the ex-
periments, we use 60 samples drawn i.i.d. from p(x). The predictive
function is:

f(x) = sin(2πx1)( x1<0 − 2 x3<0) + x1x2 + x2 (5)

The simplicity of the toy example helps us isolate the effect of
x1, which is f(x1) ≈ − sin(2πx1) x1<0. This is because x3 ≈
x1, so ( x1<0 − 2 x3<0 ≈ − x1<0) and the effect of x1x2 is
x1Ex2 [x2] = 0. Furthermore, the only term that introduces hetero-
geneity is x1x2, due to x2 ∼ N (0, 2) that varies among instances.
Detailed derivations are provided at the Appendix B.1.

In Figure 3b we show that a user can interpret these effects
from the RHALE plot. Specifically, from the top subplot, a user
can interpret that (a) the average effect of x1 is f̂ RHALE

μ (x1) ≈
− sin(2πx1) x1<0, and is produced after aggregating (b) instance
level effects that vary in the region − sin(2πx1) x1<0 ± 2x1. From
the bottom subfigure, the user can interpret the FE at the bin-level.
For example, for x1 ∈ [−0.5,−0.4] (c) the average change on the
output is about ∂f

∂x1
≈ 6 units of y and is produced after aggregat-

ing instance-level changes that vary in 6± 2. Furthermore, the violin
plots show the exact distribution of the instance-level changes.

For estimating the above quantities from the 60 available samples,
the optimized partitioning divides the sinusoidal region in six bins
(dense enough) and merges the constant region in a single bin (robust
estimation), balancing estimation variance and bias (Section 3.2). In
contrast, Figure 4 shows that all fixed-size splits result in poor es-
timations; when using sparse bins (K = 5) the estimation is bi-
ased, as will be explained in Section 3.1, and when using dense bins
(K = 50) the estimation has high variance.

A natural question that arises is whether we could come to the
same interpretation using the PDP-ICE plot. At Figure 3a we observe
that PDP with c-ICE, i.e., ICE curves centered to start from zero,
lead to a completely misleading interpretation. For example, in x1 ∈
[0, 0.5], PDP shows a negative sinusoidal average effect and c-ICE
two heterogeneous effects; a negative sinusoidal when x

(i)
3 ≥ 0 (for

about 5
6

of the instances), and a linear when x
(i)
3 < 0 (for about

5
6

of the instances). This is because PDP-based methods ignore the
correlation between x1 and x3.

(a) PDP-ICE plot (b) RHALE plot

Figure 3: Feature effect for x1 on the example of Eq. 5. Due to feature
correlations, only RHALE provides a robust estimation of the main
effect and the heterogeneity.
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Figure 4: Estimation of the ALE effect, the standard error of ALE,
the bin effect and the bin standard deviation using fixed-sized bins,
K = 5 (left) and K = 50 (right).

3.1 Definition

We define the heterogeneity at xs = z as the standard deviation σ(z)
of the instance-level effects, where:

σ2(z) = EXc|Xs=z

[
(fs(z,Xc)− μ(z))2

]
(6)

The variability is introduced by the implicit feature interactions. If
the black-box function does not have any interaction term, i.e., it can
be written as f(x) = fs(xs) + fc(xc) then the variability is zero.
For the interval-based formulation, we define the bin effect μ(z1, z2)
and the bin standard deviation σ(z1, z2) as:

μ(z1, z2) = Ez∼U(z1,z2)[μ(z)] =

∫ z2
z1

μ(z)∂z

z2 − z1
(7)

σ2(z1, z2) = Ez∼U(z1,z2)[σ
2(z)] =

∫ z2
z1

σ2(z)∂z

z2 − z1
(8)

The bin effect and the bin standard deviation quantify the aver-
age effect and the heterogeneity inside a bin, i.e., for a population
x(i) = (z(i),x

(i)
c ), where z(i) is uniformly drawn from U(z1, z2)

and xc from Xc|z(i). Denoting as Z the sequence of K + 1 points
that partition the axis of the s-th feature into K variable-size in-
tervals, i.e., Z = {z0, . . . , zK}, the interval-based formulation of
RHALE is:

f̃ RHALE
Z (xs) =

kx∑
k=1

μ(zk−1, zk)(zk − zk−1) (9)

where kx is the index of the bin such that zkx−1 ≤ xs < zkx .
Eq. (9) is no more than a piece-wise linear approximation of Eq. (2).
The approximation of the bin effect and of the bin standard deviation
is made from the set Sk of instances with the s-th feature in the k-th
bin, i.e., Sk = {xi : zk−1 ≤ x

(i)
s < zk}. The bin effect is estimated

with:
μ̂(zk−1, zk) =

1

|Sk|
∑

i:xi∈Sk

[
fs(xi)

]
(10)

which is an unbiased estimator of Eq. (7) (Appendix A.1). The esti-
mator of the bin deviation Eq. (8) is:

σ̂2(zk−1, zk) =
1

|Sk| − 1

∑
i:xi∈Sk

(
fs(xi)− μ̂(z1, z2)

)2

(11)

At Appendix A.2, we show that σ̂2(z1, z2) is an unbiased esti-

mator of σ2
∗(z1, z2) =

∫ z2
z1

EXc|Xs=z[(fs(z,Xc)−μ(z1,z2))
2]∂z

z2−z1
and

in Theorem 1 we prove that in the general case, σ2
∗(z1, z2) ≥

σ2(z1, z2). Therefore, without a principled bin-splitting strategy,
σ̂2(z1, z2) leads to an overestimation of the actual bin standard de-
viation σ2(z1, z2).

Theorem 1. If we define (a) the residual ρ(z) as the difference
between the expected effect at z and the bin effect, i.e, ρ(z) =
μ(z) − μ(z1, z2), and (b) E(z1, z2) as the mean squared residual

of the bin, i.e., E(z1, z2) =
∫ z2
z1

ρ2(z)∂z

z2−z1
, then it holds

σ2
∗(z1, z2) = σ2(z1, z2) + E2(z1, z2) (12)

Proof. The proof is at A.3 of the Appendix

We refer to E2(z1, z2) as bin error. Based on Theorem1, the esti-
mation is unbiased only when E2(z1, z2) = 0.

3.2 Automatic Bin-Splitting

RHALE approximation is affected by (a) the number of instances
(estimation variance) and (b) the error term E(z1, z2) (estima-
tion bias), in each bin. On the one hand, we favor wide bins
so that the estimation of μ̂(z1, z2), σ̂(z1, z2) comes from a suf-
ficient population of samples (low estimation variance). On the
other hand, we want to minimize the accumulated bin error, i.e.,
E2
Z =

∑K
k=1 E

2(zk−1, zk)Δzk, where Z = {z0, · · · , zK} and
Δzk = zk−zk−1 (low estimation bias). We search for a partitioning
that balances this trade-off.

Corollary 2. If a bin-splitting Z minimizes the accumulated error
E2
Z , then it also minimizes

∑K
k=1 σ

2
∗(z1, z2)Δzk.

Proof. The proof is based on the observation that∑K
k=1 σ

2(zk−1, zk)Δzk = σ2(z0, zK)(zK − z0) which is in-
dependent of the bin-splitting. A detailed proof is provided at
Appendix A4.

Corollary 2 shows that minimizing E2
Z is equivalent to minimiz-

ing
∑K

k=1 σ
2
∗(zk−1, zk)Δzk, which can be directly estimated from∑K

k=1 σ̂
2(zk−1, zk)Δzk. Based on that, we set-up the following op-

timization problem:

min
Z={z0,...,zK}

L =
K∑

k=1

τkσ̂
2(zk−1, zk)Δzk

where Δzk = zk − zk−1

τk = 1− α
|Sk|
N

s.t. |Sk| ≥ NPPB

z0 = xs,min

zK = xs,max

(13)

The objective L searches for a partitioningZ∗ = {z∗0 , . . . , z∗K} with
a low accumulated error E2

Z and when many partitionings have sim-
ilar accumulated errors, the coefficient τK favors the one with wider
bins (on average, more points per bin). The constraint of at least
NPPB points per bin sets the lowest-limit for a robust estimation. The
user can choose to what extent they favor the creation of wide bins
through the parameter α that controls the discount τk and the param-
eter NPPB that sets the minimum population per bin. A typical choice
for α is 0.2, which means a discount between range of [0%, 20%]
and for NPPB is N

20
, which means at least N

20
points in each bin, where

N is the dataset size.
For solving the optimization problem of Eq.13 we discretize the

solution space. First, we set a threshold Kmax on the maximum
number of bins which, in turn, defines the minimum bin width, i.e.
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Δxmin =
xs,max−xs,min

Kmax
. Based on that, we restrict the bin limits to

the multiples of the minimum width, i.e. zk = k ·Δxmin,where k ∈
{0, · · · ,Kmax}. In this discretized solution space, we find the global
optimum using Dynamic Programming. To define the solution, we
use two indexes; index i ∈ {0, . . . ,Kmax} denotes the limit of the i-
th bin (zi) and the index j ∈ {0, . . . ,Kmax} denotes the j-th multi-
ple of the minimum step, i.e., xj = xs,min+j ·Δxmin. The recursive
cost function T (i, j) computes the cost of setting zi to xj :

T (i, j) = minl∈{0,...,Kmax} [T (i− 1, l) + B(l, j)] (14)

The term B(l, j) is the cost of creating a bin with limits [xl, xj). In
our case, following Eq. (13), we set it to τkσ̂

2(xl, xj)(xj−xl) if the
bin is valid, i.e., |Sk| ≥ NPPB, and to∞ otherwise. The optimal par-
titioning Z∗ is given by solving L = T (Kmax,Kmax) and keeping
track of the sequence of steps. Therefore, the main RHALE effect is
estimated as in Eq. (15) and its standard deviation as in Eq. (16):

f̂ RHALE
Z∗ (xs) =

kx∑
k=1

μ̂(zk−1, zk)(zk − zk−1) (15)

STD(xs) =

√√√√ kx∑
k=1

(zk − zk−1)2σ̂2(zk−1, zk) (16)

The bin effects μ̂k are estimated using Eq. 10 and and the hetero-
geneity by the standard deviation σ̂k in each bin using Eq. 11.

Computational Complexity. The computational complexity of
the DP solution is O(K3

max) because we use the DALE formula of
Eq. 4. This allows us to precompute the instance-level effects once
in the beginning, and then, the bin-splitting algorithm simply reallo-
cates them to different partitionings without reevaluating f for each
partitioning. As a result, for up to roughly Kmax = 100 bins, our
algorithm runs in a couple of seconds, regardless of the dataset size
or the cost of evaluating f . On the other hand, a PDP-ICE plot needs
to evaluate f on t positions along the xs axis for all N dataset points,
making it a much slower alternative. Additional details and experi-
mental results on the computational aspect can be found in Appendix
A5. Finally, it is worth noting that Kmax only sets an upper limit and
the optimal sequence Z∗ can range from 1 to Kmax.

4 Simulation examples

To formally evaluate RHALE, we rely on simulation examples as the
evaluation requires knowledge of the ground truth generating distri-
bution X and the black-box function f . In contrast, in Section 5, we
showcase the applicability of RHALE on a real-world dataset, but it
impossible to conduct a formal evaluation in this setting. The eval-
uation of RHALE on simulation examples is two-fold. First, in Sec-
tion 4.1 we conduct a formal comparison between RHALE and PDP-
ICE to verify that RHALE performs well in cases with correlated
features, which PDP-ICE struggles with. Second, in Section 4.2, we
compare RHALE’s automated bin-splitting approach against the tra-
ditional fixed-size approximation. We demonstrate that RHALE’s
bin-splitting technique produces more accurate estimations across
various scenarios.

4.1 RHALE vs PDP-ICE

We consider a data generating distribution p(x) =
p(x3)p(x2|x1)p(x1), where x1 ∼ U(0, 1), x2 = x1 + ε and

x3 ∼ N
(
0, σ2

3 = 1
4

)
. Here ε ∼ N (0, 0.01) is a small additive

noise. The predictive function is:

f(x) = αf2(x)+f1(x) f1(x)≤ 1
2︸ ︷︷ ︸

g1(x)

+(1− f1(x)) 1
2
<f1(x)<1︸ ︷︷ ︸

g2(x)

(17)

where f1(x) = x1 + x2 is the additive term and f2(x) = x1x3

is the interaction term. We evaluate RHALE and PDP-ICE when (a)
there is no heterogeneity (α = 0) and (b) there is is heterogeneity
implied by the interaction term (α > 0). We use this simple example
for being able to establish a ground truth for the main effect and
the heterogeneity. For the main effect, we use that due to x2 ≈ x1

we can determine the intervals where g1 or g2 are active. For the
heterogeneity, we use the fact that under no-interactions, a = 0, the
heterogeneity must be zero and we discuss separately the case with
a > 0. For detailed derivations see Appendix B1.

Case a: Interaction term disabled. Given that x2 ≈ x1, when
0 ≤ x1 < 1

4
, then f1(x) <

1
2

, so the effect is x1 and, similarly, when
1
4
≤ x1 < 1

2
the effect is −x1. Therefore, the ground truth effect is

f GT(x1) = x1 x1<
1
4
+
(
1
4
− x1

)
1
4
≤x1<

1
2

. Since x1 does not inter-
act with any other feature, the heterogeneity is zero. In Figure 5, we
observe that PDP’s main effect is wrong and ICE plots show hetero-
geneous effects. In contrast, RHALE estimates correctly both the av-
erage effect and the heterogeneity. Finally, we observe that RHALE’s
bin-splitting optimally creates three wide bins, [0, 1

4
), [ 1

4
, 1
2
), [ 1

2
, 1),

in the regions with linear effect.

Figure 5: No interaction, Equal weights: Feature effect for x1 using
RHALE (Left) and PDP-ICE (Right).

Case b: Interaction term enabled. The main effects are
f GT(xj) = xj xj<

1
4
+

(
1
4
− xj

)
1
4
≤xj<

1
2

for features j = 1, 2

and f GT(x3) = 1
2
x3 for feature x3. The interaction term x1x2 in-

duces heterogeneous effects for features x1 and x3, and since the
two variables are independent, the heterogeneity is σ3 = 1

2
for x1

and σ1 = 1
4

for x3. In Figure 6, we observe that RHALE correctly
estimates the main effect and the heterogeneity of all features. In con-
trast, PDP-ICE only estimates correctly only the effect and the het-
erogeneity of x3. This confirms our previous knowledge that PDP-
ICE performs well only when the interaction terms includes non-
correlated features, like the term f2(x). For the correlated features
x1 and x2, both the average effect and the heterogeneity are erro-
neously estimated by PDP-ICE.

Discussion. The study shows RHALE’s superiority under corre-
lated features, where, PDP and ICE plots can provide highly mis-
leading results. Additionally, RHALE’s automatic bin splitting leads
to a robust estimation of the average effect and of the heterogeneity,
favoring wider bins in regions with (near) constant effects.
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Figure 6: With interaction, equal weights: From top to bottom, fea-
ture effect for features {x1, x2, x3} using RHALE (left column) and
PDP-ICE (right column).

4.2 RHALE vs ALE

In this simulation, we compare the performance of RHALE’s auto-
matic partitioning with ALE’s fixed-size bin-splitting. To assess the
accuracy of these approximations, we first estimate the ground truth
average effect μ and heterogeneity σ using a large dataset (N = 106)
with dense fixed-size binning (K = 103). We then generate a smaller
dataset (N = 500) and compare the estimation of μ̂, σ̂, using (a)
fixed-size bins for several values of K against (b) RHALE’s auto-
matic partitioning. Our objective is to show that RHALE provides
better estimates of μ and σ compared to any fixed-size alternative.

The dataset is generated by sampling from p(x) = p(x2|x1)p(x1)
where x1 ∼ U(0, 1) and x2 ∼ N (x1, σ

2
2 = 0.5). RHALE’s approx-

imation is denoted with Z∗ and the fixed-size with K bins as ZK.
The evaluation is based on the Mean Absolute Error (MAE) of the
bin effect μ and of the heterogeneity σ across bins, i.e.,

Lμ =
1

|Z| − 1

∑
k∈Z

|μ(zk−1, zk)− μ̂(zk−1, zk)| (18)

Lσ =
1

|Z| − 1

∑
k∈Z

|σ(zk−1, zk)− σ̂(zk−1, zk)| (19)

The ground truth bin effect, μ(zk−1, zk), and heterogeneity,
σ(zk−1, zk) are obtained by averaging the dense fixed-size bins
within the interval [zk−1, zk]. We also calculate the mean residual
error Lρ = 1

|Z|
∑

k∈Z E(zk−1, zk) to interpret cases where the bin
standard deviation is biased.

We compare RHALE vs ALE in two different scenarios; when f is
piecewise linear and f is non-linear. We execute t = 30 independent
runs, using each time N = 500 different samples, and report the
mean values of the metrics.

Piecewise Linear Function. Here, the black-box function is
f(x) = a1x1+x1x2, with 5 piecewise linear regions, i.e., a1 equals
to {2,−2, 5,−10, 0.5} in the intervals defined by the sequence
{0, 0.2, 0.4, 0.45, 0.5, 1}. The effect of x1 is f GT(x1) = a1x1 and
the heterogeneity σ2 =

√
0.5. As we observe in the top left of Fig-

ure 7, RHALE splits in fine-grained bins the intervals [0.4, 0.45],
[0.45, 0.5] and unites in a single bin most of the constant-effect re-
gions, e.g. region [0.5, 1]. Therefore RHALE’s estimation is better
than any fixed-size binning in terms of both Lμ and Lσ .

Figure 7: Bin-Splitting, piecewise linear function: RHALE’s approx-
imation (Top-Left). RHALE vs fixed-size approximations in terms
of: Lμ (Top-Right), Lσ (Bottom-Left), Lρ (Bottom-Right).

Figure 8: Bin-Splitting, non-linear function: RHALE’s approxima-
tion (Top-Left). RHALE vs fixed-size approximations in terms of:
Lμ (Top-Right), Lσ (Bottom-Left), Lρ (Bottom-Right).

Non-Linear Function. Here, the black-box function is f(x) =
4x2

1 + x2
2 + x1x2, so the effect of x1 is f GT(x1) = 4x2

1 and the
heterogeneity is σ2. When using a wide binning (low K) there is an
increase in the mean residual error Lρ (bottom-right of Figure 8),
resulting in a biased approximation of σ. In contrast, narrow bins
(high K) lead to a worse approximation due to number of samples
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per bin. However, RHALE manages to compromise these competing
objectives and achieves an (almost) optimal approximation of both μ
(top-right) and σ (bottom-left), as illustrated in Figure 8.

5 Real-world example

Here, since it is infeasible to access the ground-truth FE, we simply
demonstrate the usefulness of quantifying the heterogeneity and the
advantages of RHALE’s approximation, on the real-world California
Housing dataset [22].

ML setup. The California Housing is a largely-studied dataset
with approximately 20000 training instances, making it appropriate
for robust approximation with large K. The dataset contains D = 8
numerical features with characteristics about the building blocks of
California, e.g., latitude, longitude, population of the block or me-
dian age of houses in the block. The target variable is the median
value of the houses inside the block in dollars that ranges between
[15, 500] · 103, with a mean value of μY ≈ 201 · 103 and a standard
deviation of σY ≈ 110 · 103. We exclude instances with missing or
outlier values and we normalize all features to zero-mean and unit
standard deviation. We split the dataset into Ntr = 15639 training
and Ntest = 3910 test examples (80/20 split) and we fit a Neu-
ral Network with 3 hidden layers of 256, 128 and 36 units respec-
tively. After 15 epochs using the Adam optimizer with learning rate
η = 0.02, the model achieves a MAE of 37 · 103 dollars.

Below, we illustrate the feature effect for two features: latitude x2

and median income x8. The particular features cover the main FE
cases, e.g. positive/negative trend and linear/non-linear curve, and
are therefore appropriate for illustration purposes. Results for all fea-
tures, along with details about the reprocessing, training and evalua-
tion parts are provided in the Appendix B2.

Figure 9: RHALE plot for features x2 (latitude) and x6 (median in-
come). Apart from the average effects, i.e., negative for the x2 and
positive for x8, the heterogeneity (±STD and BIN-STD) shows that
instance-level effects ara more heterogeneous on x2 case.

Heterogeneity Quantification Figure 9 illustrates the significance
of RHALE’s heterogeneity quantification for comprehensive inter-
pretation of feature effects. We observe that both features exhibit
significant interactions with other features leading to high hetero-
geneity. However, despite the high heterogeneity, we can confidently
infer that the (a) latitude of the house (x2) negatively impacts the
price, and the (b) median income (x8) has a positive influence on the
price, for almost all instances.

Bin Splitting We evaluate the robustness of RHALE approxima-
tion, following the same methodology as described in Section 4.2.
We consider as ground-truth the effects computed on the entire train-
ing set (Ntr = 15639) with dense fixed-size bin-splitting (K = 80).
Given the sufficient number of samples, we make the hypothesis that
the approximation with dense binning is close enough to the ground

truth. Next, we randomly select fewer samples, N = 1000, and com-
pare RHALE’s approximation against fixed-size approximation (for
all K). We repeat this process for t = 30 independent runs and we
report the mean values of Lμ,Lσ . In Figure 10, we observe that
RHALE achieves accurate approximations in all cases; Lμ Lσ are
close to the best among the fixed-size approximations.

Figure 10: Lower is better. RHALE (red line) vs ALE fixed-size bins
(blue crosses) in terms of Lμ (left column), Lσ (right column) for
features x2 (top) x8 (bottom). We observe that RHALE’s estimation
is better than (almost) any fixed-size alternative.

6 Conclusion and further work

In this paper, we have introduced Robust and Heterogeneity-aware
ALE (RHALE), a global feature effect method that addresses two
major limitations of ALE. First, it quantifies the heterogeneity of lo-
cal effects, which is essential for a complete interpretation of the
feature effect. Second, it automates the bin-splitting process to im-
prove the approximation of both the average effect and the hetero-
geneity. To achieve the latter, we proposed an automatic bin-splitting
algorithm that balances estimation bias and variance by creating
wider bins only when the underlying local effects are (near) con-
stant. Our experiments on synthetic and real-world examples demon-
strate RHALE’s superiority over PDP-ICE, which struggles with cor-
related features, and traditional ALE, as automatic bin-splitting pro-
vides more accurate estimates than fixed-size splitting.

Limitations. While the standard deviation of local effects is a
good way to express the level of heterogeneity, it is challenging to
interpret the type of heterogeneity. Therefore, we use violin plots to
provide the distribution of local effects (type of heterogeneity), but
their explanatory power is limited within each bin. At a global level,
i.e., between the bins, the user can only determine the magnitude of
heterogeneity. Finally, the automatic-binning algorithm comes with
three hyperparameters, Kmax, α,NPPB. Although, their default val-
ues work well in most cases, on exceptional scenarios, such as a very
small dataset, may need to be adjusted appropriately for an optimal
bin splitting.

V. Gkolemis et al. / RHALE: Robust and Heterogeneity-Aware Accumulated Local Effects 865



Acknowledgements

This work was supported by the XMANAI project (grant agreement
No 957362), which has received funding by the European Regional
Development Fund of the EU (EU 2020 Programme, ICT-38-2020 -
Artificial intelligence for manufacturing).

References

[1] Daniel W Apley and Jingyu Zhu, ‘Visualizing the effects of predic-
tor variables in black box supervised learning models’, Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 82(4),
1059–1086, (2020).

[2] Hubert Baniecki, Wojciech Kretowicz, and Przemyslaw Biecek,
‘Fooling partial dependence via data poisoning’, arXiv preprint
arXiv:2105.12837, (2021).

[3] Matthew Britton, ‘Vine: visualizing statistical interactions in black box
models’, arXiv preprint arXiv:1904.00561, (2019).

[4] Giuseppe Casalicchio, Christoph Molnar, and Bernd Bischl, ‘Visualiz-
ing the feature importance for black box models’, in Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings,
Part I 18, pp. 655–670. Springer, (2019).

[5] Timo Freiesleben, Gunnar König, Christoph Molnar, and Alvaro
Tejero-Cantero, ‘Scientific inference with interpretable machine learn-
ing: Analyzing models to learn about real-world phenomena’, arXiv
preprint arXiv:2206.05487, (2022).

[6] Jerome H Friedman, ‘Greedy function approximation: a gradient boost-
ing machine’, Annals of statistics, 1189–1232, (2001).

[7] Jerome H Friedman and Bogdan E Popescu, ‘Predictive learning via
rule ensembles’, The annals of applied statistics, 916–954, (2008).

[8] Vasilis Gkolemis, Theodore Dalamagas, and Christos Diou, ‘Dale: Dif-
ferential accumulated local effects for efficient and accurate global ex-
planations’, arXiv preprint arXiv:2210.04542, (2022).

[9] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin, ‘Peek-
ing inside the black box: Visualizing statistical learning with plots
of individual conditional expectation’, journal of Computational and
Graphical Statistics, 24(1), 44–65, (2015).

[10] Brandon M Greenwell, Bradley C Boehmke, and Andrew J McCarthy,
‘A simple and effective model-based variable importance measure’,
arXiv preprint arXiv:1805.04755, (2018).

[11] Ulrike Grömping. Model-agnostic effects plots for interpreting ma-
chine learning models, 03 2020.

[12] Julia Herbinger, Bernd Bischl, and Giuseppe Casalicchio, ‘Repid: Re-
gional effect plots with implicit interaction detection’, in International
Conference on Artificial Intelligence and Statistics, pp. 10209–10233.
PMLR, (2022).

[13] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo, ‘Examples are
not enough, learn to criticize! criticism for interpretability’, Advances
in neural information processing systems, 29, (2016).

[14] Pang Wei Koh and Percy Liang, ‘Understanding black-box predictions
via influence functions’, in International conference on machine learn-
ing, pp. 1885–1894. PMLR, (2017).

[15] Scott M Lundberg, Gabriel G Erion, and Su-In Lee, ‘Consistent in-
dividualized feature attribution for tree ensembles’, arXiv preprint
arXiv:1802.03888, (2018).

[16] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman,
and Aram Galstyan, ‘A survey on bias and fairness in machine learn-
ing’, ACM Computing Surveys (CSUR), 54(6), 1–35, (2021).

[17] Christoph Molnar, Interpretable Machine Learning, 2 edn., 2022.
[18] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl, ‘Inter-

pretable machine learning–a brief history, state-of-the-art and chal-
lenges’, in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 417–431. Springer, (2020).

[19] Christoph Molnar, Timo Freiesleben, Gunnar König, Giuseppe Casalic-
chio, Marvin N Wright, and Bernd Bischl, ‘Relating the partial depen-
dence plot and permutation feature importance to the data generating
process’, arXiv preprint arXiv:2109.01433, (2021).

[20] Christoph Molnar, Gunnar König, Bernd Bischl, and Giuseppe Casal-
icchio, ‘Model-agnostic feature importance and effects with de-
pendent features–a conditional subgroup approach’, arXiv preprint
arXiv:2006.04628, (2020).

[21] Christoph Molnar, Gunnar König, Julia Herbinger, Timo Freiesleben,
Susanne Dandl, Christian A Scholbeck, Giuseppe Casalicchio, Moritz
Grosse-Wentrup, and Bernd Bischl, ‘General pitfalls of model-agnostic
interpretation methods for machine learning models’, in International
Workshop on Extending Explainable AI Beyond Deep Models and Clas-
sifiers, pp. 39–68. Springer, (2022).

[22] R Kelley Pace and Ronald Barry, ‘Sparse spatial autoregressions’,
Statistics & Probability Letters, 33(3), 291–297, (1997).

[23] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, ‘"Why
should i trust you?" Explaining the predictions of any classifier’, in
Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1135–1144, (2016).

[24] Jenna Wiens, Suchi Saria, Mark Sendak, Marzyeh Ghassemi, Vincent X
Liu, Finale Doshi-Velez, Kenneth Jung, Katherine Heller, David Kale,
Mohammed Saeed, et al., ‘Do no harm: a roadmap for responsible ma-
chine learning for health care’, Nature medicine, 25(9), 1337–1340,
(2019).

V. Gkolemis et al. / RHALE: Robust and Heterogeneity-Aware Accumulated Local Effects866


	Introduction
	Background and related work
	Feature Effect Methods
	Heterogeneity Of Local Effects

	RHALE
	Definition
	Automatic Bin-Splitting

	Simulation examples
	RHALE vs PDP-ICE
	RHALE vs ALE

	Real-world example
	Conclusion and further work

