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Abstract. Training the machine learning (ML) models require a
large amount of data, still the capacity of these models is limited. To
enhance model performance, recent literature focuses on combining
ML models’ predictions with that of human experts, a setting pop-
ularly known as the human-in-the-loop or human-Al teams. Human
experts can complement the ML models as they are well-equipped
with vast real-world experience and sometimes have access to
private information that may not be accessible while training the
ML model. Existing approaches for combining an expert and ML
model either require end-to-end training of the combined model
or require expert annotations for every task. End-to-end training
further needs a custom loss function and human annotations, which
is cumbersome, results in slower convergence, and may adversely
impact the ML model’s accuracy. On the other hand, using expert
annotations for every task is also cost-ineffective. We propose a
novel technique that optimizes the cost of seeking the expert’s advice
while utilizing the ML model’s predictions to improve accuracy.
Our model considers two intrinsic parameters: the expert’s cost
for each prediction and the misclassification cost of the combined
human-Al model. Further, we present the impact of group-wise
calibration on the combined model that improves the overall model’s
performance. Experimental results on our combined model with
group-wise calibration show a significant increase in accuracy with
limited expert advice against different established ML models for
the image classification task. In addition, the combined model’s
accuracy is always greater than that of the ML model, irrespective of
the expert’s accuracy, the expert’s cost, and the misclassification cost.

Keywords: K-way Classification, Human-Al Team, Model Proba-
bilities, Human-in-the-loop model, Deferred Model, Calibration

1 Introduction

We live in a world flooded with data. Analyzing patterns in data
would be an exhaustive or impossible task for humans; that is why
we need machine learning. Machine learning (ML) aims to develop
algorithms that learn from data and operate robustly without human
intervention. Modern ML algorithms are fast, scalable, and can at-
tain high accuracy on real-world datasets. Data collection and an-
notation are at the core of training ML models; however, these are
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Figure 1. Overall architecture of the proposed human-in-the-loop
combined model

tedious and always incomplete. Due to such issues, how well an ML
model will perform in the real world is always concerning. In order to
improve the ML model’s accuracy, there exist ensemble approaches
[5,11,12,18] that discuss different methods and algorithms for com-
bining classifiers. However, all ML models are data-dependent and
may tend to make the same mistakes. Moreover, blindly trusting an
ML model is still not practical for critical business scenarios such as
cyber-attacks or medical diagnoses, even if the ML model has very
high accuracy.

On the other hand, human experts are inherently competent for
tasks such as classification and only need a small dataset for training.
It can also be assumed that humans can access sensitive or private
information, which can not be translated or shared while training ML
models due to privacy issues. For example, in the case of medical
image analysis, patients’ complete medical records or attributes can
not be shared publicly. Thus, experts can make informed decisions on
unseen data based on the preliminary or private information that they
may have. However, human experts are scarce, may only be available
sometimes, and are insufficient to classify a large number of tasks. In
addition, even experts may not be able to classify correctly due to the
complexity of the tasks that ML models can learn.

Hence in the real world, neither ML models nor experts are per-
fect. Some recently published literature [9, 15, 16] suggests that ef-
ficiently combining the human-predicted labels with an ML model’s
probabilistic output improves the accuracy of the combined model.
The primary motivation behind combining the outputs of human and
ML models is their respective strengths, as they do not make the
same mistakes. The authors in [9] showed that the combined model
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increases the accuracy compared to the human or the model alone.
However, their combined model considers human labels for all tasks,
leading to higher costs since the experts are scarce.

To balance the cost and speed of decision-making on all tasks, re-
cent approaches [15, 16, 20] learn a deferred model that treads the
cost and performance trade-off. The deferred model provides a de-
cision module that decides whether the classification task should be
deferred to a human expert. One of the significant disadvantages of
these approaches is that the deferred model is learned from scratch
leading to high computation costs. Moreover, even for tasks requir-
ing human expertise, it may not be a good idea to always defer to
humans and completely ignore the ML model’s output. This paper
aims to combine two essential concepts in human-in-the-loop based
decision modeling: deferring to humans [16] and combining model
probabilities with human-predicted label [9].

During prediction, an ML model predicts each label with a confi-
dence score. The confidence of ML models reflects the ground truth
corresponding to each class. However, literature [6] shows that mod-
ern ML models are overconfident in their predictions compared to
traditional ML models. This confidence becomes crucial when we
defer to the human experts based on the model’s confidence value.
For example, in self-driving cars, if the ML model is not confident
in their prediction, it should relinquish the controls to humans in-
stead of making false predictions with high confidence. To address
this overconfidence issue, we employ a calibration technique where
the model’s confidence is calibrated using post-hoc calibration meth-
ods. We use temperature scaling (a single parameter variant of Patt
Scaling [6,9]) calibration technique and show that the calibration sig-
nificantly improves the system’s overall accuracy. While calibration
on the complete dataset helps, our experimental results suggest that
the ML model has different accuracy on different classes. To further
improve the accuracy, we apply calibration on individual groups in
the dataset with a clustering-based approach to learn group-wise cali-
bration parameters. Our results show that this group-wise calibration
enhances the accuracy of the overall approach.

In summary, this paper focuses on the problem of k-way classifica-
tion using a trained ML model’s probabilistic output. It judiciously
takes the human expert advice that provides hard classification la-
bels. Our proposed model consists of two major modules: the classi-
fier and the defer. Based on the calibrated probabilistic output of the
classifier module, the defer module decides whether to consider the
classifier’s output as the final output or defer to a human. If the model
defers to a human, then the calibrated probabilistic classifier output
is combined with the human’s hard classification labels via Bayes’
rule [9]. The overall architecture of our proposed approach is shown
in Figure 1. We show that a well-calibrated model can choose better
instances to defer, leading to higher accuracy. We further show that
even with a naive deferred model (contrary to training an end-to-end
deferred model), calibration and combining the model’s experience
with deferred instances to humans significantly improve accuracy. In
particular, we put forward the following research questions in this
work:

e Does a simple deferred model exist that does not require end-to-
end training but improves the model accuracy?

e What is the impact of a calibrated classifier on the proposed de-
ferred model?

e Does learning a different calibration parameter for each group
within the dataset help as opposed to applying the calibration on
the entire dataset?

o If we defer to an expert, can we combine model and human output

such that the combined model’s accuracy is better than the indi-
vidual accuracy?

2 Related Work

We discuss the relevant related work in two parts. First is the work on
learning to defer [16,20], which essentially learns a deferred model
which learns whether to defer to a human expert for classification or
not. Second, the work describes combining model probabilities with
the expert’s output [9].

2.1 Deferred Approaches in Human-Machine
Collaboration

As discussed earlier, humans and ML models make mistakes. In or-
der to improve the accuracy of the overall system, many researchers
suggest deferring to human experts when the ML model has a high
misclassification cost on a certain task. One naive way to achieve
this is to defer to a human expert when the model is more likely to
make a mistake [7]. While this naive approach seems to work well,
it makes an essential assumption that experts are highly accurate.
This assumption may not be true, and [13] shows that the overall
model may lead to low accuracy when humans are not highly accu-
rate. To avoid such issues, many approaches suggest training a de-
ferred model [3,4, 8, 15-17,20], which trains a rejector module and
a classifier module. The trained rejector module decides whether to
use an ML model for the given instance or to defer to a human ex-
pert based on a custom loss function. The main drawback of these
approaches is that they assume the availability of human annotations
in training data. If the expert accuracy is higher than the model, the
combined model always results in deferring to the human and could
be highly cost-ineffective.

In another complementary approach, in an Al-assisted setting, hu-
man makes decisions and can defer to the AI's recommendation
[1,2,19]. An Al-assisted framework is extended to multiple humans
in [14], which defines personalized loss functions for each user to
improve the team’s overall compatibility. The AI model’s perfor-
mance is optimized in all these approaches to achieve the optimal
performance-compatibility trade-off.

2.2 Combinations of ML Models

A considerable amount of research talks about combining predictions
from multiple classifiers. For the machine learning model, which
gives a non-probabilistic or hard classification, the most common
method of combining outputs is weighted majority voting or its vari-
ant [5,18]. Another approach is where each predictor’s confusion ma-
trix is combined through the Naive Bayes method [10, 12,21]. How-
ever, all the machine models are data-dependent and may make the
same mistakes. These methods do not consider uncertainty based on
the instance; instead, they focus on individual classes. If a classifier
assigns the same class label to two different instances then treating
them equally might not be correct because they might have different
confidence levels.

Kerrigan et al. [9] suggest combining human output with proba-
bilistic machine output for the k-way classification problem. They
also consider a calibrated ML model over the whole dataset. They
show that the combined model leads to much higher accuracy than
baselines. The combined model has a major drawback: it requires
human and classifier outputs for every input, which can be costly if
expert labels are unavailable. Another issue with this approach is that
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if there is a significant gap between the classifier and human accura-
cies, one can dominate the other on all the classification tasks. Hence
deferring to less accurate humans or classifiers becomes redundant.

This paper uses an approach where the groupwise calibrated ML
model output is combined with humans only when the defer module
defers to a human.

3 APPROACH

Dataset: We have utilized the CIFAR-10H dataset to assess various
combination strategies along with our proposed model. The CIFAR-
10H dataset comprises ten categories of images and associated prob-
abilistic classifier output for 10,000 images. Furthermore, the dataset
includes several human annotations for each test image. We opted
for this dataset because human annotations are available, enabling
us to demonstrate how humans operate in real-world scenarios and
compare our findings with those of previous studies such as [9]. In
addition, we also compare the results on CIFAR-10 dataset with sim-
ulated human annotations to compare our findings with those of pre-
vious studies such as [16,20].

Table 1. Accuracy of ML models and expert on CIFAR-10H dataset

Model Expert
Dataset Model Accuracy(%) | Accuracy(%)
ResNet-110 88.9
ResNet-164 93.5
CIFAR- O] | SNt 164 943 %
DenseNet-BC 96.3

Baseline ML Models: As our baseline ML models, we have
selected four different CNN models: ResNet-100, Resnet-164,
PreResNet-164, and DenseNet. Each model exhibits varying CIFAR-
10H image classification task accuracies, as shown in Table 1. These
baseline models will help us understand our approach’s behavior in
different scenarios, such as when the model accuracy is higher or
lower, or close to expert accuracy. More details are provided in Sec-
tion 3.1.

Human Expert: The CIFAR-10H dataset includes several human
annotations for each test image. To emulate an expert and enable a
fair comparison with [9], we utilized the same code used in the [9]
to produce expert annotations. The final accuracy achieved by the
expert was 95%.

In the upcoming sections, namely Sections 3.1 to 3.6, we will
build intuitions behind our combined model interleaved with empir-
ical results gathered on the CIFAR-10H dataset. Sections 3.1 and
3.2 will delve into our model’s classifier and defer modules, respec-
tively. Section 3.3 will introduce calibration, which is crucial given
that modern neural networks are typically overconfident in their pre-
dictions. Further, to make decision based on model confidence, cali-
bration becomes inevitable. In Section 3.4, we will elaborate on why
calibrating the whole dataset is not an optimal strategy and introduce
the concept of group-wise calibration. Until Section 3.4, we inher-
ently assume that the expert performs better on all instances that are
deferred by the defer module for expert’s advice, but that might not
always be true. Section 3.5 will address such situations with our pro-
posed human-in-the-loop combined approach. Finally, in Section 3.6,
we will go the extra mile to improve the accuracy of our combined
model with a group-wise confusion matrix estimation of the human
expert.

Algorithm 1 Algorithm of defer module

Input: Expert cost C},, misclassification cost C, classifier M, In-
stance x

Output: Predicted label ¢ and total cost

Initialize C'ost < 0

Let M(z) = [e1,¢2, ..., ck] and Cmas ¢ max; ¢;

if C;, < {C * (1 — ¢mas)} then

9§ = AskHuman()

Cost +=0C},

if Human is wrong then

‘ Cost +=C

end

else

Y = arg max; ¢;

if Machine is wrong then
‘ Cost +=C

end
end

3.1 Classifier module

A k—way classification problem consists of an input space denoted
by X and the output space denoted by ¥ = {1,2,..., K}. Let
M : X — RX denote the classifier that provides the normalized
probabilistic output on each of the possible classes. That is, for a
given instance € X, M(zx) = [c1, ¢2, ..., ck] where ¢; represents
classifier’s probabilistic output corresponding to " class. Since clas-
sifier output is always normalized, we also have Zf{: =1

We evaluated multiple classifiers, including ResNet-110, ResNet-
164, PreResNet-164, and DenseNet-BC, on the CIFAR-10H dataset.
Each classifier generates a probabilistic output for a given input im-
age. Table 1 displays the accuracy of each model on the test data
and the human accuracy on the CIFAR-10H dataset. Notably, all ML
models are pre-trained, and human annotations were not used during
the classifier training process, implying that the annotations did not
affect the training of the classifiers.

Note that the information in Table 1 highlights an essential point:
humans and ML models are not perfect at making predictions. Fur-
thermore, the varying accuracies of the different classifiers allow us
to make insightful observations for our proposed approach. In the
following section, we will introduce a defer module based on cost,
which aims to defer to an expert when the classifier’s confidence on
a particular instance is low.

3.2 Defer Module

This section describes our deferred module, which given an instance,
decides whether to defer to the expert or not. This module takes three
inputs: the expert cost denoted by C},, the misclassification cost de-
noted by C, and the classifier probabilistic output denoted by M.
Since we are experimenting in a single human setting, for simplicity,
we assume that the expert cost C}, and the misclassification cost C'
is instance independent and thus is the same across all the instances.
This assumption holds for all cases, irrespective of whether the tasks
are similar. For example, in medical diagnosis, each patient is equally
essential, thus leading to the same misclassification cost. The expert
(doctor in this case) is equally likely to make a mistake for any of the
patients.

Algorithm 1 presents the pseudocode of our defer module. The
intuition behind this algorithm is to find when to defer to an expert
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Figure 2. The impact of cost to defer (C2D) on deferred model accuracy
and the number of defers on four different ML models.

through cost minimization. Expert cost defines the cost paid each
time the defer module defers to an expert, and misclassification cost
defines the cost paid each time a wrong prediction is made. Fur-
ther, suppose the defer module defers to an expert, and the expert
makes a wrong prediction. In that case, the cost associated with that
instance is the total of expert and misclassification costs. The final
algorithm defers to the expert when the expected misclassification
cost given by C(1 — ¢mae) is higher than that of expert cost, i.e.,
Ch < C(1 = ¢mae). Here, ¢maq denote the highest confidence that
the model M (z) associate with a class, for instance, x. It is important
to note that if C' <= C}, then defer module never defers for predic-
tions. Hence to have an efficient and cost-effective combination, C'
is always assumed to be higher than C}, in all the results.

Note that the decision to defer depends on the cost ratio denoted
by Cp/C. We refer to this ratio as the cost to defer (C2D) ratio,
which essentially depicts the ratio of the cost of the expert to that
of misclassification cost. It is easy to see that if C2D is higher, then
defer module should defer fewer instances to the experts and vice
versa. Since, we assume C' to be higher than C},, we have 0 < C2D
< 1. If the model’s confidence is low, i.e., Cmaz < 1—C2D, then
the model defers to the expert; otherwise it considers the classifier’s
output. It should be further noted that in the practical scenario C2D
value is generally fixed (or given). For instance, in healthcare appli-
cations, C}, will denote the cost of the doctor, and C' will quantify
the repercussions of a misclassification. To show the efficacy of our
proposed approach, we show all our results by considering multiple
C2D ratios. However, comparisons must always be made across a
single C2D ratio for noticing the improvements.

Figure 2 shows accuracy vs. the number of defers corresponding
to four different ML models on the CIFAR10H dataset. Each subplot
shows how the cost to defer (C2D) impacts deferred model accuracy
and the number of times the expert is consulted. The plot shows that
increasing C2D reduces the number of times the combined model
defer to the expert and reduces the deferred model’s accuracy. As
the C2D reaches close to 1, the deferred model accuracy becomes
equal to ML’s model accuracy. Creating such plots can be very help-
ful in finding optimal C2D, which corresponds to higher accuracy
and fewer expert defers. For example, at C2D=0.1, ResNet-110 ac-
curacy is 94.4% with 877 defers.

—— Perfectly Calibrated Model
—— Before Calibration

—— After Calibration

0.01
0.0 0.2

0.4 0.6 0.8 1.0
Confidence(p)

Figure 3. Confidence vs accuracy before and after calibration on
CIFAR-10H dataset and ResNet-110 ML model

The proposed defer module uses the confidence of the classifier
to decide whether to defer to an expert. If the classifier’s confidence
does not reflect the true distribution of the classifier accuracy, then
the proposed defer module can lead to more/less number of deferred
instances. For example, if the ML model is under-confident about an
instance compared to its true accuracy, this will lead to unnecessary
costs due to deferring the instance to the human. On the other hand, if
the ML model is overconfident, then not deferring to the expert can
lead to high misclassification costs. Hence it becomes crucial that
the classifier’s confidence must reflect the ground truth accuracy as-
sociated with each class. The following section elaborates on model
calibration and the method to calibrate model probabilities.

3.3 Effect of Calibrated Classifier on Defer Module

For supervised learning tasks such as classification, it becomes cru-
cial for classifiers to output confidence that reflects the ground truth
corresponding to each class for each instance. If an ML model pre-
dicts with 50% confidence on a subset of examples, then ideally, it
should classify at least 50% of the examples correctly. ML models
exhibiting such behavior are called calibrated models.

A perfectly calibrated model is one which satisfies the following:

P(M(z) = ylcmas =p) =P 1)

The above equation implies that if a model is confident with prob-
ability p, then it achieves the accuracy of p on the instance x. In Fig-
ure 3, the diagonal (black) line represents the relationship between
the confidence and accuracy of a perfectly calibrated model. The red
line represents the quantity P(M(z) = y|c¢mas = p) for the clas-
sifier model ResNet-110. This quantity is computed by taking the
average accuracy of all the examples with maximum confidence of
p. The gap between the red and black lines is the calibration error
which needs to be minimized. The figure clearly highlights that this
calibration error can be high even for ML models with very high ac-
curacy on the dataset. We found similar observations in the plots for
other classifiers as well.

Hence, an ill-calibrated model (with high calibration error) can af-
fect the deferred model adversarily. Note that our deferred model de-
fers to an expert only if the model’s confidence for the given instance
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Figure 4. The impact of cost to defer(C2D) on combined model accuracy
and the number of defers on four different ML models compared with
sections 3.2 results

is low. Therefore, the examples with low accuracy and high confi-
dence (due to calibration error) will not be deferred by our model
resulting in higher rate of misclassification. Next, we show how a
well-calibrated model can significantly improve the system’s overall
accuracy.

In literature, model calibration is a well-known problem [6, 14].
The authors in [6] discuss various techniques for model calibration
that include histogram binning, Isotonic regression, Bayesian bin-
ning into quantiles, and Platt scaling methods. For calibration, we
used Platt scaling method, which outputs a calibrated probability
Gi = max; o (zi/T)Y), where z; is the model’s logit vector of
instance x; and ogns is the softmax function. For calibration, pa-
rameter 7' is optimized using the negative log-likelihood loss func-
tion. It is worth noting that since 7" is just a scaling factor, it does
not change the maximum of the softmax function, and hence, this
method does not affect the accuracy of the model M. In Figure 3,
the green line represents the quantity P(M(z) = y|cmaz = p) af-
ter applying model calibration. As can be seen that the calibration
error significantly reduces, more importantly, for the examples with
higher model confidence. Examples with higher confidence are more
important for the deferred model because these examples are not de-
ferred to human experts. Therefore, the model must show the same
accuracy in highly confident instances. The calibration achieves this,
thus, playing a crucial role in improving the accuracy of the model.

Figure 4 shows the efficacy of calibration on the deferred model.
The points in lighter shade show results from the previous Section
3.2, while the points in darker shade show the results after calibra-
tion. As can be seen from the figure, for large values of C2D, the
calibration leads to improved accuracy without affecting the num-
ber of defers much. The reason is that with higher expert costs, the
deferred model intelligently chooses the tasks which need to be de-
ferred hence leading to improved combined accuracy. On the other
hand, with lower C2D values, the deferred module defers a large
number of tasks to the expert, thus eventually reaching that expert
accuracy and completely ignoring the model predictions. Therefore,
lower C2D values lead to reduced accuracy and high defers. It is im-
portant to note that high defers to expert do not result in higher com-
bined accuracy. On all defers to the expert, the ML model may per-
form much better compared to the expert. However after calibration,
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Figure 5. Confidence vs accuracy of car class before calibration on
CIFAR-10H dataset and ResNet-110 ML model

the ML model’s probabilistic output starts reflecting ground truth,
hence the count of expert defers increases. For instance, at C2D=0.1,
ResNet-110 accuracy before calibration is 94.4% with 877 defers to
expert, whereas after calibration, the accuracy increase up to 95.9%
with 1595 defers to expert. Similar performance can be noted across
other three ML models as well.

The current calibration on the considered ML models is performed
considering the accuracy of the whole dataset. However, in k-way
classification problems, the overall accuracy of the ML model over
the whole dataset might be very different from the accuracies shown
on individual classes. This necessitates looking into a more granular
form of model calibration in k-way classification problems.

The next section discusses how group-wise calibration can further
boost the deferred module’s overall accuracy.

3.4  Group-wise Calibration

We begin this section with a simple observation shown in Figure
5, which shows that a calibrated model can be highly uncalibrated
on a particular class. Figure 5 compares the calibration error of the
ResNet-110 model with that of calibrated ResNet-110 proposed in
the previous section for a single class (‘car’). The goal of calibration
is to get perfect calibration even on the subset of the dataset, which
in this case, all instances belong to the car class. The red line repre-
sents ill-calibrated model probabilities before calibration, and similar
results are generated even after calibration shown in the green line.
The figure suggests the need to calibrate the model on finer groups
instead of the complete dataset. One possibility is to use class-wise
calibration. The blue line in Figure 5 shows how groupwise calibra-
tion was able to calibrate the class probabilities efficiently and hence,
in turn, calibrates the whole dataset. Our experimental results suggest
a finer group-wise calibration produces better results. We find similar
groups using the k-means clustering algorithm and find the optimal
number of clusters using the elbow method, as shown in Figure 6.

Once the groups are identified, a separate calibration parameter is
learned corresponding to each group. We present the accuracy of the
deferred module after applying group-wise calibration on classifiers
in Figure 7. As can be seen, the accuracy further improves compared
to single parameter calibration shown in Figure 4. Results show for
C2D=0.1, the ResNet-110 accuracy slight decrese to 95.75% with
decrese in defer count to 1563. But for other C2D values, the results
are improved as shown in Figure 7.

So far, we have illustrated a completely deferred setting, where for
each instance, either model’s or the expert’s output gets considered
to make the final decision. In the next section, we show that even
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Section 3.3 results

when the deferred module defers an instance to an expert, consider-
ing the model’s output for that instance can lead further improvement
in performance. This also happens because the expert, though highly
accurate, may not be perfect. Therefore, for deferred instances (i.e.
tough tasks), model and expert as a team work better as compared to
the expert alone.

3.5 Human-in-the-Loop Combined Model

As discussed previously, even for the deferred instances, it may not
be a good idea to ignore the classifier’s output completely. Recently
[9] discusses the method using Bayes’ rule to combine the hard label
provided by the human with the probabilistic output of the classi-
fier. To use the Bayes’ rule, the authors in [9] consider the confusion
matrix of the expert denoted by ¢ € R¥*¥  where each entry Dij
denotes the probability that for a given instance with true label j, hu-
man labels the instance as 4, i.e., p(h(xz) = i|y = 7). The confusion
matrix is learned from the training data, assuming that the human an-
notations are known for the training. Then, the combined predicted
probability for class j can be computed as:

iy . _ dijc
p(y = jlh(x) =i, M(z)) = SE  pren ®)

Here, c; represent the confidence of model M (z), for instance,  on
class j.

o (C2D=0.001 A
+ (C2D=0.005 o

C2D=0.01 o
C2D=0.05 o

C2D=0.1
C2D=0.3

ResNet-110 ResNet-164
L] A [ ] A +

97.5
o .
% 2 . N 97.0 - [ ]
95 ) :
96.5 e
= $
R oyl® 96.0 )
- 1000 2000 3000 500 1000 1500 2000 2500 3000
v
E
3 PreResNet-164 DenseNet-BC
% e 8 A * ® og| oW 4 * °
975 * e * .
97
97.0{ " | .
* ] 96 'Y
500 1000 1500 2000 2500 0 1000 2000 3000 4000

Number of defers

Figure 8. The impact of cost to defer (C2D) on combined model accuracy
and the number of defers on four different ML models compared with
Section 3.4 results

In order to use the human-in-the-loop approach, we also assume
that the training data contains the human annotated labels that can be
used to learn the human confusion matrix. Once the confusion matrix
is learned, we use the Bayes’ approach for calculating the combined
predicted probability of instances deferred to experts. This is differ-
ent from the approach used in [9] wherein they use a combination
approach for all the instances and hence require the human outputs
for all the test instances. On the other hand, we combine the outputs
for only those instances that are defered to human. Apart from im-
proving the accuracy, this approach also results in resorting to fewer
asks from the experts, resulting in cost efficiency. Figure 8 shows
the results with our combined model. Human-in-the-loop show good
increase in accuracy for low value of C2D, because the number of ex-
pert defers are high. In addition, the combination of ML model’s and
expert’s output always produces better results than either ML model
or expert alone. For instance, at C2D=0.1, the combined model ac-
curacy of ResNet-110 increses to 96% with exactly same number of
defers as in previous section.

3.6 Going Extra Mile with Group-wise Confusion
Matrices (GCM)

To combine the probabilistic outputs of the classifier with that of the
expert’s output, [9] uses the single confusion matrix for the expert,
which is learned on the complete dataset. However, the accuracy of
an expert can also vary across different groups. Therefore, instead of
creating a single confusion matrix for the expert, we propose calcu-
lating the human confusion matrix corresponding to each cluster gen-
eration in Section 3.4. Figure 9 shows the results of the group-wise
human-in-the-loop model using four different classifiers (ResNet-
110, Resnet-164, PreResNet-164, DenseNet-54) on the CIFAR-10H
dataset. As can be seen, the group-wise confusion matrices (GCM)
further improve the accuracy of our proposed model for all the clas-
sifiers. For C2D value of 0.1, the ResNet-110 model accuracy further
increases to 96.24% with exactly same number of defers.
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Table 2. Comparison of our proposed human-in-the-loop combined model with two end-to-end trained defer models from the literature [16, 20].
Results are from CIFAR-10 dataset with test size of 5,000.

Model C2D

Classifier

# defers Accuracy(%)

Accuracy(%)

Learning to Defer to an Expert [16]

2320 97.3 (+3.18) 94.3

Calibrated Learning to Defer [20]

1501 97.2 (+5.39) 92.23

3002 97.14 (+9.26) | 88.9

1916 98.66 (+5.16) | 93.5

1820 98.74 (+4.16) | 94.8

Our Combined Model ResNet-110

. ResNet-164
with PreResNet-164 0.01
Pretrained ML Models DenseNelBC

1426 99.4 (+3.22) 96.3

Table 3. Comparison of our proposed human-in-the-loop combined model with that of the combination model presented in [9].
Results are from CIFAR-10H dataset with test size of 5,000.

Combination Model from [9] Our Combination Approach
Model Name - :
Pretrained Model Accuracy(%) Combined Model C2D Our Combined # defers
Y Accuracy Model Accuracy(%)
ResNet-110 88.9 96.1 (+8.1) 97.08 (+9.25) 3002
ResNet-164 93.5 96.8 (+3.5) 001 97.74 (+4.54) 1916
PreResNet-164 | 94.86 97.1 (+2.4) ’ 98.12 (+3.44) 1820
DenseNet-BC 96.36 97.8 (+1.5) 98.6 (+2.32) 1426
o C2D=0.001 s C20=0.01 e C2D=0.1 cies with fewer defers on .comparable classifle_r accuragies. Moreove.r,
¢ C2D=0.005 o C2D=0.05 e C2D=03 our model does not require end-to-end training of either the classi-
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Figure 9. The impact of cost to defer (C2D) on combined model accuracy
and the number of defers on four different ML models compared with
Section 3.5 results

4 Final Results

This section compares the results obtained by our model with that
of existing literature. Defer models proposed in [16, 20] require an
end-to-end training of the combination of classifier and defer mod-
ule. Our combined model uses an existing trained classifier to make
predictions. The results are compared on the CIFAR-10 dataset with
a synthetic expert. CIFAR-10 dataset is considered to perform equiv-
alent comparisons as the same dataset is used to generate results
in [16, 20]. Further, the authors in [16, 20] consider that the expert
has 100% accuracy in classes from one to six and generates ran-
dom values for other classes. We also simulate humans in the same
way to compare our results. Table 2 compares the accuracies of these
end-to-end defer models [16,20] to our human-in-the-loop combined
model. As can be noted, our approach’s accuracy considering mul-
tiple classifiers shows that our model always achieves better accura-

fier or defer model; hence it is much faster to implement compared
to [16,20]. Figure 9 shows how increasing expert cost reduces com-
bined model accuracy and the number of expert defers.

Combining each test instance with the expert’s predictions can
generate good results, but it is not cost-effective. The results from
Table 3 show the comparison between [9] and our model. The per-
centages in the brackets show the percentage improvement in the ac-
curacy of the respective combined models as compared to the accu-
racy of the classifier. As noted, our model’s accuracy is much better
compared to [9] with fewer defers to expert (with cost savings in
the range of 20% to 80% depending upon the classifier). These re-
sults highlight the cost-effectiveness and performance improvement
of our proposed approach. Tables 2 and 3 show that our combined
model outperforms [16,20] and [9] in terms of accuracy for a fixed
C2D.

5 Conclusions

This paper proposes a human-in-the-loop based classification ap-
proach considering a simple deferred model with two parameters,
i.e., expert and misclassification costs. The proposed deferred model
does not require end-to-end training and human annotations for the
training set, thus saving computational cost and expert costs on
training. We showed that the current ML models are generally ill-
calibrated, with over-confidence in some instances as opposed to the
achieved accuracy. We then studied the effects of well-calibrated ML
models on the accuracy of the deferred model. We showed that cali-
bration leads to increased accuracy and robustness with respect to the
expert cost. We then extend the ideas where the calibration is done
at each group, leading to further accuracy improvement. Finally, we
showed that if the expert’s annotations are present in the training set,
these can be used to learn the confusion matrices of the humans,
which in turn can be used to combine the model’s output on the de-
ferred instances during testing. The overall approach leads to better
accuracy and fewer experts deferred compared to existing deferred
and combined models.
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