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Abstract. Reinforcement learning (RL) is a powerful approach for
training agents to perform tasks, but designing an appropriate re-
ward mechanism is critical to its success. However, in many cases,
the complexity of the learning objectives goes beyond the capabili-
ties of the Markovian assumption, necessitating a more sophisticated
reward mechanism. Reward machines and ω-regular languages are
two formalisms used to express non-Markovian rewards for quantita-
tive and qualitative objectives, respectively. This paper introduces ω-
regular reward machines, which integrate reward machines with ω-
regular languages to enable an expressive and effective reward mech-
anism for RL. We present a model-free RL algorithm to compute
ε-optimal strategies against ω-regular reward machines and evaluate
the effectiveness of the proposed algorithm through experiments.

1 Introduction

Reinforcement learning (RL) [23] is a powerful learning-based syn-
thesis paradigm that relies on providing rewards and punishment sig-
nals to reinforce or diminish behaviours. This is based on the prin-
ciple that behaviours that are repeatedly rewarded tend to become
habitual, while behaviours that are punished tend to diminish with
experience. Therefore, translating high-level objectives into reward
and punishment signals is critical to successful RL applications.

Simple objectives, such as cost-optimal reachability or safety,
can be intuitively encoded into Markovian reward signals. How-
ever, more complex objectives require a stateful reward mechanism.
Two formalisms that have been used to express non-Markovian re-
ward signals are formal specifications (ω-regular languages and lin-
ear temporal logic)[21, 12, 5, 11] and reward machines (Mealy ma-
chines based monitors with scalar rewards as outputs)[18, 4]. The
former is used to express long-run logical constraints, or “qualita-
tive” specifications, while the latter is used for “quantitative” objec-
tives, such as the discounted sum of rewards1.

∗ Corresponding Author. Email: ashutosh.trivedi@colorado.edu.
1 The terms qualitative and quantitative are used in this paper to differenti-

ate between logic-based specifications over infinite behaviour and reward-
based optimisation objectives. However, it’s important to note that these
terms can be misleading since maximising the probability of satisfying a
logical property is technically a quantitative requirement. Similarly, finding
a policy that provides a reward greater than a given budget can be consid-
ered a qualitative requirement.

This paper argues for the need to optimise quantitative rewards
under logical constraints over infinite horizons and proposes a model
to conveniently express such learning objectives, which we refer to
as ω-regular reward machines. These models integrate the two for-
malisms, allowing for the optimisation of quantitative rewards while
also enforcing logical constraints over infinite horizons. The pro-
posed ω-regular reward machines provide a powerful and efficient
way to specify complex reward structures for RL, enabling the effec-
tive and efficient training of RL agents.

Reward Programming in RL. Formal specifications, such as lin-
ear temporal logic (LTL), ω-regular languages, and their generali-
sations [1], provide unambiguous and intuitive languages to express
infinite-horizon requirements. However, manually designing rewards
from higher-level specifications is tedious and error-prone. To ad-
dress this challenge, researchers have proposed automatic transla-
tions from formal specifications to reward signals, providing a pro-
grammable, transparent, explainable, and trustworthy RL.

Sadigh et al. [21] initiated the study of model-free RL, where
learning objectives were expressed in LTL. They used LTL to ω-
automaton reduction [1] to design a scalar reward signal, with the
hope that maximising the discounted objective maximises the proba-
bility of satisfaction of the LTL objective. However, the work of Hahn
et al. [12] revealed challenges in translating formal specifications to
reward machines, and proposed a correct translation from more gen-
eral ω-automata based requirements to reward machines. Since then,
several formally correct reward schemes [14, 13, 3, 20] have been
proposed to automate ω-regular reward translation.

Icarte et al. [18, 19] advocated for the need of non-Markovian re-
ward signals and popularised the use of Mealy machines to express
such rewards. Reward machines provide an imperative language to
program reward signals, allowing designers to better tune the reward
logic by expressing their domain-specific expertise in the form of
scalar rewards. However, we argue that—since reward machines en-
code a finite-horizon, albeit discounted, view of the environment—
they fail to capture intuitive specifications and give rise to unintended
and undesirable behaviours. To support this claim, we adapt the
counterexample given by Hahn et al. [12] for the translation scheme
of Sadigh et al. [21] to show how reward machines fail to capture
intuitive specifications.
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Figure 1. An ω-regular reward machine and the corresponding learned strategy in the office patrol example. The arrow colour corresponds to the ω-regular
reward machine state colours. The strategy was learned with Q-learning, as described in Section 4. Rewards are zero unless otherwise specified.

Example 1. Counter-intuitive Office Grid-World. Figure 1 shows
a grid-world example adapted from [19]. A robot patrols the four
corner rooms of an office complex. However, unlike in [19], an elec-
trical wire dangles from the ceiling along the path connecting rooms
A and B, blocking safe passage. The robot can avoid the hazard by
reaching B from A via D and C and then retracing its steps. Alter-
natively, it can try to fix the dangling wire but, in so doing, it may
be damaged and put out of commission with probability 1/5. If suc-
cessful, the robot can then follow the shorter route that connects the
corners in a simple cycle. Doling out reward every time the robot
completes one round does not guarantee that the robot will follow
the safe strategy that avoids the dangling wire. This is because the
risky strategy, where the robot attempts to fix the dangling wire, in-
curs a risk that is offset by the reduction in path length, resulting in
a higher expected discounted reward. The key problem is that max-
imising the expectation of the cumulative reward is different from
maximising the probability that the reward is positive. We transform
the reward machine into an ω-regular reward machine by marking the
state q4 as accepting (or, equivalently, mark its outgoing transitions
as accepting). The overall objective is now modified so that visiting
this accepting state infinitely with maximum probability takes prece-
dence over the discounted reward. Using the technique described in
this paper, we learn a strategy with Q-learning that satisfies the ω-
regular reward machine and patrols while avoiding the hazard.

At the same time, ω-regular language-based RL is not sufficient to
express simple quantitative preferences as shown next.

Example 2. Office Grid-World with Preference. In the environ-
ment of Figure 1, the robot may be tasked with picking up mail and
coffee for the people who work in the “office” room. The robot may
be free to collect the mail before getting the coffee, or vice versa but,
preferably it should get mail first to prevent the coffee from getting
cold. This kind of preference is naturally expressed as rewards on the
transitions of the reward machine, while the satisfaction of the main
objective (delivery of mail and coffee to the office) is guaranteed by
imposing an ω-regular objective.

While there are some efforts to combine quantitative and quali-
tative formalism to express learning objective, they have been lim-
ited in expressing ω-regular languages [18, 19, 2]. To the best of our
knowledge, there is no prior work that can handle general ω-regular
objectives with discounted rewards. We propose ω-regular reward
machines to fill this gap.

The ω-regular reward machines (ω-RMs) are defined as nondeter-
ministic Büchi automata equipped with a scalar reward function. In
RL, ω-RMs can act as interpreters that observe the sequence of ac-
tions taken by the learning agent and the corresponding sequence
of observations from the environment and provide a sequence of
scalar rewards. Unlike reward machines [19], ω-RMs may be non-
deterministic, and the resolution of these choices is delegated to the
RL agent. The goal of the RL agent is primarily to visit the accepting
states infinitely often and then maximise the discounted sum of re-
wards. Besides the examples above, there are multiple scenarios that
call for expressing such combinations in RL.

• Specification gaming. The term specification gaming refers to the
behaviour of a learning agent that satisfies the literal specifica-
tion, often in the terms of the reward signal, but not the intended
one. While it is impossible to eliminate instances of specification
gaming beforehand, detecting such behaviour can provide clues to
some underspecified constraints.
Although it is easy to explicitly express the constraints, design-
ing reward signals that integrate such constraints can be chal-
lenging. For instance, consider the coastrunner example described
in [8]. The environment provides a positive reward for target hit-
ting, assuming that the agent naturally wants to finish the boat
race as soon as possible. However, since this assumption is not
backed by any explicit reinforcement, the learned behavior may
not align with the desired one. One possible reward mechanism to
address this issue is ω-regular reward machines that provide the
discounted sum of rewards predicated upon the satisfaction of the
ω-regular objective that the agent eventually terminates the boat
race. Note that this requirement cannot be expressed directly as a
reward machine or in formal logic.

• Relative Preference over Accepting States. Büchi automata [1]
generalise finite automata to accept infinite behaviours that cause
the accepting transitions to be visited infinitely often. ω-regular
reward machines generalise Büchi automata by allowing the de-
signer to express relative preference over various accepting states.

• Repair Machines. Another scenario where ω-regular reward ma-
chines can be useful is in repair machines. Suppose we have an RL
problem where the learning objective is expressed as a Büchi au-
tomaton, and the RL agent can rewrite some of the observations of
the environment before they are evaluated by the interpreter. The
space of these repairs is given by a repair machine [9], which is de-
fined as a weighted nondeterministic transducer, where the weight
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corresponds to the cost of the rewrite action. In this case, the goal
of the RL agent is to satisfy the objective given by the Büchi au-
tomaton while minimising a discounted sum of the costs associ-
ated with the repairs. The composition of the Büchi automaton-
based specification and the repair machine can be expressed as an
ω-regular reward machines. By leveraging ω-regular reward ma-
chines, we can ensure that the learning agent satisfies the intended
specifications while optimising the cumulative reward and min-
imising the costs associated with the repairs.

• Ulysses Contract. Another application of ω-regular reward ma-
chines is in modelling Ulysses contracts. A Ulysses contract is
a decision made by an agent to restrict potentially tempting but
irrational choices by a future version of itself. This form of self-
binding contract is named after the Greek hero Ulysses who, in the
Odyssey, has his crew tie him to the mast to safely enjoy the sirens’
song. With ω-regular RMs, the requirement to visit certain states
infinitely often encodes the Ulysses contract, while the individual
rewards encode various immediate rewards. This model allows the
RL agent to maximise rewards without violating the specification.
By using ω-regular reward machines to express Ulysses contracts,
we can ensure that the learning agent follows a long-term plan of
action that aligns with the desired objectives, even in the presence
of potentially tempting but irrational choices.

Contributions. The paper provides an expressive framework for
designing RL agents that can satisfy complex temporal specifications
while optimising the cumulative reward. We introduce ω-regular re-
ward machines, which can express complex objectives involving
both quantitative and qualitative aspects. We then provide a con-
vergent RL algorithm that approximates the optimal value for the
ω-regular objective. In the case of a known model, we show the
tractability of computing optimal value and ε-optimal policies. We
also implement the proposed algorithm as an open-source tool and
provide experimental results demonstrating its effectiveness.

Related Work. So far, we have cited several related works on re-
ward machines [18, 19] and formal specifications [21, 17, 12, 14,
20, 3] in model-free reinforcement learning. There has been substan-
tial work on lexicographic objectives in optimisation and RL, includ-
ing lexicographic discounted objectives [22, 7, 6], lexicographic ω-
regular objectives [15], and a combination of safety and discounted
objectives [2]. However, to the best of our knowledge, this is the first
work to consider the general class of ω-regular objectives with dis-
counted rewards in model-free RL.

Organisation. We begin by providing a brief overview of Markov
decision processes (MDPs) and ω-regular specifications. In Sec-
tion 3, we introduce our reward mechanism, ω-regular reward ma-
chines, and provide details on how they can be used to express com-
plex objectives involving both quantitative and qualitative aspects.
We then discuss results of probabilistic model checking and rein-
forcement learning using ω-regular reward machines. In Section 4,
we present experimental results that demonstrate the effectiveness of
the proposed approach, followed by some concluding remarks.

2 Preliminaries

An alphabet Σ is a finite set of letters. A finite string (resp. ω-string)
over Σ is defined as a finite sequence (resp. an infinite ω-sequence)
of letters from Σ. We denote the empty string by ε. We write Σ∗ and
Σω for the set of finite and ω-strings over Σ. A language (resp. ω-
language) L over an alphabet Σ is defined as a set of finite strings
(resp. ω-strings).

2.1 Markov Decision Processes

Let D(S) denote the set of all discrete distributions over S. A
Markov decision process (MDP) M is a tuple (S, s0, A, T,AP,L),
where S is a finite set of states, s0 ∈ S is the initial state, A is a
finite set of actions, T : S × A → D(S) is the probabilistic tran-
sition function, AP is the set of atomic propositions (observations),
and L : S → 2AP is the labelling function.

For any state s ∈ S, we let A(s) denote the set of actions that can
be selected in state s. An MDP is a Markov chain if A(s) is singleton
for all s ∈ S. For states s, s′ ∈ S and a ∈ A(s), T (s, a)(s′) equals
Pr(s′|s, a). A run of M is an ω-word 〈s0, a1, s1, . . .〉 ∈ S × (A×
S)ω such that Pr(si+1|si, ai+1)>0 for all i ≥ 0. A finite run is a fi-
nite such sequence. For a run r = 〈s0, a1, s1, . . .〉 we define the cor-
responding labelled run as L(r) = 〈L(s0), L(s1), . . .〉 ∈ (2AP )ω .
We write RunsM(FRunsM) for the set of runs (finite runs) of the
MDP M and RunsM(s)(FRunsM(s)) for the set of runs (finite
runs) of the MDP M starting from the state s. We write last(r) for
the last state of a finite run r.

A strategy in M is a function σ : FRuns → D(A) such that
supp(σ(r)) ⊆ A(last(r)), where supp(d) denotes the support of
the distribution d. A memory skeleton is a tuple M = (M,m0, αu)
where M is a finite set of memory states, m0 is the initial state, and
αu : M × Σ → M is the memory update function. We define the
extended memory update function α̂u : M×Σ∗ → M in a straight-
forward way. A finite memory strategy for M over a memory skele-
ton M is a Mealy machine (M,αx) where αx : S×M → D(A)
is the next action function that suggests the next action based on the
MDP and memory state. The semantics of a finite memory strategy
(M,αx) is given as a strategy σ : FRuns → D(A) such that for
every r ∈ FRuns we have that σ(r) = αx(last(r), α̂u(m0, L(r))).

A strategy σ is pure if σ(r) is a point distribution for all runs r ∈
FRunsM and is mixed (short for strictly mixed) if supp(σ(r)) =
A(last(r)) for all runs r ∈ FRunsM. Let RunsMσ (s) denote the
subset of runs RunsM(s) that correspond to strategy σ with initial
state s. Let ΣM be the set of all strategies. We say that σ is stationary
if last(r) = last(r′) implies σ(r) = σ(r′) for all finite runs r, r′ ∈
FRunsM. A stationary strategy can be given as a function σ : S →
D(A). A strategy is positional if it is both pure and stationary.

An MDP M under a strategy σ results in a Markov chain Mσ .
If σ is a finite memory strategy, then Mσ is a finite-state Markov
chain. The behaviour of an MDP M under a strategy σ and starting
state s ∈ S is defined on a probability space

(RunsMσ (s),FRunsMσ (s),Pr
M
σ (s))

over the set of infinite runs of σ with starting state s. Given a random
variable f : RunsM → R, we denote by E

M
σ (s) {f} the expectation

of f over the runs of M originating at s that follow σ.
A sub-MDP of M is an MDP M′ = (S′, A′, T ′, AP, L′), where

S′ ⊂ S, A′ ⊆ A is such that A′(s) ⊆ A(s) for every s ∈ S′,
and T ′ and L′ are analogous to T and L when restricted to S′ and
A′. Moreover M′ is closed under probabilistic transitions. An end-
component [10] of an MDP M is a sub-MDP M′ such that for every
state pair s, s′ ∈ S′ there is a strategy that can reach s′ from s with
positive probability. A maximal end-component is an end-component
that is maximal under set-inclusion. Every state s of an MDP M
belongs to at most one maximal end-component.

2.2 Discounted Reward Objectives

The learning objective over MDPs in RL is often typically ex-
pressed using a Markovian reward function, i.e. a function ρ : S ×
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A × S → R assigning utility to transitions. A rewardful MDP
is a tuple M = (S, s0, A, T, ρ) where S, s0, A, and T are de-
fined in a similar way as for MDP, and ρ is a Markovian reward
function. A rewardful MDP M under a strategy σ determines a
sequence of random rewards ρ(Xi−1, Yi, Xi)i≥1, where Xi and
Yi are the random variables denoting the i-th state and action, re-
spectively. For λ ∈ [0, 1[, the discounted reward Disct(λ)Mσ (s) is

defined as limN→∞ E
M
σ (s)

{∑
1≤i≤N λi−1ρ(Xi−1, Yi, Xi)

}
. We

define the optimal discounted reward DisctM∗ (s) for a state s ∈ S

as DisctM∗ (s)
def
= supσ∈ΣM DisctMσ (s). A strategy σ is discount-

optimal if DisctMσ (s) = DisctM∗ (s) for all s∈S.
Often, complex learning objectives cannot be expressed using

Markovian reward signals. A recent trend is to express learning ob-
jectives using finite-state reward machines [19]. A (nondeterministic)
reward machine is a tuple R = (Σ, U, u0, δ, ρ) where U is a finite set
of states, u0∈U is the starting state, δ : U×Σ → 2U is the transition
relation, and ρ : U × Σ× U → R is the reward function.

Given an MDP M = (S, s0, A, T,AP,L) and a reward
machine R = (2AP , U, u0, δ, ρ), their product M×R =
(S×U, (s0, u0), (A×U), T×, ρ×) is a rewardful MDP where
T× : (S×U)× (A×U) → D(S×U) is such that

((s, u), (a, u′))((s′, u′)) 	→
{
T (s, a)(s′) if u′∈δ(u, L(s))
0 otherwise.

and ρ× : (S×U) × (A×U) × (S×U) → R is defined such that
ρ×((s, u), (a, u′), (s′, u′)) equals ρ(u, L(s), u′) if (u, L(s), u′) ∈
δ. For discounted reward objective, the optimal strategy of M×R
are positional on M×R. Moreover, these positional strategies char-
acterise a finite memory strategy (with memory skeleton based on
the states of R and the next-action function based on the positional
strategy) over M maximising the learning objective given by R.

In our reductions, we make use of total reward objective
ETotalM∗ (s) defined in a similar fashion as the discounted objective
when the discount factor λ is equal to 1. The concepts of expected
total reward and optimal strategy is defined in an analogous manner.

2.3 Omega-Regular Specifications

A Büchi automaton is a tuple A = (Σ, Q, q0, δ, F ), where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q × Σ → 2Q is the transition function, and F ⊆ Q × Σ×Q is
the set of accepting transitions.

A run r of A on w ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q×
Σ)ω such that r0=q0 and, for i > 0, ri ∈ δ(ri−1, wi−1). Each triple
(ri−1, wi−1, ri) is a transition of A. We write inf(r) for the set of
transitions that appear infinitely often in the run r. A run r of A is
accepting if inf(r)∩F �= ∅. The language L(A) of A is the subset of
words in Σω that have accepting runs in A. A language is ω-regular
if it is accepted by a Büchi automaton.

Given an MDP M = (S, s0, A, T,AP,L) and a Büchi au-
tomaton A = (2AP , Q, q0, δ, F ), their product M × A =
(S×Q, (s0, q0), A×Q,T×, F×) is an MDP with accepting transi-
tions F× where T× : (S×Q)× (A×Q) → D(S ×Q) is such that

((s, q), (a, q′))((s′, q′)) 	→
{
T (s, a)(s′) if (q, L(s, a, s′), q′)∈δ
0 otherwise.

The set of accepting transitions F× ⊆ (S × Q) × (A × Q) ×
(S × Q) is defined by ((s, q), (a, q′), (s′, q′)) ∈ F× if, and only
if, (q, L(s, a, s′), q′) ∈ F and T (s, a)(s′) > 0.

A strategy σ on the product defines a strategy σ′ on the MDP
with the same value, and vice versa. Note that for a stationary σ
on the product, the strategy σ on the MDP may need memory.
End-components and runs of the product MDP are defined just like
for MDPs. An accepting end-component is an end-component that
contains an accepting transition. A run of M×A is accepting if
inf(r) ∩ F× �= ∅. We define the Büchi satisfaction probability
BSatσ(s) of a strategy σ as the probability of this strategy gener-
ating an accepting run, i.e.

PrM×A
σ

{
r ∈ RunsM×A

σ (s, q0) : inf(r) ∩ F× �= ∅}.
Similarly, BSat(s) is the optimal satisfaction probability over the
product, i.e. BSat(s) = supσ BSatσ(s, q0). We say that a strategy
σ∗ is Büchi-optimal from s ∈ S if BSat(s) = BSatσ∗(s, q0).

3 Omega-Regular Reward Machines

Our definition of ω-regular reward machine integrates the definitions
of reward machines and Büchi automata. The notion of product with
an MDP is defined in a similar fashion. The optimisation objective is
to compute optimal discounted reward over all Büchi-optimal strate-
gies and near-optimal strategies achieving this reward.

Definition 1 (ω-Regular Reward Machine (ω-RM).). An ω-RM is a
tuple R = (Σ, U, u0, δ, ρ, F ) where U is a finite set of states, u0 ∈
U is the starting state, δ : U × Σ → 2U is the transition relation,
ρ : U ×Σ×U → R is the reward function, and F ⊆ U ×Σ×U is
the set of accepting transitions.

Given an MDP M = (S, s0, A, T,AP,L) and an automa-
ton R = (2AP , U, u0, δ, ρ, F ), their product P = M ×
R = (S×U, (s0, u0), A×U, T×, ρ×, F×) is an MDP with initial
state (s0, u0) and accepting transitions F× where T× : (S×U) ×
((A×U)) → D(S×U) is such that:

T×((s, u), (a, u′))((s′, u′)) =

{
T (s, a)(s′) if u′∈δ(u, L(s))
0 otherwise.

The set of accepting transitions F× ⊆ (S × U) × (A × U) ×
(S × U) is defined by ((s, q), (a, q′), (s′, q′)) ∈ F× if, and only if,
(q, L(s), q′) ∈ F and T (s, a)(s′) > 0.

Let us fix the product MDP P = M × R as the tuple
(Q, q0, A, T, ρ, F ) for the rest of this section. To define the optimi-
sation objective for ω-RM, we need to define the following concepts
over the product MDP P .

• The Büchi satisfaction probability BSatσ(s) is the probability to
satisfy the Büchi objective by a strategy σ from a given state s
and is defined similar to that for Büchi automata (Section 2.3).
The optimal satisfaction probability BSat(s) and a Büchi-optimal
strategy σ∗ that achieves these, i.e., BSat(s0) = BSatσ∗(s0) is
defined similar to that for Büchi automata (Section 2.3).

• The optimal Büchi-discounted value Bval is the optimal dis-
counted reward among Büchi optimal strategies defined as:

Bval : q 	→ sup
σ

{
valueσ(q) | BSat(q) = BSatσ(q)

}

where valueσ : q 	→ Disct(λ)Mσ (q) is the discounted value of σ.
• An optimal Büchi-discounted strategy is a strategy σ that attains

optimal Büchi-discounted value, i.e., BSat(q0) = BSatσ(q0)
and, for a given ε > 0 an ε-optimal (near optimal) Büchi-
discounted strategy is such that Bvalσ(q0) > valueσ(q0)− ε.
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We seek near-optimal strategies that maximise the chance of satisfy-
ing the Büchi objective, but will only be arbitrarily close to satisfying
the discounted reward objective due to the following observation.

Lemma 1. The optimal Büchi-discounted strategies may not exist.

Proof. Consider an MDP where one can freely choose the next letter
from an alphabet {a, b} and have a reward of 1 for a and 0 for b, as
well as a primary Büchi objective to see infinitely many b’s, then we
cannot achieve an expected reward of 1

1−λ
while satisfying the Büchi

objective. We can, however, get arbitrarily close, e.g., by producing
a’s until a reward > 1

1−λ
−ε is collected for any given ε > 0, and

henceforth produce b’s. While the optimal Büchi-discounted value is
1

1−λ
, no (finite or infinite memory) strategy can attain it.

3.1 Known MDP: Probabilistic Model Checking

Consider the problem to compute the optimal Büchi-discounted
value and near-optimal strategies when M and R, and therefore their
product P , are known. A possible first step is to model check the
MDP P against the Büchi objective. This provides the probability of
achieving the Büchi objective from every state together with a posi-
tional strategy σ∗ of how to achieve it.

Model checking the product MDP P = (Q, q0, A, T, ρ, F ) is a
standard operation [1, 10]. One would typically start with qualitative
model checking, which consists of two intertwined procedures:

1. Remove all states in Q from which no accepting transition is
reachable with positive probability. If any states were removed,
go to step 2.

2. Recursively remove state-action pairs (q, a) where T (q, a)(q′)>0
for any state q′ that has been previously removed, and remove
states q such that all of its state-action pairs (q, a) have already
been removed. If any state was removed at the end of this proce-
dure, go back to step 1.

Both steps work in time linear in the transition graph of P , and a fixed
point is reached in at most |Q| steps, because a new procedure call
is made only if at least one state was removed. The remaining states,
Q1 ⊆ Q, are those, for which we can satisfy the Büchi objective
almost surely, and the last application of (1) provides such a strategy.

To extend this method to quantitative model checking (comput-
ing the optimal probability of satisfying the Büchi objective), we
can simply add, for all states q removed during the procedure above
(whose set will be denoted by Q<1 = Q \ Q1) and all actions a,
variables p(q,a) and pq that represent the probability to win when
taking the state-action pair (q, a) and when starting at q, respectively.
To calculate the correct probabilities, we define the following linear
program that these probabilities have to satisfy.

For all q ∈ Q<1 and a ∈ A:

p(q,a) =
∑

q′∈Q<1

T (q, a)(q′)pq +
∑

q′∈Q1

T (q, a)(q′)

pq ≥ 0 and pq ≥ p(q,a)

with the objective to Minimise
∑

q∈Q<1
pq .

Note that we can achieve pq value when starting at q by playing a
safe strategy that at any state, q′, only uses an action, a, such that

pq′ = p(q′,a) and such that there is a positive probability to visit an
accepting transition as done in (1).
Compute Near-Optimal Strategies. To find a strategy that is near-
optimal with respect to the discounted reward without sacrificing the
probability to satisfy the Büchi objective we do the following. First,
we remove all state-action pairs (q, a) such that pq �= p(q,a) from
P , because taking any such action would reduce the probability of
generating an accepting run. Next, we remove all states that have
no actions left. Note that, in the example discussed in Lemma 1, we
would neither remove any states nor any state-action pairs.

Now, for the remaining states, q ∈ Q′, and state-actions pairs,
(q, a), we introduce variables ρq and ρ(q,a), respectively. We find
the optimal discounted reward values and a positional strategy τ that
realises them using the following linear program.

For all q ∈ Q′ and a ∈ A(q):

ρq ≥ ρ(q,a)

ρ(q,a) =
∑

q′∈Q′
T (q, a)(q′)

(
ρ(q, a, q′) + λρq′

)
,

with the objective to Minimize
∑

q∈Q′ ρq .

In the example shown in Lemma 1, this would be to always pro-
duce a’s—which would not satisfy the Büchi objective. However,
any strategy obtained this way can either be followed long enough
that the value of the tail is marginal, or we can initially follow this
strategy, and switch to a strategy σ∗ that pursues the Büchi objective
with a small probability in every step. Both approaches will lead to
a strategy that maximises the probability to satisfy the Büchi objec-
tive (in our example, with probability 1) while providing an expected
payoff that is near-optimal among the strategies that maximise satis-
fying the Büchi objective.

3.2 Reinforcement Learning: Reward Translation

When the MDP is not known, we use model-free RL to approximate
optimal value and learn a near optimal strategy. We present a reduc-
tion from the product MDP P = (Q, q0, A, T, ρ, F ) to a related
MDP Pλ such that optimal values from Pλ can be used to compute
the optimal value in P .

Definition 2 (Reward Translation). For a product MDP P =
(Q, q0, A, T, ρ, F ) with discount factor λ, consider a related MDP
Pλ = (Q′, (q0, 0), A, T ′, ρ, F ′), where:

• Q′ = (Q×{0, 1})∪{t} is the state space, where t is a fresh trap
state including the initial state (q0, 0),

• T ′ : Q′ ×A×Q′ → [0, 1] is the transition function where

T ′((q, 0), a, (q′, 0)) = (1− λ)T (q, a, q′)

T ′((q, 0), a, (q′, 1)) = λT (q, a, q′)

T ′((q, 1), a, (q′, 1)) =

{
ζT (q, a, q′) if (q, a, q′) ∈ F

T (q, a, q′) otherwise

T ′((q, 1), a, t) = (1− ζ)
∑

{q′|(q,a,q′)∈F}
T (q, a, q′)

T ′(t, σ, t) = 1

where ζ ∈ (0, 1) is a parameter,
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Figure 2. A translation of a product MDP with a combined Büchi-discounted reward objective with a discount factor λ on the left hand side to an MDP with
total reward objective on the right hand side. Each transition is labelled with its probability followed by its reward. Rewards with value 0 are omitted. Intuitively,
the new MDP consists of two phases: the maximisation of the discounted reward (states labelled (qi, 0)) followed by maximisation of the Büchi objective (states
labelled (qi, 1)). We move from the first phase to the second with probability 1 − λ in each step. Any original accepting transition is marked with a green dot
and is replaced in the new MDP with a transition that leads with probability p(1− ζ) to the new trap state t and with probability pζ to the original target state,
where p is the original transition probability.

• and ρ′ : Q′ ×A×Q′ → R is the reward function where

ρ′((q, 0), a, (q′, 0)) = ρ(q, a, q′)

ρ′((q, 0), a, (q′, 1)) = ρ(q, a, q′)

ρ′((q, 1), a, (q′, 1)) = 0

ρ′((q, 1), a, t) = f

ρ′(t, a, t) = 0

where f ≥ 1 is a (usually large) parameter.

An example of this translation is shown in Figure 2. Note that
while the MDP Pλ has two additional parameters, f and ζ, it only
has numerical rewards and is therefore simpler to analyse.

The parameter ζ has a similar meaning as in [12]: with probability
1 − ζ one declares that accepting edges will be seen forever after
seeing a single accepting edge. Increasing the value of ζ means that
the agent needs to see a larger number of accepting edges to obtain
the same probability of declaring that accepting edges will be seen
infinitely often. As in [12], if the Büchi objective is satisfied with
probability 1 any 0 < ζ < 1 is correct in our reduction. The param-
eter f is used to weight the value of the Büchi objective relative to
the discounted reward objective. As we will show, for large enough
f , the two objectives are ordered lexicographically. For Pλ, we want
to learn the optimal expected reward. For this, we define

• value′(r) =
∑∞

i=0 ρ
′(ri, ai, ri+1) for any run r and,

• value′σ : q 	→ E
{
value′(r) | r ∈ Runsσq (Pλ)

}
, and

• value′ : q 	→ supσ value′σ(q), as well as a strategy σ with
value′σ(q0) = value′(q0).

We say that a positional strategy σ is ε-consistent with value function
value′ on a set S if |value′σ(q)− value′(q)| < ε for all q ∈ S.

Let us start with an established learning approach for Büchi objec-
tives, which is a special case for the approach from [12].

Theorem 1 (Limit Reachability [12]). For a product MDP P and a
given parameter f ≥ 1, there exists ε > 0 and ζ∗ ∈ (0, 1) such that,

for all ζ ∈ (ζ∗, 1) and all q ∈ Q,

value′
(
(q, 1)

) ∈ [f · BSat(q), f · BSat(q) + ε],

and all positional strategies that are ε-consistent with value′ from
Q× 1 are optimal strategies for the Büchi objective.

Theorem 2. For a given product MDP P and ε ∈ (0, 1), there is a
parameter f∗ ≥ 1 such that, for all f ≥ f∗, there is a ζ∗ ∈ (0, 1)
such that, for all ζ ∈ (ζ∗, 1),

value′
(
(q, 0)

) ∈ [Bval(q)+f ·BSat(q),Bval(q)+f ·BSat(q)+ε].

Proof. We start with a number of simple observations.

1. For every set of parameters, Pλ is a total payoff MDP and there-
fore has positional optimal strategies.

2. For every strategy that provides the optimal probability BSat(q0)
to satisfy the Büchi objective, the following holds: for all k ∈
N, under the assumption that the MDP moves to the 1-copy after
k steps, the expected chance of satisfying the Büchi objective is
BSat(q0). Moreover, this value is ≤ BSat(q0) for every strategy,
and, for some k′ ≤ |Q| and all k ≥ k′, it is < BSat(q0) for a non-
optimal positional strategy. Thus, for any positional non-optimal
strategy, there is a probability p < BSat(q0) such that the chance
of meeting the Büchi objective is ≤ p. Let p∗ be the maximal such
value. (Note that the set of positional strategies is finite.)

3. Let d be the maximal difference in expected discounted payoff
between two strategies. (d can be bounded by maximum value of
ρ divided by 1− λ). Then we choose f∗ ≥ d

γ(BSat(q0)−p∗) + 1.

With these observations, we choose f∗ as in (3) and, for f ≥ f∗,
ζ∗ as in Theorem 1. This provides correct strategies for obtaining the
Büchi objective with maximal probability from all positions in the 1-
copy, and values that approximate f ·BSat((q, 1)) with ε precision.

Let us now consider two positional strategies for Rγ : σ, which
maximises the chance of satisfying the Büchi objective, and τ , which
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Name states time (s) f ζ γ α ε init ep-l ep-n

cheapest 6 0.56 0.50 3k
promises 16 0.71 0.50 3k
robot 4x4 64 0.30 0.20 1k
virus 859 61.28 0.95 50 150k
busyRing2 169 45.38 0.005 0.75 175k
twoWECs 6 4.80 500 0.005 0.20 30k
officeZapPatrol 876 165.05 0.5 7 100 350k
officePreferences 1248 77.27 100 0 0.002 100 150 200k
officeZapPreferences 1254 111.01 100 0 0.005 0.01 100 1500 250k

Table 1. Q-learning results. Blank entries indicate that default parameters are used. The default parameters are f = 10, ζ = 0.99, γ = 0.999, α = 0.01,
ε = 0.1, init = 0, ep-l = 20, and ep-n = 20k. The same external discount factor of λ = 0.99 was used for all experiments.

does not. By (3) and Theorem 1, this implies that the expected reward
of σ is at least 1−ε better than the expected reward of τ . Thus, a po-
sitional strategy with optimal reward will also maximize the chance
of satisfying the Büchi objective.

Let us now consider two positional strategies for Pλ that are both
ε-consistent with value on Q×{1} (and thus optimal w.r.t. the Büchi
objective there), σ and τ , such that the expected reward in the 0-copy
of σ is at least ε higher than that of τ . Then, using Theorem 1, the
expected reward of σ in Pλ is higher than the reward by τ .

Putting these two together, we get that the optimal solution for Rγ

provides that, for all k ∈ N, the probability of satisfying the Büchi
objective after k steps is BSat(q0) while, among the strategies with
this property, the expected discounted reward is ε-optimal.

Learning. For given parameters, Pλ is simply an MDP with total
rewards and contraction on Q × {0} and a reachability objective in
Q×{1}∪{t}. The values and strategies to obtain them can be learned
with standard techniques, such as Q-learning. Note that the parame-
ter ε can be selected after learning is complete since the strategy for
Pλ is independent of ε.

Theorem 3. Given Pλ and parameters f and ζ, we can use Q-
learning to find value′ and an optimal strategy σ.

These three theorems provide us with a way to robustly infer a
near-optimal strategy for M from R for appropriate parameters f
and ζ: To obtain a 2ε-optimal strategy for M, we can simply find
or approximate an optimal strategy for R. To transfer this strategy to
M, we can follow the 0-copy (Q×{0}) long enough; say k steps, so
that the contribution of all but the first k transitions is smaller than ε.
We can then move on to follow the strategy for the 1-copy (Q×{1}).

Corollary 1. For a product MDP P , a ε > 0 and appropriate pa-
rameter f ≥ 1 and ζ ∈ (0, 1), we can infer a near optimal strategy
for P from a near optimal strategy for Pλ with parameters f and ζ.

4 Experimental Results

We implemented the construction described in Section 3 in the tool
MUNGOJERRIE [16]. The construction is implemented on-the-fly,
where the states of the MDP and the ω-regular reward machine are
kept independent and concatenated at each time step. We ran tabu-
lar Q-learning on multiple case studies, as seen in Table 1. Table 1
shows the name of the case study, the number of states in the product
MDP, the time taken for learning in seconds, the value of f , ζ, and
algorithm discount factor γ. The table also shows the learning rate α,
the ε-greedy exploration rate ε, the value the Q-table was initialised
to, the episode reset length, and the number of training episodes. The

episode reset length is the number of time steps between accepting
edges in the second layer that needs to be exceeded for the episode to
be reset. After learning is complete, we verify that the values of the
learned strategy matches the values computed by the linear programs
described in Section 3. This ensures that the learned strategy can be
transformed into an ε-optimal strategy for any ε > 0. For all of our
experiments, we use the same external discount factor λ = 0.99.

Example cheapest shows how quantitative rewards may supple-
ment an ω-regular specification to steer the agent toward a path
of minimum cost rather than a path of minimum length. Example
promises illustrates the use of quantitative rewards to model advances
that an agent may get in return for a promise to fulfil an obligation en-
coded as an ω-regular objective. Examples robot 4x4 and virus were
used in [15] in the context of multiple ω-regular properties lexico-
graphically combined. Their use here demonstrates the wider set of
specifications allowed by ω-regular reward machines. In busyRing2,
quantitative rewards are used to measure the fraction of time spent
in negotiating the asynchronous arbitration protocol. In twoWECs,
quantitative rewards indicate preference between sets of states that
satisfy the ω-regular specification. The last three examples are based
on the office grid-world discussed in the introduction. Since these ex-
amples require deep exploration in order to discover the near-optimal
strategy, we initialised the Q-table optimistically to aid exploration.

Overall, our experimental results demonstrate the effectiveness
and versatility of ω-regular reward machines in solving a wide
range of RL problems with complex specifications. By leveraging
the power of ω-regular objectives and discounted rewards, we can
specify and learn complex behaviours and preferences that would
be difficult to express with traditional RL techniques. Moreover, our
open-source implementation may allow researchers and practitioners
to easily apply these techniques to their own problems.

5 Conclusion

Reward machines and formal specifications are two leading reward
programming languages that roughly correspond to imperative (how
to give rewards?) and declarative (what to give rewards for?) ways
of expressing programmer’s intent. This paper presents a hybrid ap-
proach that combines the declarative and imperative specifications.
The ω-regular RMs can be constructed by expressing declarative
specification in LTL and the imperative reward specification as re-
ward machines. The ω-RMs strictly generalise both reward machines
(from finite-horizon behaviour to infinite-horizon) and ω-regular lan-
guages (from qualitative to quantitative satisfaction) in a natural
framework. We presented a parametric reduction from the optimisa-
tion problem over ω-RM to an optimal reward reachability problem
that can be constructed and learned in a model-free manner.
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