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Abstract. The Vision Transformer architecture has shown to be
competitive in the computer vision (CV) space where it has de-
throned convolution-based networks in several benchmarks. Never-
theless, convolutional neural networks (CNN) remain the preferential
architecture for the representation module in reinforcement learning.
In this work, we study pretraining a Vision Transformer using sev-
eral state-of-the-art self-supervised methods and assess the quality
of the learned representations. To show the importance of the tem-
poral dimension in this context we propose an extension of VICReg
to better capture temporal relations between observations by adding
a temporal order verification task. Our results show that all methods
are effective in learning useful representations and avoiding repre-
sentational collapse for observations from the Atari Learning Envi-
ronment (ALE) which leads to improvements in data efficiency when
we evaluated in reinforcement learning (RL). Moreover, the encoder
pretrained with the temporal order verification task shows the best
results across all experiments, with richer representations, more fo-
cused attention maps and sparser representation vectors throughout
the layers of the encoder, which shows the importance of explor-
ing such similarity dimension. With this work, we hope to provide
some insights into the representations learned by ViT during a self-
supervised pretraining with observations from RL environments and
to understand which properties arise in the representations that lead
to the best-performing agents.

1 Introduction

In recent years, a new architecture for vision-based tasks that does
not use convolutions called the Vision Transformer (ViT) [18] has
shown impressive results in several benchmarks. This architecture
presents much weaker inductive biases when compared to a CNN,
which can result in lower data efficiency. The Vision Transformer,
unlike the CNNs, can capture relations between parts of an image
(patches) that are far apart from each other, thus deriving global in-
formation that can help the model perform better in certain tasks.
When the model is pretrained, using supervised or self-supervised
learning, it manages to surpass in some cases the best convolution-
based models in terms of task performance. Nonetheless, despite the
successes obtained in computer vision these results are yet to be seen
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in reinforcement learning. Moreover, while some areas of machine
learning have transitioned to large pretrained models, current Deep
RL research is still largely based on small neural networks that are
trained from tabula rasa.

Despite the successes of deep reinforcement learning agents in the
last decade, these still require a large amount of data or interactions
to learn good policies. This data inefficiency makes current meth-
ods difficult to apply to environments where interactions are more
expensive or data is scarce, which is the case in many real-world ap-
plications. In environments where the agent does not have full access
to the current state, i.e. partially observable environments, this prob-
lem becomes even more prominent, since the agent not only needs
to learn the state-to-action mapping but also a state representation
function that tries to be informative about the current state given
an observation. In contrast, humans, when learning a new task, al-
ready have a well-developed visual system and a good model of the
world which are components that allow us to easily learn new tasks.
Previous works have tried to tackle the sample inefficiency problem
by using auxiliary learning tasks [43, 45, 24], that try to help the
network’s encoder to learn good representations of the observations
given by the environments. These tasks can be supervised or unsu-
pervised and can happen during a pretraining phase or during a re-
inforcement learning phase in a joint-learning or decoupled-learning
scheme.

Recent results have shown that self-supervised learning is very
useful in computer vision. Increased interest in this area has resulted
in the appearance of new and improved methods that train a network
to learn important features from the data using only the data itself as
supervision. A common approach to evaluating such methods is to
train a network composed of the pretrained encoder, with the param-
eters frozen, and a linear layer using popular datasets, like ImageNet.
These evaluations have shown that these methods can achieve high
scores in different benchmarks, which shows how well the current
state-of-the-art methods are able to encode useful information from
the given images without being task-specific. Additionally, it has
been shown that pretraining a network using self-supervised learn-
ing (or unsupervised) adds robustness to the network and gives better
generalization capabilities [19].

Motivated by the potential of the Vision Transformer, in particu-
lar when paired with a pretraining phase, and the increasing inter-
est in self-supervised tasks for DRL, we study pretraining ViT using
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state-of-the-art (SOTA) self-supervised learning methods for images.
However, unlike images from datasets like ImageNet or MSCOCO,
observations from reinforcement learning environments share sim-
ilarities in more dimensions, for example, time [45, 5], semantics
[20, 60], and behavior [1]. To show the importance of these dimen-
sions in comparison to current SOTA methods we propose extending
VICReg (Variance Invariance Covariance Regularization) [7] with a
temporal order verification task [36] to help the model better capture
the temporal relations between consecutive observations. We named
this approach Temporal Order Verification-VICReg or in short TOV-
VICReg. While we could have adapted any of the other methods, we
opted for VICReg due to its computational performance, simplicity,
and robustness against collapse.

We evaluate the different pretrained encoders in a data-efficiency
regime and a linear probing task to determine which methods pro-
duce a better initialization for the model, assess if any pretrained
model shows signs of representational collapse, and conduct a se-
ries of experiments to better understand the properties present in
the representations. In our discussion, we also highlight some of the
challenges that we faced during the experiments and propose some
changes that can alleviate them.

Our main contributions are:

• A proposal to combine two pretext tasks, VICReg and temporal
order verification, to capture temporal relations between consecu-
tive observations in reinforcement learning environments, in Sec-
tion 4.

• The evaluation and comparison of the different self-supervised
learning methods in Reinforcement Learning (Section 6.1) and
linear probing task (Section 6.2) based on imitation learning. The
ViT pretrained with TOV-VICReg appears as the best performing
model.

• A comparison of the different pretrained models using cosine sim-
ilarity between the representations, attention maps and ratio of ze-
ros in each layer of ViT (Section 8). The results show that TOV-
VICReg produces richer representations, more focused attention
maps and sparser representation vectors.

2 Related Work

Vision Transformer for vision-based Deep RL Recent work, has
compared the Vision Transformer to convolution-based architectures
with a similar number of parameters and shows that ViT is very data
inefficient even when paired with an auxiliary task [48].

Pretraining representations Previous work has explored, sim-
ilarly to our approach, pretraining representations using self-
supervised methods which led to great data-efficiency improvements
in the fine-tuning phase [43, 59] or superior results in evaluation
tasks, like AtariARI [5]. Others have pretrained representations using
RL algorithms, like DQN, and transferred those learned representa-
tions to a new learning task [52].

Joint learning and augmentations In recent years, adding an
auxiliary loss to the RL loss, usually called joint learning, has be-
come a common approach by many proposed methods. Curl [44]
adds a contrastive loss using a siamese network with a momentum
encoder. Another work studies different joint-learning frameworks
using different self-supervised methods [34]. SPR [42] uses an aux-
iliary task that consists in training the encoder followed by an RNN
to predict the encoder representation k steps into the future. PSEs

[1] combines a policy similarity metric (PSM), that measures the
similarity of states in terms of the behaviour of the policy in those
states, and a contrastive task for the embeddings (CME) that helps
to learn more robust representations. PBL [24] learns representations
through an interdependence between an encoder, which is trained to
be informative about the history that led to that observation, and an
RNN that is trained to predict the representations of future obser-
vations. Proto-RL [58] uses an auxiliary self-supervised objective to
learn representations and prototypes [11], and uses the learned proto-
types to compute intrinsic rewards that will push the agent to explore
the environment.

A big contributor to the success of some joint learning methods
has been the use of augmentations. Methods like DrQ [31] and RAD
[32] pair an RL algorithm, like SAC, with image augmentations to
improve data efficiency and generalization of the algorithms without
using any auxiliary function.

Self-Supervised learning for image sequences Multiple works
propose simple pretext tasks to train encoders to capture information
from image sequences. These pretexts tasks can be playback speed
classification [57], a temporal order classification [36, 33, 56], a jig-
saw game [4] or a masked modelling task [46]. A different approach
uses contrastive learning. In this category, we can find methods that
maximise the similarity between image sequences [21], use autore-
gressive models to predict frames multiple steps in the future [35],
and maximize the similarity between temporally adjacent frames
[30].

In the context of RL, works have also explored learning represen-
tations that have temporal information encoded. ATC (Augmented
Temporal Contrast) [45] trains an encoder to compute temporally
consistent representations using contrastive learning, and the ST-
DIM (SpatioTemporal DeepInfoMax) [5] captures spatial-temporal
information by maximizing the mutual information between features
of two consecutive observations.

3 Background

3.1 Vision Transformer

ViT [18] is a model, for image classification tasks, that doesn’t rely
on CNNs and uses self-attention mechanisms. The model wraps the
encoder of a Transformer by using linear projections of the patches
extracted from the input image as tokens and adding a classifica-
tion token which after the computation will serve as the image rep-
resentation. When compared to CNNs, ViT presents weaker image-
specific inductive biases which can impact the sample-efficiency of
the model during learning [16]. However, it has been shown that with
enough data the image-specific inductive biases become less impor-
tant [18]. Moreover, ViT can capture relations between patches that
are far apart from each other, thus deriving global information that
can help the model perform better in certain tasks.

3.2 Reinforcement Learning

The problem of an agent learning to solve a task in a certain envi-

ronment can be defined as a Markov Decision Process (MDP). A
MDP M is defined by the tuple 〈S,A,R, T 〉, where S is the set of
states, A the set of actions, R the reward function, and T the tran-
sition function. At each timestep the agent is in a state s ∈ S and
takes an action a ∈ A. Upon performing the action the agent re-
ceives from the environment a reward r ∈ R and a new state s′ ∈ S
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which is determined by the transition function T (s′, s, a). The MDP
assumes that the Markov property holds in the environment, i.e. that
the state transitions are independent and the agent only needs to know
the current state to perform an action P (at|x0, x1...xt) = P (at|xt).
For the agent to decide what action to take it uses a policy function
π, which gives a distribution over actions given a state, π(at|st).
This policy is evaluated using the function V π(s), which estimates
the expected total discounted reward of an agent in a state s and that
follows a policy π.

3.2.1 DQN and Rainbow

DQN [37] is a value-based method and uses a network with param-
eters φ that given a state s outputs a prediction of the distribution
of Q values over actions, Qφ(s, a). The network learns the Q func-
tion by minimizing the mean squared error: (y −Qφ(s, a))

2, where
y = r + γ maxa′Qφ(s

′, a′).
Several works followed the DQN algorithm which introduced

changes to improve performance. Rainbow [28] combines six im-
provements, Double Q-Learning [49], Prioritized Replay [41], Duel-
ing Networks [53], Multi-step Learning [47], Distributional RL [8],
and Noisy Nets [22] resulting in a more stable and sample efficient
algorithm.

3.3 Self-Supervised methods

For this study we selected DINO [12], MoCo [14], MAE [26], and
VICReg [7] since they are currently considered state-of-the-art, their
official implementations are available in PyTorch, and each repre-
sents a different type of approach. MoCo [27] is a contrastive learn-
ing method meaning that it learns using a loss function that pulls
the positive samples together and pushes the negative samples apart.
MoCo, in particular, has three versions 1 [27], 2 [13], and 3[14]. In
this work, we consider the most recent version (v3). On the other
hand, non-contrastive methods (also called regularized) don’t rely
on the notion of positive and negative samples and only attempt to
push different views from the same source together. To avoid col-
lapse these methods use a set of tools that act as regularization, e.g.
stop gradient, strong augmentations, and asymmetric siamese net-
works. From this class of methods, we consider DINO [12] and VI-
CReg. Lastly, we also consider MAE [26], a masked reconstruction
method, which consists in training an auto-encoder based on ViT to
reconstruct an image with a set of patches masked.

4 TOV-VICReg

VICReg is a non-contrastive method that trains a network to be in-
variant to augmentations applied to the inputs while avoiding a triv-
ial solution with the help of two additional losses, called variance
and covariance, that act as regularizers over the embeddings. While
VICReg is agnostic concerning the architectures used and even the
weight sharing, in this work we consider the version where paths are
symmetric, the weights are shared, and each path is composed of an
encoder (also called backbone) and an expander. The expander is a
network that increases the dimension of the representation vector in a
non-linear way allowing the covariance loss to reduce dependencies
and not only correlations of the representation vector. In addition,
the expander also removes information that is not common to both
representations.

VICReg uses three loss functions: invariance is the mean of the
square distance between each pair of embeddings from the same

original image, as shown in Equation 1, where Z, and Z′ are two
sets of embeddings, of sizeN , that result from computing two differ-
ent augmentations of N sources, and zj denotes the j-th embedding
in the set; variance is a hinge loss that computes, over the batch,
the standard deviation of the variables in the embedding vector and
pushes that value to be above a certain threshold, as shown in Equa-
tion 2, where d denotes the number of dimensions of the embedding
vector, and Zj is the set of the j-th variables in the set of embedding
Z; covariance is a function that computes the sum of the squared off-
diagonal coefficients of a covariance matrix computed over a batch
of embeddings, as shown in Equation 3, to decorrelate the variables
from the embedding. While the invariance loss function tries to make
the model invariant to augmentations, i.e. output the same representa-
tion vector, the other two functions act as regularizers by pushing the
variables of the embedding vector to vary above a certain threshold
and decorrelating the variables in each embedding vector.

i(Z,Z′) =
1

N

N∑

j

∥∥zj − z′j
∥∥2

2
(1)

v(Z) =
1

d

d∑

j

max(0, γ −
√

V ar(Zj)) (2)

c(Z) =
1

d

∑

i �=j

[Cov(Z)]2i,j (3)

TOV-VICReg or Temporal-Order-Verification-VICReg extends
VICReg to better capture the temporal relations between consecutive
observations and consequently encode extra information that can be
useful in the deep reinforcement learning phase. To achieve that we
add a new temporal order verification task, as proposed at Shuffle-
and-Learn [36], that consists of a binary classification task where a
linear layer learns to predict if three given representation vectors are
in the correct order or not. Like the other losses, we also employ a
coefficient for the temporal loss and in most of our experiments, the
value is 0.1. Figure 1 visually illustrates TOV-VICReg.

Figure 1. TOV-VICReg architecture

At each step we sample three consecutive observations,
{xt−1, xt, xt+1}. xt is processed by two different augmentations,
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and like VICReg these are the augmentations used in BYOL [23].
xt−1 and xt+1 are processed by two simple augmentations com-
posed of a color jitter and a random grayscale. The xt augmentations
are computed by the VICReg computation path and the resultant em-
beddings are used with VICReg loss functions, i.e. variance, invari-
ance, and covariance. For the temporal order verification task we
encode the augmentation of xt−1 and xt+1, and concatenate those
two representations with one of the representations of xt. In our case
we used the one that was augmented without solarize, obtaining the
vector {yt−1, yt, yt+1}. Finally, we randomly permute the order of
the representations in the vector and feed the resultant concatenated
vector to a linear layer with a single output node that predicts if the
given concatenated vector has the representations in the right order
or not. The temporal loss used to optimize the model for this task is
a binary cross entropy loss.

5 Pre-Training Methodology

We pretrained five encoders, one using our proposed method TOV-
VICReg and four using state-of-the-art self-supervised methods:
MoCo v3 [14], DINO [12], VICReg [7], and MAE [26]. For this
study, the encoder used is a Vision Transformer, more precisely the
ViT tiny. We use a patch size of 8 for all SSL methods except MAE
where the value is 7 since it requires the observation size (84) to be
divisible by the patch size. Our experiments show that the patch size
of 7 used for MAE does not affect the results. Moreover, the imple-
mentation we use is an adaptation of the timm library [55] implemen-
tation, which can be found in the source code of the DINO method.
The dataset used is a set of observations from 10 of the 26 games in
the Atari 100k benchmark, all available in the DQN Replay Dataset
[2]. For each game, we use three checkpoints (1,25,50) with a size of
one hundred thousand data points (observations), which makes up a
total of three million data points (~55 hours). The pretraining phase
is 10 epochs with two warmup epochs. We used the official code
bases of all the self-supervised methods and tried to change the least
amount of hyperparameters.

6 Representations Evaluation

To evaluate the pretrained Vision Transformers we perform two ex-
periments. In the first experiment, we evaluate the pretrained repre-
sentations in a reinforcement learning setting and compare the data-
efficiency gains. In the second experiment, we evaluate the pretrained
representations using a linear probing task based on imitation learn-
ing.

6.1 Data-Efficiency in RL

To evaluate the pretrained Vision Transformers in reinforcement
learning and compare data-efficiency gains, we trained in the 10
games used for pre-training for 100k steps using the Rainbow al-
gorithm [28], with the DER [50] hyperparameters. The only differ-
ence between the agents at the start is the representation module.
We chose two networks to compare against, the Nature CNN [38],
and a ResNet that has a similar number of parameters similar to the
ViT tiny. Moreover, we use a learning rate two orders of magnitude
smaller for the encoder (1 × 10−6), which previous works [43] and
experiments performed by us have shown to be beneficial. To report
our results we follow the rliable [3] evaluation framework, where the
scores of all games are normalized and treated as one single task.

Figure 2 shows the aggregate metrics of seven different encoders
on 10 Atari games with training runs of 100k steps. The first five
(ViT+<method>) are ViT tiny models pretrained with five different
self-supervised methods, while the last three (ViT, ResNet, and Na-
ture CNN) are randomly initialized models.

Starting with the randomly initialized models we can assess that
the Nature CNN and the ResNet are the most sample efficient mod-
els, with ViT far behind.

Regarding the pretrained encoders, ViT, when pretrained with
TOV-VICReg, performs better than the other pretrained encoders and
the non-pretrained ViT in all metrics except in the median.

The observed difference between the behavior of the mean and
the median is explained by the fact that the distribution of scores
obtained by TOV-VICReg has a long tail to the right. In fact, TOV-
VICReg is the method that more commonly exhibits behavior that
surpasses human performance, as shown by the optimality gap,
pointing to the possibility that in some fraction of the cases, it finds
good representations that allow the agent to learn a good policy
faster. It is worth noting that we found a higher variance in the results
of our proposed method, when compared to the remaining methods
and non-pretrained models.

All self-supervised methods prove to be effective in improving the
data-efficiency of ViT with MoCo showing the best results in IQM
among the SOTA methods, followed by DINO, VICReg and MAE,
respectively.

ViT+TOV-VICReg when compared to Nature CNN, which has
far fewer parameters, and ResNet, with a similar number of param-
eters, seems to closely match their sample-efficiency performance.
Furthermore, the difference between the ViT+TOV-VICReg and
ViT+VICReg shows that exploring temporal relations results in bet-
ter representations. Lastly, comparing the ViT+TOV-VICReg with
the non-pretrained ViT shows that a good self-supervised method
with 3 million data points can help close the sample-efficiency gap
while remaining a more complex and capable model.

6.2 Linear Probing

Evaluating representations computed by a pretrained encoder is a dif-
ficult task. One possible option is assessing improvements in data ef-
ficiency in a reinforcement learning task, as we did in the previous
section. However, the results usually suffer from a high level of un-
certainty which requires us to run dozens of training runs, thus mak-
ing it computationally expensive. Another possible path would be
using previously proposed benchmarks like the AtariARI benchmark
[5], which tries to evaluate representations using the RAM states as
ground truth labels. However, this only works for 22 Atari games (out
of 62) and requires the encoder to use the full observation provided
by the environments (160x210). For those reasons, we use a differ-
ent evaluation task that is more efficient, allowing us to test more
pretrained models during the research process (∼ 50 min per game),
and flexible, meaning that we can use it in different environments.

Our second experiment consists in linear probing pretrained en-
coders in an imitation learning task. We present the results in Table
1, where we compare the pretrained encoders against a random clas-
sifier, i.e. uniform sampling, a randomly initialized ViT and a non-
frozen encoder which we use as a goal. All methods were trained for
100 epochs except the latter which we trained for 300. The results
are aligned with the results from the previous section with all meth-
ods showing improvements in comparison to the randomly initialized
ViT. Once again ViT+TOV-VICReg shows better performance than
the remaining pretrained encoders.
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0.12 0.16 0.20
Nature CNN

ResNet
ViT

ViT-7+MAE
ViT+VICReg

ViT+DINO
ViT+MoCo

ViT+TOV-VICReg
MEAN

0.02 0.04 0.06

MEDIAN

0.015 0.030 0.045 0.060

IQM

0.84 0.88 0.92

Optimality Gap

Human Normalized Score

Figure 2. The eval runs across the different games are normalized and treated as a single task. The IQM corresponds to the Inter-Quartile Mean among all the
runs, where the top and bottom 25% are discarded and the mean is calculated over the remaining 50%. The Optimality Gap refers to the number of runs that fail

to surpass the human average score, i.e. 1.0.

Random
init

Pre-trained encoders W/o freeze

Random
Classifier

ViT ViT+
DINO

ViT+
MoCo

ViT+
VICReg

ViT-7+
MAE

ViT+
TOV-VICReg

Nature
CNN

Game

Alien 0.0556 0.0147 0.0470 0.0646 0.0695 0.0988 0.1003 0.1021
Assault 0.1519 0.1770 0.2536 0.2557 0.3704 0.3065 0.3044 0.6673
BankHeist 0.0608 0.0756 0.1059 0.1083 0.1467 0.1523 0.1622 0.2080
Breakout 0.2509 0.2183 0.3591 0.2765 0.4077 0.3099 0.3285 0.5907
Chopper Command 0.0563 0.0176 0.0383 0.2019 0.1298 0.3088 0.3225 0.2660
Freeway 0.3999 0.6843 0.6850 0.6972 0.6971 0.6942 0.7041 0.8885
Frostbite 0.0565 0.0367 0.0517 0.0744 0.0664 0.1001 0.1021 0.1019
Kangaroo 0.0603 0.0562 0.0877 0.1374 0.1259 0.0737 0.2184 0.3311
MsPacman 0.1121 0.0780 0.1215 0.1168 0.1400 0.1500 0.1527 0.2063
Pong 0.1644 0.0718 0.1447 0.2730 0.2337 0.1223 0.2853 0.4340

Mean 0.1369 0.1430 0.1894 0.2206 0.2387 0.1706 0.2680 0.3796

Table 1. F1-scores for each game evaluated and mean of the F1-scores. We trained all the encoders in all games separately for 100 epochs over a dataset of
100k observations and evaluate 10k unseen observations. The rightmost column shows the results of a Nature CNN encoder that was not frozen during the

training phase and which we use as a goal for the remaining.

7 Collapse Evaluation

A significant phenomenon when doing self-supervised training is the
collapse of the representations, which can be seen in three forms: rep-
resentational collapse, dimensional collapse, and informational col-
lapse. Representational collapse refers to the features of the repre-
sentation vector collapsing to a single value for every input, lead-
ing to a variance of the features of zero, or close to zero. In dimen-
sional collapse, the representations don’t use the full representation
space, which can be measured by calculating the singular values of
the covariance matrix calculated over the representations. Informa-
tional collapse corresponds to the case where the features of the rep-
resentation vector are correlated and therefore are representing the
same information.

Dimensional Collapse All methods seem to avoid dimensional
collapse, since most dimensions have a singular value larger than
zero, as observed in Figure 3. However, we notice that some meth-
ods make better use of the space available since they present higher
singular values. TOV-VICReg, in particular, seems to excel in this
metric, even improving the results obtained by VICReg. It is worth
noting that both VICReg and TOV-VICReg employ a covariance loss
that helps decorrelate the embedding variables which may be con-
tributing positively to these results. Furthermore, we used a covari-
ance coefficient of 10 for TOV-VICReg and 1 for VICReg a change
that according to our experiments culminates in the increase here ob-
served.

Figure 3. Logarithm of the singular values of the representation vector’s
covariance matrix sorted by value.

Representational Collapse Results in the first row of Table 2
show the computed standard deviation of the representation vector
over a batch of thousands of data points. DINO, VICReg and TOV-
VICReg show a value well above zero, meaning that none of the
methods suffered from representation collapse during training. On
the other hand, MoCo shows a much smaller value of 0.178, which is
still, is far from a complete collapse. Both VICReg and TOV-VICReg
use a hinge loss that pushes the representation vector to have a stan-
dard deviation of 1 or above. While VICReg slowly converges to this
value our method converges to roughly 1.65, which might be the re-
sult of adding a temporal order verification task.
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Metric DINO MoCo VICReg MAE TOV-VICReg

Std 0.979 0.178 1.003 0.475 1.648
Corr. Coef. 0.1764 0.1538 0.1531 0.1602 0.0780

Table 2. Average standard deviation and correlation coefficient of the
representation vector

Informational Collapse We report in the second row of Table 2,
the comparison of the average correlation coefficients of the repre-
sentation vectors. TOV-VICReg performs better than the other meth-
ods, including VICReg, all of them with very similar coefficients.
Like in the dimensional collapse, this result is in part due to the
higher covariance coefficient used in TOV-VICReg which by design
helps the model to decorrelate the representation’s features. Increas-
ing the coefficient in VICReg results in a lower correlation coefficient
as well, but is still higher than TOV-VICReg.

8 Analysis of the Representations

In this section, we present different visualizations to better under-
stand the representations learned by each of the pretrained encoders.
Our goal with the following visualizations is to help us better un-
derstand the learned representations, give some intuitions about their
properties, and understand which properties are present in the en-
coders that performed better in Section 6.1 and 6.2.

Cosine similarity Figure 6 presents a similarity matrix of the rep-
resentations where we can observe that TOV-VICReg can better dis-
tinguish between observations of different games but also observa-
tions from the same game, as shown in Figure 7. MoCo, on the other
hand, seems to make a good distinction between observations from
the different games. However, as we can observe in the colour bar, all
the representations are very similar to each other, which corroborates
the results obtained in Section 7. Oppositely, VICReg and DINO
manage to spread representations more, as we can see in the colour
bars, but, the yellow squares in the diagonal show that the represen-
tations from the same game are more similar to each other which is
corroborated by Figure 7. Given the empirical results, we believe that
this capacity to distinguish observations from the same game might
be a good indicator.

Attention visualisation Inspired by the results presented in the
DINO work [12], we perform an analysis of the attention maps of the
different pretrained encoders. In Figure 4, we can see the results of
all methods for an observation from the game of Pong, where each
method produces three attention maps, one for each self-attention
head of the last block of the Vision Transformer. All pretrained ViT
seem to attend at some level to important game features like the
ball and the paddles. However, TOV-VICReg is the only method that
doesn’t spread the attention to other parts of the frame that we don’t
consider important to describe the current state of the game. When
comparing to VICReg’s attention maps we believe that the temporal
order verification task greatly helped the attention of the model. In
more visually complex games, e.g. Freeway or MsPacman, these at-
tention maps start to be more difficult to analyze but it is still possible
to discern some important features.

Sparsity Figure 5 shows the ratio of zeros of the representation
vector after the activation of the MLP across the different layers of

Figure 4. Attention maps produced by the pretrained ViTs. We fed a
pretrained ViT with an observation from the game Pong and obtained the

attention maps from the three heads in the last block.

Vision Transformer. We can see that TOV-VICReg has a higher spar-
sity than the other methods and that the sparsity increases after each
layer of the network. Sparsity has been exploited to scale transform-
ers to larger sizes while maintaining a reasonable number of floating
point operations.

Figure 5. The ratio of zeros of the representation vector after the activation
of the MLP across the different layers of Vision Transformer.

9 Discussion & Conclusion

In this work, we presented a study of ViT for vision-based deep rein-
forcement learning using self-supervised pretraining, and proposed
a simple self-supervised learning method that extends VICReg to
better capture temporal relations between consecutive observations.
This type of approach has seen successes in natural language pro-
cessing [17, 10], and computer vision [40] and we believe that similar
approaches in RL have the potential to unlock new levels of perfor-
mance never achieved before [6]. With this work, we hope to con-
tribute to the growing body of work on self-supervised learning for
RL and to provide important insights to the community on the im-
portance of exploring dimensions where observations are similar and
a better understanding of the representations learned during the self-
supervised pretraining.
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Figure 6. Similarity matrices of the representations computed by MoCo, DINO, VICReg, MAE and TOV-VICReg respectively. There are a total of 64 data
points, from 4 different games: Alien, Breakout, MsPacman, and Pong, where from 0-15 are from Alien, 16-31 are from Breakout and so forth.

Figure 7. Similarity matrices of the representations computed by MoCo, DINO, VICReg, MAE and TOV-VICReg respectively, of observations from
MsPacman.

Our results showed that pretraining a Vision Transformer using
SOTA self-supervised learning methods is effective in improving the
data-efficiency of RL agents and improving the performance of a lin-
ear probe of the encoder in an imitation learning task. Additionally,
we showed that exploring the temporal relations between consecu-
tive observations can further improve the results, as the encoder pre-
trained with TOV-VICReg was the best performing in both experi-
ments. We used several metrics to assess if the pretrained encoders
suffered from representational collapse and found that all methods
were effective in avoiding this problem and that TOV-VICReg shows
the best results, especially in the use of the representation vector di-
mensions and low level of correlation between variables of the repre-
sentation vector. Moreover, our analysis of the representations shows
that the best-performing encoders were also the ones with richer rep-
resentations in the cosine similarity matrix, more focused attention
maps and a higher sparsity. Sparsity in particular is a property that
has been exploited to achieve better inference time and memory us-
age in the deployment of large Transformers [29, 25] and which can
be important to successfully deploy reinforcement learning agents in
real-world applications that use much more capable models.

Considering the impact of the temporal dimension on our results
we believe that future work may improve these results by exploring
other dimensions, like, semantics and behavior. Another type of eval-
uation where this kind of approach has the potential to be extremely
important and which we do not explore in this work is the generaliza-
tion to unseen tasks, which can be different in different dimensions
like observation and state.

Using models such as the Vision Transformer which are predom-
inantly larger than the models commonly used in RL and therefore
slower to train was a great challenge during this work and we believe
it is necessary to push for a change in some of the common practices
in the field of reinforcement learning. Firstly, when training agents
online it is necessary to use paralyzed environments like EnvPool
[54] instead of running in a single processing environment. Addi-
tionally, as the SOTA progresses to larger and more robust models
we will need environments that are capable to evaluate such capabil-

ities. While ALE is still a valid option we believe that environments
specifically designed for RL, like Procgen [15], are preferable and
are, in our opinion, still missing. In the context of pretrained models
for reinforcement learning, we have found the linear probing evalu-
ation task an extremely valuable approach to evaluate the quality of
the pretrained models in a fast and informative way. For those rea-
sons, we find the adoption of such evaluations and the development
of new ones of great value for advancing the field.

Lastly, while our best pretrained encoder was only able to match
the sample efficiency of a Nature CNN we were able to achieve
a good improvement in comparison to the non-pretrained Vision
Transformer. The ability to use larger models, with millions of pa-
rameters, that are as sample efficient as some of the most popular
CNN-based models (like Nature CNN or Impala ResNet), with thou-
sands of parameters, can open the door to using Deep RL in even
more complex problems where smaller models tend to struggle, with-
out losing sample-efficiency.
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